Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (738)

Search Parameters:
Keywords = abrasive wear properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 15471 KiB  
Article
Tribology of EDM Recast Layers Vis-À-Vis TIG Cladding Coatings: An Experimental Investigation
by Muhammad Adnan, Waqar Qureshi and Muhammad Umer
Micromachines 2025, 16(8), 913; https://doi.org/10.3390/mi16080913 - 7 Aug 2025
Abstract
Tribological performance is critical for the longevity and efficiency of machined components in industries such as aerospace, automotive, and biomedical. This study investigates whether electrical discharge machining recast layers can serve as a cost-effective and time-efficient alternative to conventional tungsten inert gas cladding [...] Read more.
Tribological performance is critical for the longevity and efficiency of machined components in industries such as aerospace, automotive, and biomedical. This study investigates whether electrical discharge machining recast layers can serve as a cost-effective and time-efficient alternative to conventional tungsten inert gas cladding coatings for enhancing surface properties. The samples were prepared using electrical discharge machining and tungsten inert gas cladding. For electrical discharge machining, various combinations of electrical and non-electrical parameters were applied using Taguchi’s L18 orthogonal array. Similarly, tungsten inert gas cladding coatings were prepared using a suitable combination of current, voltage, powder size, and speed. The samples were characterized using, scanning electron microscopy, optical microscopy, microhardness testing, tribological testing, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis and profilometry. The electrical discharge machining recast layers exhibited superior tribological performance compared to tungsten inert gas cladding coatings. This improvement is attributed to the formation of carbides, such as TiC and Ti6C3.75. The coefficient of friction and specific wear rate were reduced by 11.11% and 1.57%, respectively, while microhardness increased by 10.93%. Abrasive wear was identified as the predominant wear mechanism. This study systematically compares electrical discharge machining recast layers with tungsten inert gas cladding coatings. The findings suggest that optimized electrical discharge machining recast layers can serve as effective coatings, offering cost and time savings. Full article
(This article belongs to the Special Issue Recent Developments in Electrical Discharge Machining Technology)
Show Figures

Figure 1

19 pages, 9214 KiB  
Article
Tribological Performance of Direct Metal Laser Sintered 20MnCr5 Tool Steel Countersamples Designed for Sheet Metal Forming Applications
by Krzysztof Żaba, Marcin Madej, Beata Leszczyńska-Madej, Tomasz Trzepieciński and Ryszard Sitek
Appl. Sci. 2025, 15(15), 8711; https://doi.org/10.3390/app15158711 - 6 Aug 2025
Abstract
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block [...] Read more.
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block tribotester. The samples were sheet metals made of materials with significantly different properties: Inconel 625, titanium-stabilised stainless steel 321, EN AW-6061 T0 aluminium alloy, and pure copper. The samples and countersamples were analysed in terms of their wear resistance, coefficient of friction (COF), changes in friction force during testing, and surface morphology after tribological contact under dry friction conditions. The tests were performed on DMLSed countersamples in the as-received state. The largest gain of countersample mass was observed for the 20MnCr5/EN AW-6061 T0 friction pair. The sample mass loss in this combination was also the largest, amounting to 19.96% of the initial mass. On the other hand, in the 20MnCr5/Inconel 625 friction pair, no significant changes in the mass of materials were recorded. For the Inconel 625 sample, a mass loss of 0.04% was observed. The basic wear mechanism of the samples was identified as abrasive wear. The highest friction forces were observed in the 20MnCr5/Cu friction pair (COF = 0.913) and 20MnCr5/EN AW-6061 T0 friction pair (COF = 1.234). The other two samples (Inconel 625, 321 steel) showed a very stable value of the friction force during the roller-block test resulting in a COF between 0.194 and 0.213. Based on the changes in friction force, COFs, and mass changes in friction pair components during wear tests, it can be concluded that potential tools in the form of inserts or working layers manufactured using 3D printing technology, the DMLS method, without additional surface treatment can be successfully used for forming sheets of 321 steel and Inconel 625. Full article
Show Figures

