Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches
Abstract
1. Introduction
2. Review Methodology
3. Analytical Techniques for the Detection of Tyre Wear Particles
4. Sources of TWPs
5. Environmental Distribution and Migration of TWPs
5.1. Atmospheric Transport: From Urban Emissions to Global Dispersion
5.2. Aquatic Pathways: The Hydrological Conveyor of TWP Pollution
5.3. Soil Contamination: The Silent Accumulation of TWPs in Terrestrial Ecosystems
6. Hazardous Effects of TWPs
6.1. Impact of TWPs on Soil and Microbes
6.2. Impact of TWPs on Agricultural Plants
6.3. Impact of TWPs on Humans
6.4. Synthesis and Critical Discussion of Hazardous Effects
7. Remediation Strategies
7.1. Source Prevention and Engineering Interventions
7.2. Interception at Environmental Interfaces
7.3. Advanced Remediation Technologies for Contaminated Matrices
7.4. Integrative and Adaptive Mitigation Frameworks
7.5. Policy Development, Standardization, and Research Priorities
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Su, H.; Xiu, X.; Liu, C.; Hao, W. Tire wear particles in different water environments: Occurrence, behavior, and biological effects, a review and perspectives. Environ. Sci. Pollut. Res. 2023, 30, 90574–90594. [Google Scholar] [CrossRef] [PubMed]
- Weyrauch, S.; Seiwert, B.; Voll, M.; Reemtsma, T. Long term biodegradation study on tire and road wear particles and chemicals thereof. Sci. Total Environ. 2025, 975, 179240. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Lv, M.; Zhu, D.; Leifheit, E.F.; Chen, Q.-L.; Wang, Y.-Q.; Chen, L.-X.; Rillig, M.C.; Zhu, Y.-G. Tire wear particles: An emerging threat to soil health. Crit. Rev. Environ. Sci. Technol. 2023, 53, 239–257. [Google Scholar] [CrossRef]
- Mo, Y.; Abdolahpur Monikh, F.; Jaffer, Y.D.; Mugani, R.; Ionescu, D.; Chen, G.; Yang, J.; Grossart, H. Effects of tire wear particles on freshwater bacterial-fungal community dynamics and subsequent elemental cycles using microcosms. J. Hazard. Mat. 2025, 487, 137062. [Google Scholar] [CrossRef]
- Kundel, D.; Wiget, A.; Fliessbach, A.; Bigalke, M.; Weber, C.J. Tracks of travel: Unveiling tire particle concentrations in Swiss cantonal road soils. Microplastics Nanoplastics 2025, 5, 1–13. [Google Scholar] [CrossRef]
- Kole, P.J.; Löhr, A.J.; J Van Belleghem, G.A.; J Ragas, A.M. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Lopez, B.; Wang, X.; Chen, L.A.; Ma, T.; Mendez-Jimenez, D.; Cobb, L.C.; Frederickson, C.; Fang, T.; Hwang, B.; Shiraiwa, M.; et al. Metal contents and size distributions of brake and tire wear particles dispersed in the near-road environment. Sci. Total Environ. 2023, 883, 163561. [Google Scholar] [CrossRef]
- Shin, H.; Sukumaran, V.; Yeo, I.; Shim, K.; Lee, S.; Choi, H.; Ha, S.Y.; Kim, M.; Jung, J.; Lee, J.; et al. Phenotypic toxicity, oxidative response, and transcriptomic deregulation of the rotifer Brachionus plicatilis exposed to a toxic cocktail of tire-wear particle leachate. J. Hazard. Mat. 2022, 438, 129417. [Google Scholar] [CrossRef]
- Hüffer, T.; Wagner, S.; Reemtsma, T.; Hofmann, T. Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC Trends Anal. Chem. 2019, 113, 392–401. [Google Scholar] [CrossRef]
- Azeem, I.; Adeel, M.; Shakoor, N.; Zain, M.; Bibi, H.; Azeem, K.; Li, Y.; Nadeem, M.; Manan, U.; Zhang, P.; et al. Coexposure to tire wear particles and nickel inhibits mung bean yield by reducing nutrient uptake. Environ. Sci. Process Impacts 2024, 26, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Castan, S.; Sherman, A.; Peng, R.; Zumstein, M.T.; Wanek, W.; Hüffer, T.; Hofmann, T. Uptake, metabolism, and accumulation of tire wear particle-derived compounds in lettuce. Environ. Sci. Technol. 2023, 57, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Kolomijeca, A.; Parrott, J.; Khan, H.; Shires, K.; Clarence, S.; Sullivan, C.; Chibwe, L.; Sinton, D.; Rochman, C.M. Increased temperature and turbulence alter the effects of leachates from tire particles on Fathead Minnow (Pimephales promelas). Environ. Sci. Technol. 2020, 54, 1750–1759. [Google Scholar] [CrossRef]
- Kumar, D.; Biswas, J.K.; Mulla, S.I.; Singh, R.; Shukla, R.; Ahanger, M.A.; Shekhawat, G.S.; Verma, K.K.; Siddiqui, M.W.; Seth, C.S. Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. Plant Physiol. Biochem. 2024, 213, 108795. [Google Scholar] [CrossRef] [PubMed]
- Roubeau Dumont, E.; Gao, X.; Zheng, J.; Macairan, J.; Hernandez, L.; Baesu, A.; Bayen, S.; Robinson, S.; Ghoshal, S.; Tufenkji, N. Unraveling the toxicity of tire wear contamination in three freshwater species: From chemical mixture to nanoparticles. J. Hazard. Mat. 2023, 453, 131402. [Google Scholar] [CrossRef]
- Bouredji, A.; Pourchez, J.; Forest, V. Biological effects of Tire and Road Wear Particles (TRWP) assessed by in vitro and in vivo studies—A systematic review. Sci. Total Environ. 2023, 894, 164989. [Google Scholar] [CrossRef]
- Kim, S.W.; Leifheit, E.F.; Maaß, S.; Rillig, M.C. Time-Dependent Toxicity of Tire Particles on Soil Nematodes. Front. Environ. Sci. 2021, 9, 744668. [Google Scholar] [CrossRef]
- Leifheit, E.F.; Kissener, H.L.; Faltin, E.; Ryo, M.; Rillig, M.C. Tire abrasion particles negatively affect plant growth even at low concentrations and alter soil biogeochemical cycling. Soil Ecol. Lett. 2022, 4, 409–415. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, X.; Su, Y.; Wang, H.; Yu, R.; Zhou, S.; Xu, E.G.; Xing, B. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Sci. Total Environ. 2021, 795, 148902. [Google Scholar] [CrossRef]
