Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = absorbent regeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1663 KiB  
Article
Carbon Dioxide Absorption by Polyethylene Glycol Dimethyl Ether Modified by 2-methylimidazole
by Yan Wu, Zicheng Wang, Hui Yu, Bin Ding, Ke Fei, Xueli Ma, Baoshen Xu, Yonghu Zhang, Xiaoning Fu, Bowen Ding and Nan Li
Separations 2025, 12(8), 198; https://doi.org/10.3390/separations12080198 - 28 Jul 2025
Viewed by 204
Abstract
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); [...] Read more.
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); however, its limited application range is caused by its poor absorption of CO2 at low pressures. In this work, the CO2 absorption of NHD was enhanced by combining NHD with a novel chemical absorbent 2-methylimidazole (2-mIm)-ethylene glycol (EG) solution to improve CO2 absorption. Viscosity and CO2 solubility were examined in various compositions. The CO2 solubility in the mixed solution was found to be at maximum when the mass fractions of NHD, 2-mIm, and EG were 20%, 40%, and 40%, respectively. In comparison to pure NHD, the solubility of CO2 in this mixed solution at 30 °C and 0.5 MPa increased by 161.2%, and the desorption heat was less than 30 kJ/mol. The complex solution exhibits high selectivity and favorable regeneration performance in the short term. However, it is more sensitive to moisture content. The results of this study can provide important data to support the construction of new low-energy solvent systems and the development of novel CO2 capture processes. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

14 pages, 1281 KiB  
Article
Membrane Separation for the Treatment of LiBr + LiCl Brines and Their Application
by Jonathan Ibarra-Bahena, Ulises Dehesa-Carrasco, Yuridiana Rocio Galindo-Luna, Iván Leonardo Medina-Caballero and Wilfrido Rivera
Membranes 2025, 15(8), 219; https://doi.org/10.3390/membranes15080219 - 23 Jul 2025
Viewed by 275
Abstract
In sorption cooling systems, an important stage of the thermodynamic cycle is the separation of the refrigerant fluid from the absorbent mixture. This process is called “regeneration” or “desorption,” and it is similar to thermal desalination, where water is separated from an aqueous [...] Read more.
In sorption cooling systems, an important stage of the thermodynamic cycle is the separation of the refrigerant fluid from the absorbent mixture. This process is called “regeneration” or “desorption,” and it is similar to thermal desalination, where water is separated from an aqueous saline solution. However, since sorption systems utilize high salt concentration solutions, conventional desalination techniques such as reverse osmosis are not suitable. In this regard, membrane devices can enhance heat and mass transfer processes in compact sizes. In the present paper, a membrane device with an air gap membrane distillation configuration was evaluated, operating with the H2O/LiBr + LiCl solution (with a mass ratio of 2:1, LiBr:LiCl), to assess the produced distilled water flux. Among the operating parameters analyzed (solution temperature, cooling water temperature, salt concentration, and membrane pore size), solution temperature had the highest impact on the distilled water flux, while the membrane pore size had the lowest impact. The maximum distilled water flux was 7.63 kg/h·m2 with a solution temperature of 95.3 °C, a cooling water temperature of 25.1 °C, a salt concentration of 44.99% w/w, and a membrane pore size of 0.45 μm. On the other hand, the minimum distilled water flux was 0.28 kg/h·m2 with a solution temperature of 80.3 °C, a cooling water temperature of 40.1 °C, a salt concentration of 50.05% w/w, and with a membrane pore size of 0.22 μm. Full article
(This article belongs to the Special Issue Applications of Membrane Distillation in Water Treatment and Reuse)
Show Figures