Figure 1

15 pages, 1635 KiB  
Article
Modeling the Abrasive Index from Mineralogical and Calorific Properties Using Tree-Based Machine Learning: A Case Study on the KwaZulu-Natal Coalfield
by Mohammad Afrazi, Chia Yu Huat, Moshood Onifade, Manoj Khandelwal, Deji Olatunji Shonuga, Hadi Fattahi and Danial Jahed Armaghani
Mining 2025, 5(3), 48; https://doi.org/10.3390/mining5030048 - 1 Aug 2025
Viewed by 149
Abstract
Accurate prediction of the coal abrasive index (AI) is critical for optimizing coal processing efficiency and minimizing equipment wear in industrial applications. This study explores tree-based machine learning models; Random Forest (RF), Gradient Boosting Trees (GBT), and Extreme Gradient Boosting (XGBoost) to predict [...] Read more.
Accurate prediction of the coal abrasive index (AI) is critical for optimizing coal processing efficiency and minimizing equipment wear in industrial applications. This study explores tree-based machine learning models; Random Forest (RF), Gradient Boosting Trees (GBT), and Extreme Gradient Boosting (XGBoost) to predict AI using selected coal properties. A database of 112 coal samples from the KwaZulu-Natal Coalfield in South Africa was used. Initial predictions using all eight input properties revealed suboptimal testing performance (R2: 0.63–0.72), attributed to outliers and noisy data. Feature importance analysis identified calorific value, quartz, ash, and Pyrite as dominant predictors, aligning with their physicochemical roles in abrasiveness. After data cleaning and feature selection, XGBoost achieved superior accuracy (R2 = 0.92), outperforming RF (R2 = 0.85) and GBT (R2 = 0.81). The results highlight XGBoost’s robustness in modeling non-linear relationships between coal properties and AI. This approach offers a cost-effective alternative to traditional laboratory methods, enabling industries to optimize coal selection, reduce maintenance costs, and enhance operational sustainability through data-driven decision-making. Additionally, quartz and Ash content were identified as the most influential parameters on AI using the Cosine Amplitude technique, while calorific value had the least impact among the selected features. Full article
(This article belongs to the Special Issue Mine Automation and New Technologies)
Show Figures

Figure 1

15 pages, 4423 KiB  
Article
Effect of B Element Doping on High-Temperature Tribological Properties of WS2-Based Composite Coatings
by Songmin Zhang, Xiaopeng Zhang, Haichao Cai, Zixuan Huang, Yujun Xue, Lulu Pei and Bowei Kang
Lubricants 2025, 13(8), 332; https://doi.org/10.3390/lubricants13080332 - 30 Jul 2025
Viewed by 210
Abstract
WS2 coating, as a solid lubricating material, plays a significant role in the lubrication of rotating components in spacecraft. During the launch process, however, spacecraft are exposed to high-temperature and humid atmospheric environments, which can lead to oxidative failure in the coating, [...] Read more.
WS2 coating, as a solid lubricating material, plays a significant role in the lubrication of rotating components in spacecraft. During the launch process, however, spacecraft are exposed to high-temperature and humid atmospheric environments, which can lead to oxidative failure in the coating, thereby limiting its engineering applications. By doping with B elements, B/WS2 was successfully prepared as a composite coating. The results demonstrate that the fabricated coating exhibits excellent high-temperature tribological performance in atmospheric environments. The mechanism through which B doping improves the high-temperature friction and wear properties of the WS2 composite coating was revealed through high-temperature friction and wear tests. With the incorporation of B elements, the average friction coefficient of the coating was 0.071, and the wear rate was 7.63 × 10−7 mm3·N−1·m−1, with the wear mechanisms identified as abrasive wear and spalling. Due to high-temperature oxidation, thermal decomposition effects, and the formation of WB4 during sputtering, the wear resistance and anti-plastic deformation capability of the coating were further improved. Compared to room-temperature test conditions, the B/WS2 composite coating at different high temperatures exhibited superior friction coefficients and wear rates. Notably, at 150 °C, the average friction coefficient was as low as 0.015, and the wear forms were abrasive wear and adhesive wear. Full article
Show Figures