- Wik, A.; Dave, G. Occurrence and effects of tire wear particles in the environment—A critical review and an initial risk assessment. Environ. Pollut. 2008, 157, 1–11. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Kochleus, C.; Stock, F.; Reifferscheid, G. Tyre and road wear particles—A calculation of generation, transport, and release to water and soil with special regard to German roads. Sci. Total Environ. 2021, 752, 141939. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zhu, D.; Wang, Y.; Wang, H.; Liang, A.; Sun, H.; Chen, Q.; Lassen, S.; Lv, M.; Chen, L. Exposure to heavy metal and antibiotic enriches antibiotic resistant genes on the tire particles in soil. Sci. Total Environ. 2021, 792, 148417. [Google Scholar] [CrossRef]
- Fauser, P.; Tjell, J.; Mosbaek, H.; Pilegaard, K. Tire-tread and bitumen particle concentrations in aerosol and soil samples. Pet. Sci. Technol. 2002, 20, 127–141. [Google Scholar] [CrossRef]
- Smolders, E.; Degryse, F. Fate and effect of zinc from tire debris in soil. Environ. Sci. Technol. 2002, 36, 3706–3710. [Google Scholar] [CrossRef] [PubMed]
- Sherman, A.; Hämmerle, L.E.; Ben Mordechay, E.; Chefetz, B.; Hüffer, T.; Hofmann, T. Uptake of tire-derived compounds in leafy vegetables and implications for human dietary exposure. Front. Environ. Sci. 2024, 12, 1384506. [Google Scholar] [CrossRef]
- Zeb, A.; Liu, W.; Ali, N.; Shi, R.; Lian, Y.; Wang, Q.; Wang, J.; Li, J.; Zheng, Z.; Liu, J.; et al. Integrating metabolomics and high-throughput sequencing to investigate the effects of tire wear particles on mung bean plants and soil microbial communities. Environ. Pollut. 2024, 340, 122872. [Google Scholar] [CrossRef]
- Kim, L.; Lee, T.; Kim, H.; An, Y. Toxicity assessment of tire particles released from personal mobilities (bicycles, cars, and electric scooters) on soil organisms. J. Hazard. Mat. 2022, 437, 129362. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, B.; Harper, B.; Brander, S.; Harper, S. Toxicity of micro and nano tire particles and leachate for model freshwater organisms. J. Hazard. Mat. 2022, 429, 128319. [Google Scholar] [CrossRef]
- Selonen, S.; Dolar, A.; Kokalj, A.J.; Sackey, L.N.; Skalar, T.; Fernandes, V.C.; van Gestel, C.A. Exploring the impacts of microplastics and associated chemicals in the terrestrial environment–Exposure of soil invertebrates to tire particles. Environ. Res. 2021, 201, 111495. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Lehner, R.; Weder, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 2019, 53, 1748–1765. [Google Scholar] [CrossRef] [PubMed]
- Vethaak, A.D.; Leslie, H.A. Plastic debris is a human health issue. Environ. Sci. Technol. 2016, 50, 6825–6826. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Kelly, F. Plastic and human health: A micro issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef] [PubMed]
- Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E. Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol. 2004, 38, 4206–4214. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- Okoffo, E.D.; O’Brien, S.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Rauert, C.; O’Brien, J.W.; Tscharke, B.J.; Wang, X.; Thomas, K.V. Plastic particles in soil: State of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts. Environ. Sci. Process Impacts 2021, 23, 240–274. [Google Scholar] [CrossRef]
- Lu, F.; Su, Y.; Ji, Y.; Ji, R. Release of zinc and polycyclic aromatic hydrocarbons from tire crumb rubber and toxicity of leachate to Daphnia magna: Effects of tire source and photoaging. Bull. Environ. Contam. Toxicol. 2021, 107, 651–656. [Google Scholar] [CrossRef]
- Mattsson, K.; de Lima, J.A.; Wilkinson, T.; Järlskog, I.; Ekstrand, E.; Sköld, Y.A.; Gustafsson, M.; Hassellöv, M. Tyre and road wear particles from source to sea. Micro Nanoplastics 2023, 3, 14. [Google Scholar] [CrossRef]
- Chang, X.; Huang, H.; Jiao, R.; Liu, J. Experimental investigation on the characteristics of tire wear particles under different non-vehicle operating parameters. Tribol. Int. 2020, 150, 106354. [Google Scholar] [CrossRef]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef]
- Park, I.; Kim, H.; Lee, S. Characteristics of tire wear particles generated in a laboratory simulation of tire/road contact conditions. J. Aerosol Sci. 2018, 124, 30–40. [Google Scholar] [CrossRef]
- Panko, J.M.; Hitchcock, K.M.; Fuller, G.W.; Green, D. Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments. Atmosphere 2019, 10, 99. [Google Scholar] [CrossRef]
- Unice, K.M.; Kreider, M.L.; Panko, J.M. Comparison of tire and road wear particle concentrations in sediment for watersheds in France, Japan, and the United States by quantitative pyrolysis GC/MS analysis. Environ. Sci. Tech. 2013, 47, 8138–8147. [Google Scholar] [CrossRef] [PubMed]
- Stephensen, E.; Celander, M.; Hulander, M.; Parkkonen, J.; Hegelund, T.; Sturve, J.; Hasselberg, L.; Bengtsson, M.; Förlin, L. Biomarker responses and chemical analyses in fish indicate leakage of polycyclic aromatic hydrocarbons and other compounds from car tire rubber. Environ. Toxicol. Chem. 2003, 22, 2926–2931. [Google Scholar] [CrossRef]