Figure 1

20 pages, 2740 KiB  
Article
Antistatic Melt-Electrowritten Biodegradable Mesh Implants for Enhanced Pelvic Organ Prolapse Repair
by Daniela Cruz, Francisca Vaz, Evangelia Antoniadi, Ana Telma Silva, Joana Martins, Fábio Pinheiro, Nuno Miguel Ferreira, Luís B. Bebiano, Rúben F. Pereira, António Fernandes and Elisabete Silva
Appl. Sci. 2025, 15(14), 7763; https://doi.org/10.3390/app15147763 - 10 Jul 2025
Viewed by 330
Abstract
Pelvic organ prolapse (POP) is a health condition that can significantly impact patients’ quality of life. Unfortunately, most available treatments present drawbacks such as high recurrence rates, risk of complications, poor tissue integration, and the need for reintervention. One promising alternative is the [...] Read more.
Pelvic organ prolapse (POP) is a health condition that can significantly impact patients’ quality of life. Unfortunately, most available treatments present drawbacks such as high recurrence rates, risk of complications, poor tissue integration, and the need for reintervention. One promising alternative is the use of biodegradable implantable meshes, which can support the organs, guide tissue regeneration, and be fully absorbed without damaging the surrounding tissues. In this study, biodegradable polycaprolactone (PCL) meshes were fabricated using melt electrowritten (MEW), incorporating the antistatic agent Hostastat® FA 38 (HT) to address these limitations. The goal was to produce microscaffolds with suitable biophysical properties, particularly more stable fiber deposition and reduced fiber diameter. Different HT concentrations (0.03, 0.06, and 0.1 wt%) were investigated to assess their influence on the fiber diameter and mechanical properties of the PCL meshes. Increasing HT concentration significantly reduced fiber diameter by 14–17%, 39–45%, and 65–66%, depending on mesh geometry (square or sinusoidal). At 0.06 wt%, PCL/HT meshes showed a 24.10% increase in tensile strength and a 55.59% increase in Young’s Modulus compared to pure PCL meshes of similar diameter. All formulations demonstrated cell viability >90%. Differential scanning calorimetry (DSC) revealed preserved thermal stability and changes in crystallinity with HT addition. These findings indicate that the antistatic agent yields promising results, enabling the production of thinner, more stable fibers with higher tensile strength and Young’s Modulus than PCL meshes, without adding cellular toxicity. Developing a thinner and more stable mesh that mimics vaginal tissue mechanics could offer an innovative solution for POP repair. Full article
Show Figures

Figure 1

26 pages, 5282 KiB  
Article
Unraveling the Regulatory Impact of LncRNA Hnf1aos1 on Hepatic Homeostasis in Mice
by Beshoy Armanios, Jing Jin, Holly Kolmel, Ankit P. Laddha, Neha Mishra, Jose E. Manautou and Xiao-Bo Zhong
Non-Coding RNA 2025, 11(4), 52; https://doi.org/10.3390/ncrna11040052 - 4 Jul 2025
Viewed by 395
Abstract
Background/Objectives: Long non-coding RNAs (lncRNAs) play significant roles in tissue development and disease progression and have emerged as crucial regulators of gene expression. The hepatocyte nuclear factor alpha antisense RNA 1 (HNF1A-AS1) lncRNA is a particularly intriguing regulatory molecule in liver biology that [...] Read more.
Background/Objectives: Long non-coding RNAs (lncRNAs) play significant roles in tissue development and disease progression and have emerged as crucial regulators of gene expression. The hepatocyte nuclear factor alpha antisense RNA 1 (HNF1A-AS1) lncRNA is a particularly intriguing regulatory molecule in liver biology that is involved in the regulation of cytochrome P450 enzymes via epigenetic mechanisms. Despite the growing recognition of lncRNAs in liver disease, the comprehensive role of HNF1A-AS1 in liver function remains unclear. This study aimed to investigate the roles of the mouse homolog of the human HNF1A-AS1 lncRNA HNF1A opposite strand 1 (Hnf1aos1) in liver function, gene expression, and cellular processes using a mouse model to identify potential therapeutic targets for liver disorders. Methods: The knockdown of Hnf1aos1 was performed in in vitro mouse liver cell lines using siRNA and in vivo livers of AAV-shRNA complexes. Changes in the global expression landscapes of mRNA and proteins were revealed using RNA-seq and proteomics, respectively. Changes in the selected genes were further validated via real-time quantitative polymerase chain reaction (RT-qPCR). Phenotypic changes were assessed via histological and absorbance-based assays. Results: After the knockdown of Hnf1aos1, RNA-seq and proteomics analysis revealed the differential gene expression of the mRNAs and proteins involved in the processes of molecular transport, liver regeneration, and immune signaling pathways. The downregulation of ABCA1 and SREBF1 indicates their role in cholesterol transport and fatty acid and triglyceride synthesis. Additionally, significant reductions in hepatic triglyceride levels were observed in the Hnf1aos1-knockdown group, underscoring the impact on lipid regulation. Notably, the knockdown of Hnf1aos1 also led to an almost complete depletion of CYP7A1, the rate-limiting enzyme in bile acid synthesis, highlighting its role in cholesterol homeostasis and hepatotoxicity. Histological assessments confirmed these molecular findings, with increased hepatic inflammation, hepatocyte swelling, and disrupted liver architecture observed in the Hnf1aos1-knockdown mice. Conclusions: This study illustrated that Hnf1aos1 is a critical regulator of liver health, influencing both lipid metabolism and immune pathways. It maintains hepatic lipid homeostasis, modulates lipid-induced inflammatory responses, and contributes to viral immunity, indirectly affecting glucose and lipid metabolic balance. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