Figure 1

24 pages, 15762 KiB  
Article
Performance of TiSiN/TiAlN-Coated Carbide Tools in Slot Milling of Hastelloy C276 with Various Cooling Strategies
by Ly Chanh Trung and Tran Thien Phuc
Lubricants 2025, 13(7), 316; https://doi.org/10.3390/lubricants13070316 - 19 Jul 2025
Viewed by 501
Abstract
Nickel-based superalloy Hastelloy C276 is widely used in high-performance industries due to its strength, corrosion resistance, and thermal stability. However, these same properties pose substantial challenges in machining, resulting in high tool wear, surface defects, and dimensional inaccuracies. This study investigates methods to [...] Read more.
Nickel-based superalloy Hastelloy C276 is widely used in high-performance industries due to its strength, corrosion resistance, and thermal stability. However, these same properties pose substantial challenges in machining, resulting in high tool wear, surface defects, and dimensional inaccuracies. This study investigates methods to enhance machining performance and surface quality by evaluating the tribological behavior of TiSiN/TiAlN-coated carbide inserts under six cooling and lubrication conditions: dry, MQL with coconut oil, Cryo-LN2, Cryo-LCO2, MQL–Cryo-LN2, and MQL–Cryo-LCO2. Open-slot finishing was performed at constant cutting parameters, and key indicators such as cutting zone temperature, tool wear, surface roughness, chip morphology, and microhardness were analyzed. The hybrid MQL–Cryo-LN2 approach significantly outperformed other methods, reducing cutting zone temperature, tool wear, and surface roughness by 116.4%, 94.34%, and 76.11%, respectively, compared to dry machining. SEM and EDS analyses confirmed abrasive, oxidative, and adhesive wear as the dominant mechanisms. The MQL–Cryo-LN2 strategy also lowered microhardness, in contrast to a 39.7% increase observed under dry conditions. These findings highlight the superior performance of hybrid MQL–Cryo-LN2 in improving machinability, offering a promising solution for precision-driven applications. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

15 pages, 3833 KiB  
Article
High-Temperature Tribological Behavior of Polyimide Composites with Dual-Phase MoS2/MXene Lubricants: A Synergistic Effect Analysis
by Xingtian Ji, Pengwei Ren, Hao Liu, Yanhua Shi, Yunfeng Yan and Jianzhang Wang
J. Compos. Sci. 2025, 9(7), 373; https://doi.org/10.3390/jcs9070373 - 17 Jul 2025
Viewed by 326
Abstract
Polyimide (PI), owing to its high heat resistance and low density, is often employed as a substitute for metallic materials in high-temperature environments, such as aircraft engines, bearings, and gears. However, the relatively high friction coefficient of pure PI limits its application under [...] Read more.
Polyimide (PI), owing to its high heat resistance and low density, is often employed as a substitute for metallic materials in high-temperature environments, such as aircraft engines, bearings, and gears. However, the relatively high friction coefficient of pure PI limits its application under harsh conditions. Therefore, this study synthesized a composite lubricant with binary fillers to improve this performance. This study employed the hydrothermal method to synthesize MoS2/MXene composite lubricating fillers and systematically investigated the high-temperature tribological properties of PI composites reinforced with these fillers. The results demonstrated that the optimal PI composite containing 5% MoS2/MXene exhibited a 14 °C increase in initial decomposition temperature compared to pure PI. Additionally, its thermal conductivity was enhanced by 36%, while the hardness (0.398 GPa) and elastic modulus (6.294 GPa) were elevated by 12.4% and 18.6%, respectively, relative to the pure PI. In terms of tribological behavior, all composite formulations displayed typical temperature-dependent friction characteristics. It is worth noting that MXene’s high hardness and thermal conductivity inhibited the occurrence of abrasive wear. At the same time, the substrate was strengthened, and thermal resistance was enhanced, thereby delaying the plastic deformation of the material at high temperatures. Full article
Show Figures