- Magni, S.; Tediosi, E.; Maggioni, D.; Sbarberi, R.; Noé, F.; Rossetti, F.; Fornai, D.; Persici, V.; Neri, M.C. Ecological Impact of End-of-Life-Tire (ELT)-Derived Rubbers: Acute and Chronic Effects at Organism and Population Levels. Toxics 2022, 10, 201. [Google Scholar] [CrossRef]
- Stack, M.; Hollman, K.; Mladenov, N.; Harper, B.; Pinongcos, F.; Sant, K.; Rochman, C.; Richardot, W.; Dodder, N.; Hoh, E. Micron-size tire tread particles leach organic compounds at higher rates than centimeter-size particles: Compound identification and profile comparison. Environ. Pollut. 2023, 334, 122116. [Google Scholar] [CrossRef]
- Mayer, P.M.; Moran, K.D.; Miller, E.L.; Brander, S.M.; Harper, S.; Garcia-Jaramillo, M.; Carrasco-Navarro, V.; Ho, K.T.; Burgess, R.M.; Thornton Hampton, L.M.; et al. Where the rubber meets the road: Emerging environmental impacts of tire wear particles and their chemical cocktails. Sci. Total Environ. 2024, 927, 171153. [Google Scholar] [CrossRef]
- Muresan, B.; Truong, X.; De Oliveira, T.; Lumière, L.; Cerezo, V.; Watanabe, N.; Do, M. A study of the direct emission of tire wear particles on different types of roads. Sci. Total Environ. 2025, 958, 178018. [Google Scholar] [CrossRef]
- Kunze, M.; Feißel, T.; Ivanov, V.; Bachmann, T.; Hesse, D.; Gramstat, S. Analysis of TRWP Particle Distribution in Urban and Suburban Landscapes, Connecting Real Road Measurements with Particle Distribution Simulation. Atmosphere 2022, 13, 1204. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Z.; Yu, R.; Yan, C.; Zhou, S.; Xing, B. Tire wear particles: Trends from bibliometric analysis, environmental distribution with meta-analysis, and implications. Environ. Pollut. 2023, 322, 121150. [Google Scholar] [CrossRef]
- Hilliges, R.; Endres, M.; Tifert, A.; Brenner, E.; Marks, T. Characterization of road runoff with regard to seasonal variations, particle size distribution and the correlation of fine particles and pollut-ants. Water Sci. Technol. 2016, 75, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.; Gustafsson, M.; Janhäll, S.; Eriksson, O.; Blomqvist, G.; Erlingsson, S. Temporal Variation of Road Dust Load and Its Size Distribution—A Comparative Study of a Porous and a Dense Pavement. Water Air Soil Pollut. 2020, 231, 561. [Google Scholar] [CrossRef]
- Fussell, J.C.; Franklin, M.; Green, D.C.; Gustafsson, M.; Harrison, R.M.; Hicks, W.; Kelly, F.J.; Kishta, F.; Miller, M.R.; Mudway, I.S.; et al. A review of road traffic-derived non-exhaust particles: Emissions, physicochemical characteristics, health risks, and mitigation measures. Environ. Sci. Technol. 2022, 56, 6813–6835. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Yang, H.; Wu, Y.; Pu, Q.; He, W.; Li, X. A review of tire wear particles: Occurrence, adverse effects, and control strategies. Ecotoxicol. Environ. Saf. 2024, 283, 116782. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, M.; Ge, Y.; Wen, Y.; Luo, J.; Yin, D.; Wang, C.; Wang, C. Emission Characteristics of Tyre Wear Particles from Light-Duty Vehicles. Atmosphere 2023, 14, 724. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Wang, R.; Jiang, W.; Du, L.; Huang, H.; Zhang, L.; Ding, Y. Fresh tire wear particles from moving vehicles: Dispersion dynamics, exposure, and prevention strategy. Emerg. Contam. 2025, 11, 100503. [Google Scholar] [CrossRef]
- Xiao, S.; Cui, Y.; Brahney, J.; Mahowald, N.M.; Li, Q. Long-distance atmospheric transport of microplastic fibres influenced by their shapes. Nat. Geosci. 2023, 16, 863–870. [Google Scholar] [CrossRef]
- Samara, C.; Voutsa, D. Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 2005, 59, 1197–1206. [Google Scholar] [CrossRef]
- Scerri, M.M.; Weinbruch, S.; Delmaire, G.; Mercieca, N.; Nolle, M.; Prati, P.; Massabò, D. Exhaust and non-exhaust contributions from road transport to PM10 at a Southern European traffic site. Environ. Pollut. 2022, 316, 120569. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D.; Cibula, R. Concentration and inorganic elemental analysis of particulate matter in a road tunnel environment (Žilina, Slovakia): Contribution of non-exhaust sources. Front. Environ. Sci. 2022, 10, 952577. [Google Scholar] [CrossRef]
- Torreggiani, G.; Manfrin, C.; Giglio, A.; Dissegna, A.; Chiandetti, C.; Giotta, P.; Renzi, M.; Anselmi, S.; Bentivoglio, T.; Babczyńska, A.; et al. The Effect of Tyre and Road Wear Particles on the Terrestrial Isopod Armadillidium pallasii. Biomolecules 2024, 14, 1640. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.; Chong, H.; Lim, Y.; Kwon, S. Chemical Assessment of Real Driving Tire and Road Wear Particles in Urban and Suburban Seoul, Korea. Sustainability 2023, 16, 10395. [Google Scholar] [CrossRef]
- Kang, T.; Kim, H. An Experimental Study on the Component Analysis and Variation in Concentration of Tire and Road Wear Particles Collected from the Roadside. Sustainability 2022, 15, 12815. [Google Scholar] [CrossRef]
