Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,210)

Search Parameters:
Keywords = ZnO-NPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1407 KiB  
Review
ZnO Nanoparticles: Advancing Agricultural Sustainability
by Lekkala Venkata Ravishankar, Nidhi Puranik, VijayaDurga V. V. Lekkala, Dakshayani Lomada, Madhava C. Reddy and Amit Kumar Maurya
Plants 2025, 14(15), 2430; https://doi.org/10.3390/plants14152430 - 5 Aug 2025
Abstract
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. [...] Read more.
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. Zinc deficiency in plants leads to various physiological abnormalities, ultimately affecting nutritional quality and posing challenges to food security. Biofortification methods have been adopted by agronomists to increase Zn concentrations in crops through optimal foliar and soil applications. Changing climatic conditions and conventional agricultural practices alter edaphic factors, reducing zinc bioavailability in soils due to abrupt weather changes. Precision agriculture emphasizes need-based and site-specific technologies to address these nutritional deficiencies. Nanoscience, a multidimensional approach, reduces particle size to the nanometer (nm) scale to enhance their efficiency in precise amounts. Nanoscale forms of Zn+2 and their broad applications across crops are gaining attention in agriculture under varied application methods. This review focuses on the significance of Zn oxide (ZnO) nanoparticles (ZnONPs) and their extensive application in crop production. We also discuss optimum dosage levels, ZnONPs synthesis, application methods, toxicity, and promising future strategies in this field. Full article
(This article belongs to the Special Issue Nanotechnology in Crop Physiology and Sustainable Agriculture)
Show Figures

Figure 1

25 pages, 2042 KiB  
Article
Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles
by Michal Sima, Helena Libalova, Zuzana Simova, Barbora Echalar, Katerina Palacka, Tereza Cervena, Jiri Klema, Zdenek Krejcik, Vladimir Holan and Pavel Rossner
Int. J. Mol. Sci. 2025, 26(15), 7583; https://doi.org/10.3390/ijms26157583 - 5 Aug 2025
Abstract
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of [...] Read more.
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of Ag, CuO, and ZnO NPs after in vitro exposure of mouse MSCs at the transcriptional level in order to reveal the potential toxicity as well as modulation of other processes that may modify the activity of MSCs. mRNA–miRNA interactions were further investigated to explore the epigenetic regulation of gene expression. All the tested NPs mediated immunomodulatory effects on MSCs, generation of extracellular vesicles, inhibition of osteogenesis, and enhancement of adipogenesis. Ag NPs exhibited the most pronounced response; they impacted the expression of the highest number of mRNAs, including those encoding interferon-γ-stimulated genes and genes involved in drug metabolism/cytochrome P450 activity, suggesting a response to the potential toxicity of Ag NPs (oxidative stress). Highly interacting MiR-126 was upregulated by all NPs, while downregulation of MiR-92a was observed after the ZnO NP treatment only, and both effects might be associated with the improvement of MSCs’ healing potency. Overall, our results demonstrate positive effects of NPs on MSCs, although increased oxidative stress caused by Ag NPs may limit the therapeutical potential of the combined MSC+NP treatment. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