10 pages, 937 KiB  
Article
Clinical Influence of Bile Duct and Duodenum Preservation on Zinc Absorption and Remnant Pancreatic Volume in Duodenum-Preserving Pancreatic Head Resection for Low-Grade Malignant Pancreatic Tumors
by Yoshiki Kunimura, Hiroyuki Kato, Satoshi Arakawa, Masahiro Shimura, Takahiro Tashiro, Daisuke Koike, Hidetoshi Nagata, Yuka Kondo, Hironobu Yasuoka, Takahiko Higashiguchi, Hiroki Tani, Kazuma Horiguchi, Masaki Furukawa, Masahiro Ito, Yutaro Kato, Tsunekazu Hanai and Akihiko Horiguchi
Cancers 2025, 17(13), 2217; https://doi.org/10.3390/cancers17132217 - 2 Jul 2025
Viewed by 279
Abstract
Background/Objectives: Duodenum-preserving pancreatic head resection (DPPHR) preserves digestive and absorptive functions better than pancreaticoduodenectomy (PD). Zinc is primarily absorbed in the duodenum and proximal jejunum and plays a critical role in nutritional maintenance and pancreatic regeneration. However, no studies have compared the postoperative [...] Read more.
Background/Objectives: Duodenum-preserving pancreatic head resection (DPPHR) preserves digestive and absorptive functions better than pancreaticoduodenectomy (PD). Zinc is primarily absorbed in the duodenum and proximal jejunum and plays a critical role in nutritional maintenance and pancreatic regeneration. However, no studies have compared the postoperative pancreatic volume and serum zinc levels between DPPHR and PD. Methods: We retrospectively analyzed 41 patients who underwent DPPHR (n = 23) or subtotal stomach-preserving PD (n = 18) for low-grade pancreatic malignancies at our institution. The remnant pancreatic volumes on postoperative day 7 and 1 year were measured via computed tomography. Nutritional parameters, including serum albumin, prognostic nutritional index (PNI), and serum zinc levels, were compared between the groups. Serum zinc levels were evaluated in patients with DPPHR (n = 11) or PD (n = 7). Results: The DPPHR group demonstrated significantly better preservation of remnant pancreatic volume on postoperative day 7 and 1 year compared to the PD group (p = 0.045 and p = 0.041, respectively). Volume maintenance ratios were also significantly higher in the DPPHR group. Serum albumin levels at 1 year postoperatively were significantly better in the DPPHR group, although no significant difference was found in the PNI. Among patients evaluated for serum zinc, the DPPHR group showed significantly higher zinc levels compared to the PD group (80.3 vs. 65.8 μg/dL, p = 0.017). Conclusions: DPPHR preserves remnant pancreatic volume and maintains serum zinc levels better than PD, potentially contributing to improved postoperative nutritional status and quality of life. Further prospective studies with larger cohorts are warranted to validate these findings. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