- Neukirchen, C.; Saraji-Bozorgzad, M.R.; Mäder, M.; Mudan, A.P.; Czasch, P.; Becker, J.; Di Bucchianico, S.; Trapp, C.; Zimmermann, R.; Adam, T. Comprehensive elemental and physical characterization of vehicle brake wear emissions from two different brake pads following the Global Technical Regulation methodology. J. Hazard. Mat. 2025, 482, 136609. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; et al. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA 2016, 113, 5781–5790. [Google Scholar] [CrossRef]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, T.; Kang, S.; Shi, H.; Mai, L.; Allen, D.; Allen, S. Current status and future perspectives of microplastic pollution in typical cryospheric regions. Earth-Sci. Rev. 2022, 226, 103924. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Cui, P.; Ma, Y.; Wang, Y.; Hao, J.; Wang, Y.; Li, Y.; Sun, L.; Wang, J.; et al. Disaster effects of climate change in High Mountain Asia: State of art and scientific challenges. Adv. Climate Change Res. 2024, 15, 367–389. [Google Scholar] [CrossRef]
- Wu, H.; Sun, B.; Li, J. Polycyclic Aromatic Hydrocarbons in Sediments/Soils of the Rapidly Urbanized Lower Reaches of the River Chaohu, China. Int. J. Environ. Res. Public Health 2019, 16, 2302. [Google Scholar] [CrossRef]
- Zehetner, F.; Rosenfellner, U.; Mentler, A.; Gerzabek, M.H. Distribution of Road Salt Residues, Heavy Metals and Polycyclic Aromatic Hydrocarbons across a Highway-Forest Interface. Water Air Soil Pollut. 2009, 198, 125–132. [Google Scholar] [CrossRef]
- Tamis, J.E.; Koelmans, A.A.; Dröge, R.; Kaag, N.H.; Keur, M.C.; Tromp, P.C.; Jongbloed, R.H. Environmental risks of car tire microplastic particles and other road runoff pollutants. Microplastics Nanoplastics 2021, 1, 1–17. [Google Scholar] [CrossRef]
- Österlund, H.; Blecken, G.; Lange, K.; Marsalek, J.; Gopinath, K.; Viklander, M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. Sci. Total Environ. 2023, 858, 159781. [Google Scholar] [CrossRef] [PubMed]
- Cremades, L.V.; Muñoz, A.; Gómez, M.E. Proposed Index for Assigning an Environmental Label to Passenger Cars. Sustainability 2023, 16, 7195. [Google Scholar] [CrossRef]
- Jackson, M.E.; Harper, B.J.; Harper, S.L. Comparative Toxicity of Micro, Nano, and Leachate Fractions of Three Rubber Materials to Freshwater Species: Zebrafish and Daphnia. Microplastics 2025, 4, 8. [Google Scholar] [CrossRef]
- Sampalo, M.; Gómez, M.; Almeda, R. Impact of tire particle leachates on microplankton communities in the Canary Islands. Ecotoxicol. Environ. Saf. 2025, 291, 117787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, H.; Sablani, S.S.; Wu, Q. Recycling Functional Fillers from Waste Tires for Tailored Polystyrene Composites: Mechanical, Fire Retarding, Electromagnetic Field Shielding, and Acoustic Insulation Properties—A Short Review. Materials 2024, 17, 2675. [Google Scholar] [CrossRef]
- Roubeau Dumont, E.; Gagné, F. Nanoplastic Contamination in Freshwater Biofilms Using Gel Permeation Chromatography and Plasmonic Nanogold Sensor Approaches. Nanomaterials 2023, 14, 1288. [Google Scholar] [CrossRef]
- Przekop, R.E.; Sztorch, B.; Pakuła, D.; Konieczna, R.; Frydrych, M. Micro- and Nano-Pollutants from Tires and Car Brakes Generated in the Winter Season in the Poznan City Urban Environment. Appl. Sci. 2024, 14, 4235. [Google Scholar] [CrossRef]
- Gagné, F.; André, C.; Auclair, J. Micro and Nanoplastic Contamination and Its Effects on Freshwater Mussels Caged in an Urban Area. J. Xenobiotics 2023, 13, 761–774. [Google Scholar] [CrossRef]
- Verdi, A.; Naseri, M. Effects of tire wear particles on the water retention of soils with different textures in the full moisture range. J. Contam. Hydrol. 2024, 264, 104345. [Google Scholar] [CrossRef]
- Roy, I.R.W.; Raj, A.S.; Viaroli, S. Microplastic removal, identification and characterization in Chennai sewage treatment plants. J. Environ. Manag. 2025, 380, 125120. [Google Scholar] [CrossRef] [PubMed]
- Weinbruch, S.; Matthies, J.; Zou, L.; Kandler, K.; Ebert, M.; Bigalke, M. Deposition rates and air concentrations of tire and road wear particles near a motorway in Germany. Atmos. Environ. 2025, 352, 121228. [Google Scholar] [CrossRef]
- Zhao, T.; Xu, Y.; Bi, M.; Li, H.; Li, G.; Rillig, M.C. Soil properties explain the variability in tire wear particle effects in soil based on a laboratory test with 59 soils. Environ. Pollut. 2025, 375, 126271. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Pan, H.; Zhang, T.; Cao, L.; Wang, Y. The Dynamics of Soil Macropores and Hydraulic Conductivity as Influenced by the Fibrous and Tap Root Systems. Agriculture 2024, 14, 1676. [Google Scholar] [CrossRef]
- Rochman, C.M. Microplastics research-from sink to source. Science 2018, 360, 28–29. [Google Scholar] [CrossRef]
- Yadav, J.S.; Tiwari, S.K. The impact of end-of-life tires on the mechanical properties of fine-grained soil: A review. Environ. Dev. Sustain. 2019, 21, 485–568. [Google Scholar] [CrossRef]
- Redondo-Hasselerharm, P.E.; de Ruijter, V.N.; Mintenig, S.M.; Verschoor, A.; Koelmans, A. Ingestion and chronic effects of car tire tread particles on freshwater benthic macroinvertebrates. Environ. Sci. Technol. 2018, 52, 13986–13994. [Google Scholar] [CrossRef]
- Li, Y.; Shi, T.; Li, X.; Sun, H.; Xia, X.; Ji, X.; Zhang, J.; Liu, M.; Lin, Y.; Zhang, R.; et al. Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement. Environ. Int. 2022, 164, 107257. [Google Scholar] [CrossRef]
- Halle, L.L.; Palmqvist, A.; Kampmann, K.; Khan, F.R. Ecotoxicology of micronized tire rubber: Past, present and future considerations. Sci. Total Environ. 2020, 706, 135694. [Google Scholar] [CrossRef]