Figure 1

17 pages, 4520 KiB  
Article
An Analysis of the Tribological and Thermal Performance of PVDF Gears in Correlation with Wear Mechanisms and Failure Modes Under Different Load Conditions
by Enis Muratović, Adis J. Muminović, Łukasz Gierz, Ilyas Smailov, Maciej Sydor and Muamer Delić
Coatings 2025, 15(7), 800; https://doi.org/10.3390/coatings15070800 - 9 Jul 2025
Viewed by 383
Abstract
With engineering plastics increasingly replacing traditional materials in various drive and control gear systems across numerous industrial sectors, material selection for any gearwheel critically impacts its mechanical and thermal properties. This paper investigates the engagement of steel and Polyvinylidene Fluoride (PVDF) gear pairs [...] Read more.
With engineering plastics increasingly replacing traditional materials in various drive and control gear systems across numerous industrial sectors, material selection for any gearwheel critically impacts its mechanical and thermal properties. This paper investigates the engagement of steel and Polyvinylidene Fluoride (PVDF) gear pairs tested under several load conditions to determine polymer gears’ characteristic service life and failure modes. Furthermore, recognizing that the application of polymer gears is limited by insufficient data on their temperature-dependent mechanical properties, this study establishes a correlation between the tribological contact, meshing temperatures, and wear coefficients of PVDF gears. The results demonstrate that the flank surface wear of the PVDF gears is directly proportional to the temperature and load level of the tested gears. Several distinct load-induced failure modes have been detected and categorized into three groups: abrasive wear resulting from the hardness disparity between the engaging surfaces, thermal failure caused by heat accumulation at higher load levels, and tooth fracture occurring due to stiffness changes induced by the compromised tooth cross-section after numerous operating cycles at a specific wear rate. Full article
Show Figures

Figure 1

12 pages, 24352 KiB  
Article
Improving the Wear Properties of Ni Matrix Composites Containing High-Speed Steel Particles
by Marek Konieczny
Metals 2025, 15(7), 772; https://doi.org/10.3390/met15070772 - 8 Jul 2025
Viewed by 235
Abstract
Nickel matrix composites reinforced with T15 high-speed steel (HSS) were prepared using powder metallurgy techniques. A systematic investigation was conducted into the effect of CeO2, MoS2, and graphite additives on the tribological properties of the composites. The results show [...] Read more.
Nickel matrix composites reinforced with T15 high-speed steel (HSS) were prepared using powder metallurgy techniques. A systematic investigation was conducted into the effect of CeO2, MoS2, and graphite additives on the tribological properties of the composites. The results show that when T15 HSS particles are added, nickel grains do not grow as much as they do in pure sintered nickel. It was also observed that the T15 HSS particles were diffusion-bonded to the nickel matrix after sintering. The highest relative density after sintering is obtained for composites containing graphite, but the maximum hardness of 243 HV can be achieved for composites containing 2% of CeO2, which is about 16% higher than that of the Ni-T15 HSS composite. The wear rate of Ni-T15 HSS composites reduces from 3.4782 × 10−7 cm3/N∙m to 2.0222 × 10−7 cm3/N∙m as the content of CeO2 rises from 0 wt.% to 2 wt.%. The wear mechanisms of composites with MoS2 or graphite are abrasive wear and adhesive wear. The introduction of CeO2 enhances the hardness of the investigated composites to the highest degree, leading to a change in the wear mechanism of the composites to slight abrasive wear. The addition of CeO2 can effectively optimize the tribological properties of Ni-T15 HSS composites. Full article
(This article belongs to the Section Metal Matrix Composites)
Show Figures

Graphical abstract

15 pages, 3979 KiB  
Article
Properties of Selected Additive Materials Used to Increase the Lifetime of Tools for Crushing Unwanted Growths Using Hardfacing by Welding Technology
by Miroslava Ťavodová, Monika Vargová, Dana Stančeková, Anna Rudawska and Arkadiusz Gola
Materials 2025, 18(13), 3188; https://doi.org/10.3390/ma18133188 - 5 Jul 2025
Viewed by 322
Abstract
This article focuses on the possibilities of increasing the service life of tools for crushing unwanted growths. One way to increase their service life is to increase the hardness and resistance to abrasive wear of exposed surfaces of the tool, which are their [...] Read more.
This article focuses on the possibilities of increasing the service life of tools for crushing unwanted growths. One way to increase their service life is to increase the hardness and resistance to abrasive wear of exposed surfaces of the tool, which are their face and back. At the same time, however, care must be taken to ensure that the shape and weight of the tool is not altered after the additive has been hardfaced on. Thus, the tool was first modified by removing the material by milling from the face and back. Subsequently, two surfacing materials, namely UTP 690 and OK WearTrode 55, were chosen and hardfaced by welding onto the pre-prepared surfaces. After hardfacing by welding, the tools were ground to their original shape and their weight was measured. Subsequently, the tool was sawn, and specimens were created for Rockwell hardness evaluation, material microstructure and for abrasive wear resistance testing as per ASTM G133-95. The OK WearTrode 55 electrode is a hardfacing electrode that produces weld metal with a high-volume fraction of fine carbides in a martensitic matrix. Better results were achieved by the UTP 690 hardfacing material. The hardness was 3.1 times higher compared to the base tool material 16MnCr5 and 1.2 times higher than the OK WearTrode 55 material. The abrasive wear resistance was 2.76 times higher compared to 16MnCr5, and 1.14 times higher compared to the OK WearTrode 55 material. The choice of a suitable pre-treatment for the tool and the selection and application of such additional material, which with its complex properties better resists the effects of the working environment, is a prerequisite for increasing the service life of tools working in forestry. Full article
Show Figures