19 pages, 2386 KiB  
Article
Melatonin Improves Salt Tolerance in Tomato Seedlings by Enhancing Photosystem II Functionality and Calvin Cycle Activity
by Xianjun Chen, Bi Chen, Yao Jiang, Jianwei Zhang, Mingjie Liu, Qin Yang and Huiying Liu
Plants 2025, 14(12), 1785; https://doi.org/10.3390/plants14121785 - 11 Jun 2025
Viewed by 509
Abstract
Salt stress severely impairs photosynthesis and development in tomato seedlings. This study investigated the regulatory role of exogenous melatonin (MT) on photosynthetic performance under salt stress by determining chlorophyll content, chlorophyll a fluorescence parameters, Calvin cycle enzyme activities, and related gene expression. Results [...] Read more.
Salt stress severely impairs photosynthesis and development in tomato seedlings. This study investigated the regulatory role of exogenous melatonin (MT) on photosynthetic performance under salt stress by determining chlorophyll content, chlorophyll a fluorescence parameters, Calvin cycle enzyme activities, and related gene expression. Results showed that salt stress significantly reduced chlorophyll content and impaired photosystem II (PSII) functionality, as evidenced by the increased minimum fluorescence (Fo) and decreased maximum quantum efficiency of PSII (Fv/Fm) and effective PSII quantum yield (ΦPSII). MT application mitigated these negative effects, as reflected by higher Fv/Fm, increased chlorophyll content, and lower non-photochemical quenching (NPQ). In addition, MT-treated plants exhibited improved PSII electron transport and more efficient use of absorbed light energy, as shown by elevated ΦPSII and qP values. These changes suggest improved PSII functional stability and reduced excess thermal energy dissipation. Furthermore, MT significantly enhanced both the activity and expression of key enzymes involved in the Calvin cycle, including ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), Rubisco activase (RCA), phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphatase (FBPase), fructose-bisphosphate aldolase (FBA), transketolase (TK), and sedoheptulose-1,7-bisphosphatase (SBPase), thereby promoting carbon fixation and ribulose-1,5-bisphosphate (RuBP) regeneration under salt stress. Conversely, inhibition of endogenous MT synthesis by p-CPA exacerbated salt stress damage, further confirming MT’s crucial role in salt tolerance. These findings demonstrate that exogenous MT enhances salt tolerance in tomato seedlings by simultaneously improving photosynthetic electron transport efficiency and upregulating the activity and gene expression of key Calvin cycle enzymes, thereby promoting the coordination between light reactions and carbon fixation processes. This study provides valuable insights into the comprehensive regulatory role of MT in maintaining photosynthetic performance under saline conditions. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

22 pages, 12049 KiB  
Article
Biodegradable and Mechanically Resilient Recombinant Collagen/PEG/Catechol Cryogel Hemostat for Deep Non-Compressible Hemorrhage and Wound Healing
by Yuanzhe Zhang, Tianyu Yao, Ru Xu, Pei Ma, Jing Zhao and Yu Mi
Gels 2025, 11(6), 445; https://doi.org/10.3390/gels11060445 - 10 Jun 2025
Viewed by 1105
Abstract
Traumatic non-compressible hemorrhage and subsequent wound management remain critical challenges in military and civilian settings to this day. Cryogels have emerged as promising hemostatic materials for non-compressible hemorrhage due to their blood-triggered shape recovery. In this study, a biodegradable and mechanically resilient cryogel [...] Read more.
Traumatic non-compressible hemorrhage and subsequent wound management remain critical challenges in military and civilian settings to this day. Cryogels have emerged as promising hemostatic materials for non-compressible hemorrhage due to their blood-triggered shape recovery. In this study, a biodegradable and mechanically resilient cryogel (CF/PD) was produced via cryopolymerization, employing methacrylated recombinant collagen as a macromolecular crosslinker alongside poly (ethylene glycol) diacrylate (PEGDA) and dopamine methacrylate (DMA). With its interpenetrating macro-porous structure and high hydrophilicity, the CF/PD rapidly absorbs blood and returns to its original shape within 1.5 s. In a rat liver defect model, CF/PD outperformed commercially available gelatin sponges, reducing hemostasis time by 74.4% and blood loss by 76.5%. Moreover, CF/PD cryogels facilitate in situ tissue regeneration by virtue of the bioactivity and degradability of recombinant collagen. This work establishes a bioactive recombinant collagen-driven cryogel platform, offering a transformative solution for managing non-compressible hemorrhage while enabling tissue regeneration. Full article
Show Figures