- Michelangeli, M.E.; Brandsma, S.H.; Margalef, M.; Forsman, E.; Kuehr, S.; Spanu, D.; Gomes, T. Chemical leachates from car tyre granulates and PET bottles induce toxic effects on Mytilus edulis haemocytes. Environ. Chem. Ecotoxicol. 2024, 7, 776–790. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [PubMed]
- Calarnou, L.; Traïkia, M.; Leremboure, M.; Malosse, L.; Dronet, S.; Delort, A.; Besse-Hoggan, P.; Eyheraguibel, B. Assessing biodegradation of roadway particles via complementary mass spectrometry and NMR analyses. Sci. Total Environ. 2023, 900, 165698. [Google Scholar] [CrossRef] [PubMed]
- Van Broekhuizen, P.; Säämänen, A.; Schuurbiers, D.; Isigonis, P.; Jensen, K.A.; Kühnel, D.; Le Blansch, K. Tyre wear nanoparticles as test for a nano risk governance framework. Front. Environ. Sci. 2022, 10, 1045246. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; He, W.; Sun, P.; Zhao, W.; Liu, M. Exploring the Potential Hormonal Effects of Tire Polymers (TPs) on Different Species Based on a Theoretical Computational Approach. Polymers 2022, 15, 1719. [Google Scholar] [CrossRef] [PubMed]
- Linh, D.V.; Huong, N.L.; Tabata, M.; Imai, S.; Iijima, S.; Kasai, D.; Anh, T.K.; Fukuda, M. Characterization and functional expression of a rubber degradation gene of a Nocardia degrader from a rubber-processing factory. J. Biosci. Bioeng. 2017, 123, 412–418. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Behzadan, H.Z.; SanaeiOstovar, A.; Chaney, R.L. Bacterial inoculation speeds zinc release from ground tire rubber used as Zn fertilizer for corn and sunffower in a calcareous soil. Plant Soil 2012, 361, 71–81. [Google Scholar] [CrossRef]
- Rhodes, E.; Ren, Z.; Mays, D. Zinc leaching from tire crumb rubber. Environ. Sci. Technol. 2012, 46, 12856–12863. [Google Scholar] [CrossRef]
- Pochron, S.T.; Fiorenza, A.; Sperl, C.; Ledda, B.; Patterson, C.L.; Tucker, C.C.; Panico, N. The response of earthworms (Eisenia fetida) and soil microbes to the crumb rubber material used in artiffcial turf fields. Chemosphere 2017, 173, 557–562. [Google Scholar] [CrossRef]
- Pochron, S.; Nikakis, J.; Illuzzi, K.; Baatz, A.; Demirciyan, L.; Dhillon, A.; Vaughan, D. Exposure to aged crumb rubber reduces survival time during a stress test in earthworms (Eisenia fetida). Environ. Sci. Pollut. Res. 2018, 25, 11376–11383. [Google Scholar] [CrossRef]
- Camponelli, K.M.; Casey, R.E.; Snodgrass, J.W.; Lev, S.M.; Landa, E.R. Impacts of weathered tire debris on the development of Rana sylvatica larvae. Chemosphere 2009, 74, 717–722. [Google Scholar] [CrossRef]
- Kim, S.W.; Xu, Y.; Meidl, P.; Bi, M.; Zhu, Y.; Rillig, M.C. Soil storage conditions alter the effects of tire wear particles on microbial activities in laboratory tests. Environ. Sci. Technol. Lett. 2022, 9, 1037–1043. [Google Scholar] [CrossRef]
- Ding, J.; Zhu, D.; Wang, H.-T.; Lassen, S.B.; Chen, Q.; Li, G.; Lv, M.; Zhu, Y.-G. Dysbiosis in the gut microbiota of soil fauna explains the toxicity of tire tread particles. Environ. Sci. Technol. 2020, 54, 7450–7460. [Google Scholar] [CrossRef]
- Liu, Y.; Sui, Y.; Haider, F.U.; Li, S.; Mu, P.; Zhang, P.; Wang, B.; Liu, T.; Lin, T.; Li, X. Tire wear particles (TWPs) induced toxicity in wheat (Triticum aestivum) by affecting osmotic regulation, redox homeostasis, photosynthesis, and microbial density. Ecotoxicol. Environ. Saf. 2025. under review. [Google Scholar]
- Gualtieri, M.; Andrioletti, M.; Vismara, C.; Milani, M.; Camatini, M. Toxicity of tire debris leachates. Environ. Int. 2005, 31, 723–730. [Google Scholar] [CrossRef]
- Wik, A.; Nilsson, E.; Källqvist, T.; Tobiesen, A.; Dave, G. Toxicity assessment of sequential leachates of tire powder using a battery of toxicity tests and toxicity identification evaluations. Chemosphere 2009, 77, 922–927. [Google Scholar] [CrossRef]
- Menicagli, V.; Balestri, E.; Lardicci, C. Exposure of coastal dune vegetation to plastic bag leachates: A neglected impact of plastic litter. Sci. Total Environ. 2019, 683, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Capolupo, M.; Sørensen, L.; Jayasena, K.D.R.; Booth, A.M.; Fabbri, E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 2020, 169, 115270. [Google Scholar] [CrossRef] [PubMed]
- Isa, V.; Saliu, F.; Becchi, A.; Spadaccino, G.; Quinto, M.; Veronelli, M.; Lasagni, M.; Galli, P.; Lavorano, S. Impacts of microplastics on reef-building corals: Disentangling the contribution of the chain scission products released by weathering. Sci. Total Environ. 2025, 975, 179239. [Google Scholar] [CrossRef]
- Reay, M.K.; Graf, M.; Murphy, M.; Li, G.; Yan, C.; Bhattacharya, M.; Osbahr, H.; Ma, J.; Chengtao, W.; Shi, X.; et al. Higher potential leaching of inorganic and organic additives from biodegradable compared to conventional agricultural plastic mulch film. J. Hazard. Mat. 2025, 488, 137147. [Google Scholar] [CrossRef] [PubMed]
- Alkio, M.; Tabuchi, T.M.; Wang, X. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J. Exp. Bot. 2005, 56, 2983–2994. [Google Scholar] [CrossRef]
- Chibwe, L.; Parrott, J.L.; Shires, K.; Khan, H.; Clarence, S.; Lavalle, C.; Sullivan, C.; O’Brien, A.M.; De Silva, A.O.; Muir, D.C.; et al. A Deep Dive into the Complex Chemical Mixture and Toxicity of Tire Wear Particle Leachate in Fathead Minnow. Environ. Toxicol. Chem. 2022, 41, 1144–1153. [Google Scholar] [CrossRef]