16 pages, 2276 KiB  
Article
Effect of Nanoparticles on the Development of Bacterial Speck in Tomato (Solanum lycopersicum L.) and Chili Variegation (Capsicum annuum L.)
by Edgar Alejandro Ruiz-Ramirez, Daniel Leobardo Ochoa-Martínez, Gilberto Velázquez-Juárez, Reyna Isabel Rojas-Martinez and Victor Manuel Zuñiga-Mayo
Horticulturae 2025, 11(8), 907; https://doi.org/10.3390/horticulturae11080907 (registering DOI) - 4 Aug 2025
Viewed by 59
Abstract
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc [...] Read more.
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc oxide (ZnONPs), and silicon dioxide (SiO2NPs) nanoparticles on symptom progression and physiological parameters in two pathosystems: Pseudomonas syringae pv. tomato (Psto) in tomato (pathosystem one, culturable pathogen) and Candidatus Liberibacter solanacearum (CaLso) in pepper plants (pathosystem two, non-culturable pathogen). For in vitro pathosystem one assays, SiO2NPs did not inhibit Psto growth. The minimum inhibitory concentration (MIC) was 31.67 ppm for AgNPs and 194.3 ppm for ZnONPs. Furthermore, the minimum lethal concentration (MLC) for AgNPs was 100 ppm, while for ZnONPs, it was 1000 ppm. For in planta assays, ZnONPs, AgNPs, and SiO2NPs reduced the number of lesions per leaf, but only ZnONPs significantly decreased the severity. Regarding pathosystem two, AgNPs, ZnONPs, and SiO2NPs application delayed symptom progression. However, only AgNPs significantly reduced severity percentage. Moreover, treatments with AgNPs and SiO2NPs increased the plant height and dry weight compared to the results for the control. Full article
Show Figures

Figure 1

24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 204
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

32 pages, 995 KiB  
Case Report
Phytotoxic Effects and Agricultural Potential of Nanofertilizers: A Case Study Using Zeolite, Zinc Oxide, and Titanium Dioxide Under Controlled Conditions
by Ezequiel Zamora-Ledezma, Glenda Leonela Loor Aragundi, Willian Stalyn Guamán Marquines, Michael Anibal Macías Pro, José Vicente García Díaz, Henry Antonio Pacheco Gil, Julián Mauricio Botero Londoño, Mónica Andrea Botero Londoño and Camilo Zamora-Ledezma
J. Xenobiot. 2025, 15(4), 123; https://doi.org/10.3390/jox15040123 - 1 Aug 2025
Viewed by 294
Abstract
Nanofertilizers (NFs) and engineered nanoparticles (NPs) are increasingly used in agriculture, yet their environmental safety remains poorly understood. This study evaluated the comparative phytotoxicity of zinc oxide (ZnO), titanium dioxide (TiO2), and clinoptilolite nanoparticles, three commercial nanofertilizers, and potassium dichromate (K [...] Read more.
Nanofertilizers (NFs) and engineered nanoparticles (NPs) are increasingly used in agriculture, yet their environmental safety remains poorly understood. This study evaluated the comparative phytotoxicity of zinc oxide (ZnO), titanium dioxide (TiO2), and clinoptilolite nanoparticles, three commercial nanofertilizers, and potassium dichromate (K2Cr2O7) using Lactuca sativa seeds under adapted OECD-208 protocol conditions. Seeds were exposed to varying concentrations of each xenobiotic material (0.5–3% for NFs; 10–50% for NPs), with systematic assessment of seedling survival, root and hypocotyl length, dry biomass, germination index (GI), and median effective concentration (EC50) values. Nanofertilizers demonstrated significantly greater phytotoxicity than engineered nanoparticles despite lower application concentrations. The toxicity ranking was established as NF1 > NF3 > NF2 > NM2 > NM1 > NM3, with NF1 being most toxic (EC50 = 1.2%). Nanofertilizers caused 45–78% reductions in root length and 30–65% decreases in dry biomass compared with controls. GI values dropped to ≤70% in NF1 and NF3 treatments, indicating concentration-dependent growth inhibition. While nanofertilizers offer agricultural benefits, their elevated phytotoxicity compared with conventional nanoparticles necessitates rigorous pre-application safety assessment. These findings emphasize the critical need for standardized evaluation protocols incorporating both physiological and ecotoxicological endpoints to ensure safe xenobiotic nanomaterial deployment in agricultural systems. Full article
Show Figures