Figure 1

26 pages, 5050 KiB  
Article
Research on Energy Regeneration Characteristics of Multi-Link Energy-Fed Suspension
by Xuefeng Zhang, Jianze Liu, Yang Li, Guangzheng Wang, Yu Zou and Jiang Liu
Energies 2025, 18(11), 2743; https://doi.org/10.3390/en18112743 - 25 May 2025
Viewed by 484
Abstract
Inspired by the single-blade hyperboloid, a new type of multi-bar shock absorber was designed, which can recover vibration energy. Its principle is to convert the droop reciprocating vibration of the vehicle in the spatial domain into the reciprocating rotational motion in the plane [...] Read more.
Inspired by the single-blade hyperboloid, a new type of multi-bar shock absorber was designed, which can recover vibration energy. Its principle is to convert the droop reciprocating vibration of the vehicle in the spatial domain into the reciprocating rotational motion in the plane through the trajectory and force characteristics of the single-blade hyperboloid moving along the space. To improve the efficiency of energy regeneration, a mechanical motion filtering mechanism was designed. Through theoretical derivation, the energy regeneration formula of a new type of multi-rod shock absorber was obtained. After simulation analysis and experimental verification, under the input excitation of 1.82 Hz, the maximum instantaneous output voltage can reach 29 V, the maximum excitation current is 0.58 A, and the maximum power is 16.84 W. The efficient recovery and utilization of energy have been achieved, and the ride comfort of the vehicle has been improved. Full article
Show Figures

Figure 1

49 pages, 3785 KiB  
Review
Carbon-Nanotube-Based Nanocomposites in Environmental Remediation: An Overview of Typologies and Applications and an Analysis of Their Paradoxical Double-Sided Effects
by Silvana Alfei and Guendalina Zuccari
J. Xenobiot. 2025, 15(3), 76; https://doi.org/10.3390/jox15030076 - 21 May 2025
Cited by 1 | Viewed by 1340
Abstract
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, [...] Read more.
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, groundwater and industrial waste are continually explored. Carbon-based nanomaterials (CNMs), including quantum dots, nanotubes, fullerenes and graphene, have displayed outstanding effectiveness in the decontamination of the environment by several processes. Carbon nanotubes (CNTs), due to their nonpareil characteristics and architecture, when included in absorbents, filter membranes, gas sensors, etc., have significantly improved the efficiency of these technologies in detecting and/or removing inorganic, organic and gaseous xenobiotics and pathogens from air, soil and aqueous matrices. Moreover, CNT-based membranes have displayed significant potential for efficient, fast and low-energy water desalination. However, despite CNTs serving as very potent instruments for environmental detoxification, their extensive utilization could, paradoxically, be highly noxious to the environment and, therefore, humans, due to their toxicity. The functionalization of CNTs (F-CNTs), in addition to further enhancing their absorption capacity and selectivity, has increased their hydrophilicity, thus minimizing their toxicity and carcinogenic effects. In this scenario, this review aims to provide evidence of both the enormous potential of CNTs in sustainable environmental remediation and the concerning hazards to the environment and living organisms that could derive from their extensive and uncontrolled utilization. To this end, an introduction to CNTs, including their eco-friendly production from biomass, is first reported. Several literature reports on CNTs’ possible utilization for environmental remediation, their potential toxicity due to environmental accumulation and the challenges of their regeneration are provided using several reader-friendly tools, to better capture readers’ attention and make reading easier. Full article
Show Figures