- Sieber, G.; Beisser, D.; Rothenberger, J.L.; Shah, M.; Schumann, M.; Sures, B.; Boenigk, J. Microbial community shifts induced by plastic and zinc as substitutes of tire abrasion. Sci. Rep. 2022, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Ma, Z.; Zou, Y.; Liu, J.; Hou, J. Investigation on the adsorption and desorption behaviors of heavy metals by tire wear particles with or without UV ageing processes. Environ. Res. 2021, 195, 110858. [Google Scholar] [CrossRef]
- Putar, U.; Turk, K.; Jung, J.; Kim, C.; Kalčíková, G. The dual impact of tire wear microplastics on the growth and ecological interactions of duckweed Lemna minor. Environ. Pollut. 2025, 368, 125681. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, P.M.; Saranya, V.; Vijayakumar, S.; Mythili Meera, M.; Ruprekha, S.; Kunal, R.; Chandrasekaran, N. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Pronk, M.E.; Woutersen, M.; Herremans, J.M. Synthetic turf pitches with rubber granulate inffll: Are there health risks for people playing sports on such pitches? J. Expo. Sci. Environ. Epidemiol. 2020, 30, 567–584. [Google Scholar] [CrossRef]
- Halle, L.L.; Palmqvist, A.; Kampmann, K.; Jensen, A.; Hansen, T.; Khan, F.R. Tire wear particle and leachate exposures from a pristine and road-worn tire to Hyalella azteca: Comparison of chemical content and biological effects. Aqua. Toxicol. 2021, 232, 105769. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.R.; Halle, L.L.; Palmqvist, A. Acute and long-term toxicity of micronized car tire wear particles to Hyalella azteca. Aqua. Toxicol. 2019, 213, 105216. [Google Scholar] [CrossRef]
- Stevenson, K.; Stallwood, B.; Hart, A.G. Tire rubber recycling and bioremediation: A review. Biorem. J. 2008, 12, 1–11. [Google Scholar] [CrossRef]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Drapper, D.; Hornbuckle, A.; Rintoul, L.; Leusch, F.D. Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment. Sci. Total Environ. 2020, 713, 136356. [Google Scholar] [CrossRef]
- Kupiainen, K.; Denby, B.; Gustafsson, M.; Johansson, C.; Ketzel, M.; Kukkonen, J.; Norman, M.; Pirjola, L.; Bennet, C.; Blomqvist, G.; et al. Road Dust and PM10 in the Nordic Countries: Measures to Reduce Road Dust Emissions from Traffic; Nordic Council of Ministers: Copenhagen, Denmark, 2017. [Google Scholar]
- Piscitello, A.; Bianco, C.; Casasso, A.; Sethi, R. Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. Sci. Total Environ. 2021, 766, 144440. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Bafana, A.; Naoghare, P.K.; Krishnamurthi, K.; Sivanesan, S. Environmental prevalence, fate, impacts, and mitigation of microplastics-a critical review on present understanding and future research scope. Environ. Sci. Pollut. Res. Int. 2021, 28, 4951–4974. [Google Scholar] [CrossRef]
- Panko, J.; Kreider, M.; Unice, K. Review of tire wear emissions. In Non-Exhaust Emissions. An Urban Air Quality Problem for Public Health; Amato, F., Ed.; Impact and Mitigation Measures; Elsevier: Amsterdam, The Netherlands, 2018; p. 147. [Google Scholar]
- Ozdemir, H. Mitigation impact of roadside trees on fine particle pollution. Sci. Total Environ. 2019, 659, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Kupiainen, K.; Stojiljkovic, A.; Paunu, V.V.; Karvosenoja, N.; Karppinen, A.; Kukkonen, J.; Kangas, L.; Kauhaniemi, M.; Denby, B.; Hänninen, O. Characteristics and mitigation of vehicular non-exhaust particle emissions in Nordic conditions. In Air Pollution Modeling and Its Application XXVI; Mensink, C., Gong, W., Hakami, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Gabbe, C.J.; Oxlaj, E.; Wang, J. Residential development and near-roadway air pollution: Assessing risk and mitigation in San Jose, California. J. Transp. Health 2019, 13, 78–89. [Google Scholar] [CrossRef]
- Fuller, M.; Bai, S.; Eisinger, D.; Niemeier, D. Practical mitigation measures for diesel particulate matter: Near-road vegetation barriers. In Contract AQ-04-01: Developing Effective and Quantifiable Air Quality Mitigation Measures; University of California: Davis, CA, USA, 2009. [Google Scholar]
- European TRWP Platform, Action Plan For TRWP Mitigation. 2019. Available online: https://www.etrma.org/key-topics/tyre-and-road-wear-particles/ (accessed on 18 February 2020).
- European TRWP Platform, Mitigation Actions—Progress Update. 2020. Available online: https://erticonetwork.com/ertico-presents-clean-mobility-project-to-the-european-trwp-platform/ (accessed on 18 February 2020).
- ETRMA, Workshop on Microplastics from Tyre Wear: Knowledge, Mitigation Measures, and Policy Options—ETRMA. 2020. Available online: https://www.etrma.org/library/workshop-on-microplastics-from-tyre-wear-knowledge-mitigation-measures-and-policy-options/ (accessed on 20 May 2020).
- Barr, B.C.; Andradóttir, H.Ó.; Thorsteinsson, T.; Erlingsson, S. Mitigation of Suspendable Road Dust in a Subpolar, Oceanic Climate. Sustainability 2021, 13, 9607. [Google Scholar] [CrossRef]
- Arias, A.H.; Alfonso, M.B.; Girones, L.; Piccolo, M.C.; Marcovecchio, J.E. Synthetic microfibers and tyre wear particles pollution in aquatic systems: Relevance and mitigation strategies. Environ. Pollut. 2022, 295, 118607. [Google Scholar] [CrossRef] [PubMed]
- Amato, F. (Ed.) Non-Exhaust Emissions. An Urban Air Quality Problem for Public Health. Impact and Mitigation Measures; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- AIRUSE. The Scientific Basis of Street Cleaning Activities as Road Dust Mitigation Measure. AIRUSE LIFE, 30 October 2013.