Figure 1

12 pages, 3473 KiB  
Article
Microstructure and Mechanical Properties of Laser-Clad Inconel 718 Coatings on Continuous Casting Mold Copper Plate
by Yu Liu, Haiquan Jin, Guohui Li, Ruoyu Xu, Nan Ma, Hui Liang, Jian Lin, Wenqing Xiang and Zhanhui Zhang
Lubricants 2025, 13(7), 289; https://doi.org/10.3390/lubricants13070289 - 28 Jun 2025
Viewed by 405
Abstract
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that [...] Read more.
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that the coatings exhibit a defect-free structure with metallurgical bonding to the substrate. The coating primarily consists of a γ-(Fe, Ni, Cr) solid solution and carbides (M23C6 and M6C). Notably, elongated columnar Laves phases and coarse Cr–Mo compounds were distributed along grain boundaries, significantly enhancing the coating’s microhardness and high-temperature stability. The coating exhibited an average microhardness of 491.7 HV0.5, which is approximately 6.8 times higher than that of the copper plate. At 400 °C, the wear rate of the coating was 4.7 × 10−4 mm3·N−1·min−1, significantly lower than the substrate’s wear rate of 8.86 × 10−4 mm3·N−1·min−1, which represents only 53% of the substrate’s wear rate. The dominant wear mechanisms were adhesive wear, abrasive wear, and oxidative wear. The Inconel 718 coating demonstrates superior hardness and excellent high-temperature wear resistance, effectively improving both the surface properties and service life of mold copper plates. Full article
Show Figures

Figure 1

14 pages, 6415 KiB  
Article
On the Wear Mechanism and Subsurface Deformation of Zr-Based Metallic Glass at Subzero Temperature
by Xin Li, Jianan Fu, Zhen Li, Fei Sun, Kaikai Song and Jiang Ma
Materials 2025, 18(13), 3012; https://doi.org/10.3390/ma18133012 - 25 Jun 2025
Viewed by 410
Abstract
Metallic glasses (MGs) with excellent mechanical properties have significant applications in frontier technological fields such as medical, energy and aerospace industries. Recently, MGs have been considered as ideal candidates for subzero engineering applications due to their disordered atomic structure array. However, the mechanical [...] Read more.
Metallic glasses (MGs) with excellent mechanical properties have significant applications in frontier technological fields such as medical, energy and aerospace industries. Recently, MGs have been considered as ideal candidates for subzero engineering applications due to their disordered atomic structure array. However, the mechanical properties and wear behaviors of MGs at subzero temperatures have rarely been explored. In this work, the wear properties and wear mechanisms of Zr-based MG were systematically evaluated at a subzero temperature of −50 °C. Compared to the wear results at room temperature, MG in a subzero environment shows a ~60% reduction in wear rate. The main contributing factor is that MG at room temperature will easily forms a thin, brittle oxide layer at the sliding interface, which will lead to oxidation, adhesive and abrasive wear on its surface, whereas these wear behaviors do not occur in subzero conditions where only abrasive wear occurs. Meanwhile, MG at subzero temperatures has a higher elastic modulus. These properties make MG more wear-resistant in subzero environments. The current study will provide new perspectives on the wear mechanisms and subsurface deformation of MG in subzero environments and valuable insights into the use of MG in subzero engineering applications, such as deep space and polar exploration. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