Graphical abstract

51 pages, 12197 KiB  
Review
Recent Trends in the Application of Cellulose-Based Hemostatic and Wound Healing Dressings
by Clemence Futila Bukatuka, Bricard Mbituyimana, Lin Xiao, Abeer Ahmed Qaed Ahmed, Fuyu Qi, Manjilla Adhikari, Zhijun Shi and Guang Yang
J. Funct. Biomater. 2025, 16(5), 151; https://doi.org/10.3390/jfb16050151 - 23 Apr 2025
Cited by 2 | Viewed by 2297
Abstract
Rapid hemostasis and wound healing are crucial severe trauma treatment. Natural mechanisms often prove insufficient, spurring research for innovative biomaterials. This review focuses on cellulose-based materials, which are promising due to their absorbency, biocompatibility, and processability. The novelty lies in exploring how these [...] Read more.
Rapid hemostasis and wound healing are crucial severe trauma treatment. Natural mechanisms often prove insufficient, spurring research for innovative biomaterials. This review focuses on cellulose-based materials, which are promising due to their absorbency, biocompatibility, and processability. The novelty lies in exploring how these materials promote clotting and tissue regeneration. They operate via extrinsic and intrinsic mechanisms. Extrinsically, they create a matrix at the wound to activate coagulation; intrinsically, they maintain clotting factors. Additionally, they aid healing through physical, chemical, and biological means, such as maintaining moisture, incorporating antimicrobial agents, and stimulating cell activity. The innovative fabrication strategies include material selection and chemical modification. Techniques like oxidation enhance performance. Structural engineering methods like freeze-drying and 3D printing optimize porosity and alignment. Cellulose-based dressings are versatile and effective in various forms. They address different wound needs and show benefits like rapid coagulation and tissue repair. This review also covers challenges and future trends, emphasizing the need to enhance mechanical properties and biodegradability. Further, new technologies offer potential improvements to the nanocomposites. Overall, continued research on cellulose-based dressing is vital, and unlocking their potential could revolutionize wound care, providing suitable solutions for trauma management. Full article
(This article belongs to the Special Issue Recent Studies on Biomaterials for Tissue Repair and Regeneration)
Show Figures

Figure 1

13 pages, 4094 KiB  
Communication
Wound Healing Enhancement and Physical Characterization of Bioadhesive Poly(acrylic acid)/Polyvinylpyrrolidone Complex Gels
by Ayaka Oouchi, Tomoko Ito, Yasuhiro Katahira, Hideaki Hasegawa, Kenichi Nakamura, Izuru Mizoguchi, Takayuki Yoshimoto and Yoshiyuki Koyama
Gels 2025, 11(4), 300; https://doi.org/10.3390/gels11040300 - 19 Apr 2025
Viewed by 559
Abstract
In addition to protection against microorganisms and hemostasis, wound dressings are now expected to actively promote healing. A water-absorbing complex of poly(acrylic acid) (PAA) and polyvinylpyrrolidone (PVP) was developed by mixing the polymers under specific conditions. This complex swells in water and adheres [...] Read more.
In addition to protection against microorganisms and hemostasis, wound dressings are now expected to actively promote healing. A water-absorbing complex of poly(acrylic acid) (PAA) and polyvinylpyrrolidone (PVP) was developed by mixing the polymers under specific conditions. This complex swells in water and adheres strongly to biological tissues. Upon application to a wound, it absorbs blood, swells, and adheres firmly, providing coverage. During this process, blood cells that infiltrate the gel secrete growth factors and other bioactive molecules, which are retained and gradually released toward the wound, promoting healing. In the present study, the mechanical properties of the PAA/PVP complexes were analyzed, and their healing-promoting effects were examined. In a diabetic mouse skin wound model, untreated wounds remained over 95% of their original size after 4 days. In contrast, wounds treated with the PAA/PVP complex shrank to 70–75% of their original size by day 4, and further reduced to 17–23% by day 11. Histological analysis on day 11 showed complete or nearly complete re-epithelialization in PAA/PVP-treated wounds, while untreated wounds exhibited incomplete tissue regeneration. These results suggest that the PAA/PVP complex not only provides physical protection, but also facilitates tissue repair, demonstrating its potential as a next-generation wound dressing. Full article
(This article belongs to the Special Issue Gels for Biomedical Applications)
Show Figures