- Thodhal Yoganandham, S.; Daeho, K.; Heewon, J.; Shen, K.; Jeon, J. Unveiling the environmental impact of tire wear particles and the associated contaminants: A comprehensive review of environmental and health risk. J. Hazard. Mat. 2024, 480, 136155. [Google Scholar] [CrossRef]
- Kovochich, M.; Parker, J.A.; Oh, S.C.; Lee, J.P.; Wagner, S.; Reemtsma, T.; Unice, K.M. Characterization of individual tire and road wear particles in environmental road dust, tunnel dust, and sediment. Environ. Sci. Technol. Lett. 2021, 8, 1057–1064. [Google Scholar] [CrossRef]
- Acarer, S. A review of microplastic removal from water and wastewater by membrane technologies. Water Sci. Technol. 2023, 88, 199–219. [Google Scholar] [CrossRef]
- Neupert, J.W.; Venghaus, D.; Barjenbruch, M. Measures to Reduce the Discharge of tire Wear into the Environment. Microplastics 2024, 3, 305–321. [Google Scholar] [CrossRef]
- Lackner, M.; Branka, M. Microplastics in Farmed Animals—A Review. Microplastics 2024, 3, 559–588. [Google Scholar] [CrossRef]
- Neupert, J.W.; Stein, J.; Venghaus, D.; Barjenbruch, M. Tyre Wear Measurements Using the Marker SBR in a Technical Retrofit Sustainable Drainage System (SuDS). Microplastics 2025, 4, 3. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Baabdullah, A.M.; Ribeiro-Navarrete, S.; Giannakis, M.; Al-Debei, M.M.; Dennehy, D.; Metri, B.; Buhalis, D.; Cheung, C.M.; et al. Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Infor. Manag. 2022, 66, 102542. [Google Scholar] [CrossRef]
- Li, K.; Yu, K.; Zhang, Y.; Du, H.; Sioutas, C.; Wang, Q. Unveiling the mechanism secret of abrasion emissions of particulate matter and microplastics. Sci. Rep. 2024, 14, 1–10. [Google Scholar] [CrossRef]
- Tariq, Z.; Williams, I.D.; Cundy, A.B.; Zapata-Restrepo, L.M. A critical review of sampling, extraction and analysis methods for tyre and road wear particles. Environ. Pollut. 2025, 377, 126440. [Google Scholar] [CrossRef]
- Meland, S.; Granheim, G.M.; Rundberget, J.T.; Rødland, E. Screening of tire derived chemicals and tire wear particles in a road tunnel wash water treatment basin. Environ. Sci. Technol. Lett. 2024, 11, 35–40. [Google Scholar] [CrossRef]
- Khan, A.; Araminienė, V.; Uogintė, I.; Varnagirytė-Kabašinskienė, I.; Černiauskas, V.; Gudynaitė-Franckevičienė, V.; Džiugys, A.; Davulienė, L.; Misiulis, E.; Davtalab, M.; et al. Evaluating the role of urban green infrastructure in combating traffic-related microplastic pollution. Sci. Tot. Environ. 2025, 983, 179688. [Google Scholar] [CrossRef]
Factor Types | Specific Factor | Effects on TWPs Generations | References |
---|---|---|---|
Internal | Tyre material composition | Softer or less wear-resistant compounds increase TWP production | [6,40] |
Tread hardness/wear resistance | Lower hardness and wear resistance lead to greater particle release | [7] | |
Tyre age/lifespan | Older and degraded tyres generate more TWPs due to increased brittleness | [20] | |
Load-bearing capacity | Higher load increases contact pressure, accelerating wear | [42] | |
External | Vehicle type | Heavy-duty trucks produce 5–10× more TWPs than passenger cars under similar conditions | [6] |
Road type/surface | Rougher/rural roads: 1.5–2× higher TWP emissions vs. urban/smooth roads | [21] | |
Environmental exposure | UV, oils, and chemicals accelerate tyre degradation and TWP release | [40] | |
Driving behaviour | Emergency braking: ~6% more wear per event; 1 °C tyre temp rise: ~2% more wear (20–60 °C, linear) | [20,40] | |
Tyre maintenance | Poor maintenance (e.g., underinflation, misalignment) increases TWP production | [7] |
Experimental Site | Material Used and Toxicity Concentration | Experimental Conditions | Toxic Compounds | Toxic Effect on Soil | References |
---|---|---|---|---|---|
Amsterdam, Netherlands | Tyre wear particle (crumb rubber) 1.5% w/w | laboratory experiment | Enhanced the concentration of zinc, pyrene, fluoranthene, benzothiazole, and chlorpyrifos by 21,900 mg kg−1, 4.85 mg kg−1, 1.35 mg kg−1, 89.2 mg kg−1, 0.351 mg kg−1, respectively, in contaminated soil than control. | At 1.5% TWPs concentration, Enchytraeus crypticus L. reproduction decreased by 20%, Folsomia candida L. had 24% reduced survival (soil), 38% reduced survival (food), and 38% lower reproduction, while Porcellio scaber L. showed a 65% decrease in acetylcholinesterase activity, with no impact on survival, growth, feeding, or electron transport system activity. | [29] |
New York, USA | Tyre wear particle (crumb rubber) 50% w/w | Laboratory experiment | Enhanced the concentration of zinc 172.28 ppm in contaminated soil. | Crumb rubber contamination significantly reduced soil pH from 8.02 to 7.83 and decreased the body weight of earthworms by 21.05% compared to the control. | [98] |
New York; USA | Tyre wear particle (crumb rubber) 50% w/w | Laboratory experiment | Enhanced the concentration of zinc 144.31 ppm in contaminated soil. | The presence of crumb rubber significantly reduced soil respiration by 17.5%, increased earthworm mortality by 25.3%, decreased earthworm body weight by 7.24%, and slightly elevated soil pH from 7.9 to 8.1. | [99] |
Towson, USA | Tyre material (83.8 g kg−1) | Laboratory experiment | Enhanced the concentration of polychlorinated biphenyls (PCBs), dioxins, and zinc in contaminated soil. | In the frog bioassay, hatching success was 6% lower and time to metamorphosis was 14% longer in the tyre-treatment group compared to the control. Tissue zinc accumulation was significantly higher in the tyre group, and unlike the control, which showed a positive growth–time relationship, the tyre treatment showed a negative correlation. | [100] |