12 pages, 4266 KiB  
Article
Influence of 3D-Printed PEEK on the Tribo-Corrosion Performance of Ti6Al4V Biomedical Alloy
by Dominik Jonas Federl and Abbas Al-Rjoub
Lubricants 2025, 13(7), 283; https://doi.org/10.3390/lubricants13070283 - 25 Jun 2025
Viewed by 473
Abstract
This study investigates the tribo-corrosion behavior of Ti6Al4V biomedical alloy, when sliding against fused filament fabrication (FFF) 3D-printed polyether ether ketone (PEEK) pins in a phosphate-buffered saline (PBS) solution. This research aims to evaluate wear mechanisms and electrochemical responses under simulated physiological conditions, [...] Read more.
This study investigates the tribo-corrosion behavior of Ti6Al4V biomedical alloy, when sliding against fused filament fabrication (FFF) 3D-printed polyether ether ketone (PEEK) pins in a phosphate-buffered saline (PBS) solution. This research aims to evaluate wear mechanisms and electrochemical responses under simulated physiological conditions, providing critical insights for enhancing the durability and performance of biomedical implants. Potentiodynamic polarization tests demonstrate that the Ti6Al4V alloy possesses excellent corrosion resistance, which is further enhanced under sliding conditions compared to the test without sliding. When tested against 3D-printed PEEK, the alloy exhibits a mixed wear mechanism characterized by both abrasive and adhesive wear. Open-circuit potential (OCP) measurement of Ti6Al4V demonstrates the alloy’s superior electrochemical stability, indicating high corrosion resistance and a favorable coefficient of friction. These findings highlight the potential of 3D-printed PEEK as a viable alternative for biomedical applications, offering rapid patient-specific prototyping, tunable mechanical properties, and improved surface adaptability compared to conventional materials. Full article
(This article belongs to the Special Issue Tribology of Polymeric Composites)
Show Figures

Figure 1

31 pages, 2910 KiB  
Review
Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches
by Jie Kang, Xintong Liu, Bing Dai, Tianhao Liu, Fasih Ullah Haider, Peng Zhang, Habiba and Jian Cai
Sustainability 2025, 17(12), 5433; https://doi.org/10.3390/su17125433 - 12 Jun 2025
Viewed by 1238
Abstract
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, [...] Read more.
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, stormwater runoff, and sedimentation to contaminate air, water, and soil. TWPs are composed of synthetic rubber polymers, reinforcing fillers, and chemical additives, including heavy metals such as zinc (Zn) and copper (Cu) and organic compounds like polycyclic aromatic hydrocarbons (PAHs) and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD). These constituents confer persistence and bioaccumulative potential. While TWP toxicity in aquatic systems is well-documented, its ecological impacts on terrestrial environments, particularly in agricultural soils, remain less understood despite global soil loading rates exceeding 6.1 million metric tons annually. This review synthesizes global research on TWP sources, environmental fate, and ecotoxicological effects, with a focus on soil–plant systems. TWPs have been shown to alter key soil properties, including a 25% reduction in porosity and a 20–35% decrease in organic matter decomposition, disrupt microbial communities (with a 40–60% reduction in nitrogen-fixing bacteria), and induce phytotoxicity through both physical blockage of roots and Zn-induced oxidative stress. Human exposure occurs through inhalation (estimated at 3200 particles per day in urban areas), ingestion, and dermal contact, with epidemiological evidence linking TWPs to increased risks of respiratory, cardiovascular, and developmental disorders. Emerging remediation strategies are critically evaluated across three tiers: (1) source reduction using advanced tyre materials (up to 40% wear reduction in laboratory tests); (2) environmental interception through bioengineered filtration systems (60–80% capture efficiency in pilot trials); and (3) contaminant degradation via novel bioremediation techniques (up to 85% removal in recent studies). Key research gaps remain, including the need for long-term field studies, standardized mitigation protocols, and integrated risk assessments. This review emphasizes the importance of interdisciplinary collaboration in addressing TWP pollution and offers guidance on sustainable solutions to protect ecosystems and public health through science-driven policy recommendations. Full article
Show Figures