Graphical abstract

21 pages, 28470 KiB  
Article
Preparation and Characterization of Submicrometer and Nanometer Cellulose Fiber with Biogenic SiO2
by Yakoub Touati, Dora Kroisová, Rawaa Yahya and Štěpánka Dvořáčková
Polymers 2025, 17(6), 761; https://doi.org/10.3390/polym17060761 - 13 Mar 2025
Viewed by 777
Abstract
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods [...] Read more.
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods are tested to extract the nanocellulose, namely hand milling, ball milling, and wet milling using a high-shear wet media mill from Masuko Sangyo Co., Ltd., Kawaguchi-city, Japan. A range of analytical methods, including Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA), are utilized to characterize the morphology, elemental composition, thermal stability, and chemical properties of the samples. The study revealed that among the tested methods, only wet milling successfully produced cellulose nanofibrils and silica nanoparticles, forming a biogenic organic–inorganic nanohybrid system. The nanofibers had lengths in the range of 120 nm and below, while the nanoparticles were in the tens of nanometers. The silica nanoparticles were found to adhere to the cellulose nanofibrils, forming a biogenic organic–inorganic nanohybrid system, with potential applications across diverse fields, including biomedical (drug delivery, biosensing, bone regeneration, and wound healing), cosmetic (skin and dental care), technical (insulating aerogels, flame retardants, and UV-absorbing pigments), and food applications (dietary supplements, thickeners). Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

25 pages, 1912 KiB  
Review
A Review of Materials for Carbon Dioxide Capture
by Ashish Rana and Jean M. Andino
Catalysts 2025, 15(3), 273; https://doi.org/10.3390/catal15030273 - 13 Mar 2025
Cited by 3 | Viewed by 3045
Abstract
The increasing concentration of carbon dioxide (CO2) in the atmosphere is a significant contributor to global warming and climate change. Effective CO2 capture and storage technologies are critical to mitigating these impacts. This review explores various materials used for CO [...] Read more.
The increasing concentration of carbon dioxide (CO2) in the atmosphere is a significant contributor to global warming and climate change. Effective CO2 capture and storage technologies are critical to mitigating these impacts. This review explores various materials used for CO2 capture, focusing on the latest advancements and their applications. The review categorizes these materials into chemical and physical absorbents, highlighting their unique properties, advantages, and limitations. Chemical absorbents, such as amine-based solutions and hydroxides, have been widely used due to their high CO2 absorption capacities and established technological frameworks. However, they often suffer from high energy requirements for regeneration and potential degradation over time. Recent developments in ionic liquids (ILs) and polymeric ionic liquids (PILs) offer promising alternatives, providing tunable properties and lower regeneration energy. Physical absorbents, including advanced solvents like nanofluids and ionic liquids as well as industrial processes like selexol, rectisol, and purisol, demonstrate enhanced CO2 capture efficiency under various conditions. Additionally, adsorbents like activated carbon, zeolites, metal-organic frameworks (MOFs), carbon nanotubes (CNTs), and layered double hydroxides (LDHs) play a crucial role by providing high surface areas and selective CO2 capture through physical or chemical interactions. This paper summarizes the state of research on different materials and discusses their advantages and limitations while being used in CO2 capture technologies. This review also discussed multiple studies examining the use of catalysts and absorption mechanisms in combination with different sorbents, focusing on how these approaches enhance the efficiency of absorption and desorption processes. Through a comprehensive analysis, this review aims to provide valuable insights into the type of materials that are most suitable for CO2 capture and also provides directions for future research in this area. Full article
(This article belongs to the Special Issue Feature Review Papers in Catalysis for Sustainable Energy)
Show Figures