Berlin, Germany | Tyre wear particle (crumb rubber) 5000 mg kg−1 | Incubation experiment | Enhanced the concentration of Polycyclic Aromatic Hydrocarbons (PAHs), heavy metals (e.g., zinc, lead, cadmium) and phthalates antioxidants (e.g., N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine [6PPD]) in contaminated soil. | TWPs further enhanced respiration by up to 84% during early incubation. Enzyme activities declined by 18–56% in dried soils, while phosphatase increased by up to 21% with TWP addition. Water-stable aggregates decreased by up to 41% in dried soils, with no significant impact from TWPs. | [101] |
Ningbo, China | Tyre wear particle 3% w/w | Incubation experiment | Tread particles contaminated soils with high levels of toxic compounds, notably zinc, which reached concentrations of 9407.4 mg kg−1, and polycyclic aromatic hydrocarbons, which reached 46.8 mg kg−1. | Tread particles significantly impacted soil fauna, reducing the survival of Enchytraeus crypticus L. by over 25% and reproduction by more than 50% after 21 days of exposure. TP contamination also disrupted gut and soil microbial communities, with notable covariation between bacterial and fungal populations and an enrichment of opportunistic pathogenic genera in the worm guts. | [102] |
Changchun, China | Tyre wear particles (5% w/w) | Pot experiment | (benzo[ghi]perylene, dibenz[a,h]anthracene, indeno [1,2,3-cd]pyrene, benzo[a]pyrene, benzo[k]fluoranthene, benzo[b]fluoranthene, chrysene, benz[a]anthracene, anthracene, phenanthrene, fluorene, acenaphthene, acenaphthylene, and naphthalene | Higher concentrations of TWPs influenced the soil microbial diversity, as the average relative abundance of Mortierella showed a stepwise increase, while 26 Plectosphaerella exhibited a gradual decline. In contrast, Tausonia spp., Gibellulopsis spp., Schizothecium spp., Fusarium spp., Solicoccozyma spp., Chaetomium spp., Pseudombrophila spp., and Gibberella spp. showed a trend of decline with increased concentration of TWPs. | [103] |
Experimental Site | Material Used and Toxicity Concentration | Plant | Experimental Conditions | Toxic Compounds | Toxic Effect on Plants | References |
---|---|---|---|---|---|---|
Beijing, China | Tyre wear particles (0.25% w/w) | Vigna radiata L. (mung bean) | Pot experiment | - | TWPs exposure decreased shoot and root dry weight by 13.6% and 11.7%, respectively. Chlorophyll a, b, and carotenoids declined by 18.5%, 23.7%, and 20.1%. Total soluble protein, sugars, and amino acids were reduced by 21.2%, 17.8%, and 15.4%, respectively. | [11] |
Vienna, Austria | Tyre granulate (representing TWPs) was added at 3 g per vial. | Valerianella locusta L. (lettuce) | Hydroponic experiment | Hexamethoxymethylmelamine (HMMM), N-phenyl-N′-(1,3-dimethylbutyl)-p-phenylenediamine (6PPD), 6PPD-quinone (6PPD-q), diphenylguanidine (DPG), and benzothiazole (BTZ) | TWP-derived compounds were absorbed by lettuce roots, translocated to leaves, and metabolized without visible phytotoxic effects. Compound-specific accumulation patterns reflected differences in uptake rates, root retention, and leaf metabolism. | [12] |
Berlin, Germany | Tyre wear particles (160 mg g−1 soil). | Allium porrum L. (leek) | Pot experiment | The TWPs contained toxic heavy metals, including chromium (175 ± 7 mg kg−1), lead (357 ± 29 mg kg−1), zinc (5089 ± 40 mg kg−1), nickel (95 ± 3 mg kg−1), and copper (453 ± 10 mg kg−1). | TWPs reduced leek plant growth, with shoot dry weight decreasing by 20%. Root growth was also declined slightly with increasing TWP concentrations. | [18] |
Seoul, South Korea | Tyre wear particles (10 g kg−1) | Vigna radiata L. (mung bean) | Pot experiment | Zinc | TWPs significantly inhibited mung bean shoot and leaf growth, with no notable impact on root growth. They disrupted photosynthesis by decreasing chlorophyll fluorescence parameters (QYLss, qP, qL) and reducing key antioxidants (anthocyanin and flavonoids), indicating oxidative stress likely caused by the leaching of zinc and antimony. | [27] |
Ljubljan, Slovenia | Tyre wear particles (100 mg L−1) | Lemna minor L. (duckweed) | Hydroponic experiment | Zinc | TWPs reduced Lemna minor growth rate by up to 28%, root length by 38%, and chlorophyll a content by 31%, with aged TWPs showing the most severe effects. Additionally, aged TWPs significantly increased carbohydrate content. | [114] |
Changchun, China | Tyre wear particles (5% w/w) | Triticum aestivum L. (wheat) | Pot experiment | (benzo[ghi]perylene, dibenz[a,h]anthracene, indeno [1,2,3-cd]pyrene, benzo[a]pyrene, benzo[k]fluoranthene, benzo[b]fluoranthene, chrysene, benz[a]anthracene, anthracene, phenanthrene, fluorene, acenaphthene, acenaphthylene, and naphthalene | TWPs significantly reduced plant growth parameters, with decreases of 22.6% in plant height, 81.4% in root surface area, 76.0% in root volume, 73.4% in root length, 85.6% in fresh leaf weight, 36.1% in 100-grain weight, and 63.1% in dry biomass compared to the control. They also reduced the wheat stomatal conductance and net photosynthetic rate by 28.4% and 37.0%, while intercellular CO2 concentration increased by 8.7%. | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Liu, X.; Dai, B.; Liu, T.; Haider, F.U.; Zhang, P.; Habiba; Cai, J. Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches. Sustainability 2025, 17, 5433. https://doi.org/10.3390/su17125433
Kang J, Liu X, Dai B, Liu T, Haider FU, Zhang P, Habiba, Cai J. Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches. Sustainability. 2025; 17(12):5433. https://doi.org/10.3390/su17125433
Chicago/Turabian StyleKang, Jie, Xintong Liu, Bing Dai, Tianhao Liu, Fasih Ullah Haider, Peng Zhang, Habiba, and Jian Cai. 2025. "Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches" Sustainability 17, no. 12: 5433. https://doi.org/10.3390/su17125433
APA StyleKang, J., Liu, X., Dai, B., Liu, T., Haider, F. U., Zhang, P., Habiba, & Cai, J. (2025). Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches. Sustainability, 17(12), 5433. https://doi.org/10.3390/su17125433