Figure 1

13 pages, 3130 KiB  
Article
Tribological Property of AlCoCrFeNi Coating Electrospark-Deposited on H13 Steel
by Ke Lv, Guanglin Zhu, Jie Li, Xiong Cao, Haonan Song and Cean Guo
Metals 2025, 15(6), 649; https://doi.org/10.3390/met15060649 - 10 Jun 2025
Viewed by 791
Abstract
AlCoCrFeNi coatings were electrospark-deposited (ESD) on H13 steel substrates, and their nano-mechanical and tribological properties under a load of 2 N, 4 N, 6 N, 8 N, and 10 N were investigated by utilizing a nanoindentation instrument and a reciprocating friction and wear [...] Read more.
AlCoCrFeNi coatings were electrospark-deposited (ESD) on H13 steel substrates, and their nano-mechanical and tribological properties under a load of 2 N, 4 N, 6 N, 8 N, and 10 N were investigated by utilizing a nanoindentation instrument and a reciprocating friction and wear tester, respectively. The morphologies, composition, and phase structure of the as-deposited and worn AlCoCrFeNi coating were characterized using SEM (Scanning electron Microscope), EDS (Energy dispersive spectrometer), and XRD (X-Ray Diffraction). The results showed that the as-deposited AlCoCrFeNi coating with a nanocrystalline microstructure mainly consists of a BCC and B2 phase structure, and a gradient transition of elements between the coating and the substrate ensures an excellent bond between the coating and the substrate. The hardness of the AlCoCrFeNi coating exhibits an 8% increase, while its elastic modulus is reduced by 16% compared to the H13 steel. The AlCoCrFeNi coating remarkably increased the tribological property of the H13 steel under various loads, and its wear mechanism belongs to micro-cutting abrasive wear whilst that of the H13 steel can be characterized as severe adhesive wear. The friction coefficient and weight loss of the AlCoCrFeNi coating decrease with increasing load, both following a linear relationship with respect to the applied load. As the load intensifies, the work hardening sensitivity and oxidation degree on the worn surface of the coating are significantly enhanced, which collectively contributes to the improved tribological performance of the AlCoCrFeNi coating. Full article
(This article belongs to the Special Issue Advances in the Design and Behavior Analysis of High-Strength Steels)
Show Figures

Figure 1

23 pages, 15965 KiB  
Article
Parametric Optimization of Dry Sliding Wear Attributes for AlMg1SiCu Hybrid MMCs: A Comparative Study of GRA and Entropy-VIKOR Methods
by Krishna Prafulla Badi, Srinivasa Rao Putti, Maheswara Rao Chapa and Muralimohan Cheepu
J. Compos. Sci. 2025, 9(6), 297; https://doi.org/10.3390/jcs9060297 - 10 Jun 2025
Viewed by 513
Abstract
In recent days, aluminum-based hybrid composites have garnered more interest than monolithic alloys owing to their remarkable properties, encompassing a high strength-to-weight ratio, excellent corrosion resistance, and impressive wear durability. The present study attempts to optimize the multiple wear attribute characteristics of Al6061/SiC/Al [...] Read more.
In recent days, aluminum-based hybrid composites have garnered more interest than monolithic alloys owing to their remarkable properties, encompassing a high strength-to-weight ratio, excellent corrosion resistance, and impressive wear durability. The present study attempts to optimize the multiple wear attribute characteristics of Al6061/SiC/Al2O3 hybrid composites using grey and entropy-based VIKOR techniques. The composites were produced by adding equal proportions of SiC/Al2O3 (0–12 wt.%) ceramics through the stir-casting process, using an ultrasonication setup. Dry sliding wear experiments were executed with tribometer variants, namely reinforcement content (wt.%), load (N), sliding velocity (v), and sliding distance (SD), following L27 OA. The optimal combination of process variables for achieving high GRG values from grey analysis was found to be A3-B3-C3-D3. The S/N ratios and ANOVA results for GRG indicated that RF content (wt.%) is the predominant component determining multiple outcomes, followed by sliding distance, load, and sliding velocity. The multi-order regression model formulated for the VIKOR index (Qi) displayed high significance and more accuracy, with a variance of 0.0216 and a coefficient of determination (R2), and adjusted R2 values of 99.60% and 99.14%. Subsequent morphological studies indicated that plowing, abrasion, and adhesion mechanisms are the dominant modes of wear. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

Back to TopTop