Graphical abstract

20 pages, 11501 KiB  
Article
Selective Adsorption of Lead in Mixed Metals Wastewater System by Lignin-Carbon-Supported Titanate Nanoflower BC@TNS Adsorbent: Performance and Mechanism
by Jielan Feng, Lei Zhong, Zekun Yang, Chak-Yin Tang, Wing-Cheung Law, Ruchun Wu and Fengwei Xie
Coatings 2025, 15(3), 317; https://doi.org/10.3390/coatings15030317 - 9 Mar 2025
Cited by 1 | Viewed by 799
Abstract
This study introduced a novel type of biochar–titanate nanosheet (BC@TNS) composite for the selective adsorption of Pb(II) from wastewater containing various heavy metal ions. The biochar derived from lignin–carbon pyrolysis forms the scaffold, while titanate nanosheets coat it via an alkaline hydrothermal reaction. [...] Read more.
This study introduced a novel type of biochar–titanate nanosheet (BC@TNS) composite for the selective adsorption of Pb(II) from wastewater containing various heavy metal ions. The biochar derived from lignin–carbon pyrolysis forms the scaffold, while titanate nanosheets coat it via an alkaline hydrothermal reaction. The synthesis was confirmed through analytic characterizations, revealing a distinctive morphology of TNS nanoflowers consisting of numerous nanosheets incorporated into the BC support. BC@TNS achieved maximum adsorption capacities of 37.89 mg/g for Pb(II), 13.38 mg/g for Cd(II), and 8.47 mg/g for Zn(II), demonstrating its remarkable selectivity for Pb(II). Kinetic studies using Weber–Morris, PFO, and PSO models indicated that Pb(II) adsorption was primarily driven by chemisorption, whereas Cd(II) and Zn(II) adsorption were predominantly governed by physisorption. Isotherm analysis using Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin models revealed that Pb(II) adsorption involved both monolayer and multilayer processes, while Cd(II) and Zn(II) adsorption were primarily monolayer. Detailed insights from scanning electron microscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS) analyses further elucidated these mechanisms. The superior selectivity of BC@TNS for Pb(II) was further validated in multicomponent simulated HMs containing 10 co-existing metal ions, maintaining a high Pb(II) adsorption efficiency of 75.68%, highlighting its potential for selective Pb recovery. Moreover, the adsorbent demonstrated excellent regeneration capacity and recyclability. The BC@TNS adsorbent shows great potential for the selective and efficient removal of Pb(II) ions from wastewater, offering a sustainable solution for environmental protection. Full article
Show Figures

Graphical abstract

17 pages, 1890 KiB  
Article
Development of Curcumin-Loaded TiO2-Reinforced Chitosan Monofilaments for Biocompatible Surgical Sutures
by Fatma Demirci
Polymers 2025, 17(4), 484; https://doi.org/10.3390/polym17040484 - 12 Feb 2025
Cited by 1 | Viewed by 1072
Abstract
Sutures provide mechanical support for wound closure after various traumas and surgical operations. Absorbable sutures are increasingly favored as they eliminate the need for secondary procedures and minimize additional damage to the wound site. In this study, chitosan sutures were produced using the [...] Read more.
Sutures provide mechanical support for wound closure after various traumas and surgical operations. Absorbable sutures are increasingly favored as they eliminate the need for secondary procedures and minimize additional damage to the wound site. In this study, chitosan sutures were produced using the dry jet–wet spinning method, achieving number 7-0 sutures (approximately 76 μm diameter) with a homogeneous surface. FTIR analysis demonstrated molecular interactions between chitosan and TiO2 or curcumin, confirming successful incorporation. The addition of 3% TiO2 increased the tensile strength of chitosan sutures by 12.32%, reaching 189.41 MPa. Morphological analysis revealed smooth surfaces free of pores and bubbles, confirming the production of high-quality sutures. Radical scavenging activity analysis showed that curcumin-loaded sutures exhibited 43% scavenging ability after 125 h, which was significantly higher compared to pure chitosan sutures. In vitro antibacterial tests demonstrated that curcumin-loaded sutures provided 98.87% bacterial inactivation against S. aureus within 24 h. Additionally, curcumin release analysis showed a cumulative release of 77% over 25 h. The bioactivity of the sutures was verified by hydroxyapatite layer formation after incubation in simulated body fluid, supporting their potential for tissue regeneration. These findings demonstrate that TiO2 reinforcement and curcumin loading significantly enhance the functional properties of chitosan sutures, making them strong candidates for biocompatible and absorbable surgical applications. Full article
Show Figures

Graphical abstract

Back to TopTop