Graphical abstract

26 pages, 4992 KiB  
Article
Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications
by Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Ioana Ion, Eduard Marius Lungulescu, Gabriela Beatrice Sbarcea, Virgil Emanuel Marinescu, Sebastian Aradoaei, Mihaela Aradoaei and Raducu Machidon
Polymers 2025, 17(14), 1987; https://doi.org/10.3390/polym17141987 - 20 Jul 2025
Viewed by 387
Abstract
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. [...] Read more.
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. Disc-shaped samples (Ø30 ± 0.1 mm × 2 ± 0.1 mm) were evaluated in unaged and aged states (840 h at 100% humidity and 100 °C) using scanning electron microscopy, X-ray diffraction, ultraviolet–visible and Fourier-transform infrared spectroscopy, water absorption, thermal resistance, and mechanical and dielectric testing. Among all composites, M2 showed the best performance, with the highest aging resistance (estimated lifetime of 3891 h in humidity and 2361 h in heat). It also exhibited superior mechanical properties, with the highest indentation hardness, Vickers hardness, and elastic modulus before (0.042 GPa, 3.846 HV, and 0.732 GPa) and after aging under humidity (0.042 GPa, 3.932 HV, 0.706 GPa) and elevated temperature (0.085 GPa, 7.818 HV, 1.871 GPa). Although ZnO NPs slightly reduced electrical resistivity, M2 showed the most stable dielectric properties. In its unaged state, M2 had 22%, 30%, and 3% lower surface resistivity, volume resistivity, and dielectric strength, respectively, than M1 polymer. M2 was identified as the optimal formulation, combining mechanical strength, dielectric stability, and resistance to moisture and heat. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 1628 KiB  
Article
Eco-Friendly Fabrication of Zinc Oxide Nanoparticles Using Gaultheria fragrantissima: Phytochemical Analysis, Characterization, and Antimicrobial Potential
by Bhoj Raj Poudel, Sujan Dhungana, Anita Dulal, Aayush Raj Poudel, Laxmi Tiwari, Devendra Khadka, Megh Raj Pokhrel, Milan Babu Poudel, Allison A. Kim and Janaki Baral
Inorganics 2025, 13(7), 247; https://doi.org/10.3390/inorganics13070247 - 19 Jul 2025
Viewed by 387
Abstract
This work explores zinc oxide nanoparticle (ZnO NP) synthesis utilizing leaf extract of the Gaultheria fragrantissima plant that are useful in medicine, environmental remediation, and cosmetics due to their antibacterial activity, photocatalytic efficiency, and UV-blocking characteristics. Traditional synthesis methods involve energy-intensive procedures and [...] Read more.
This work explores zinc oxide nanoparticle (ZnO NP) synthesis utilizing leaf extract of the Gaultheria fragrantissima plant that are useful in medicine, environmental remediation, and cosmetics due to their antibacterial activity, photocatalytic efficiency, and UV-blocking characteristics. Traditional synthesis methods involve energy-intensive procedures and hazardous chemicals, posing environmental and human health risks. To overcome these limitations, this research focuses on utilizing G. fragrantissima, rich in bioactive compounds such as phenolics and flavonoids, with the methyl salicylate previously reported in the literature for this species, which helps reduce and stabilize NPs. ZnO NPs were characterized through X-ray diffraction (XRD), UV–visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and energy-dispersive spectroscopy (EDS). The ZnO NPs were found to have a well-defined crystalline structure, with their average crystallite size measured at around 8.26 nm. ZnO NPs exhibited moderate antimicrobial activity against selected microbial strains. These findings underscore the potential of G. fragrantissima-mediated synthesis as an environmentally sustainable and efficient method for producing ZnO NPs with multifunctional applications. This study provides a greener alternative to conventional synthesis approaches, demonstrating a method that is both eco-friendly and capable of yielding NPss with desirable properties. Full article
Show Figures

Figure 1

22 pages, 1643 KiB  
Article
Skin Wound Healing: The Impact of Treatment with Antimicrobial Nanoparticles and Mesenchymal Stem Cells
by Pavel Rossner, Eliska Javorkova, Michal Sima, Zuzana Simova, Barbora Hermankova, Katerina Palacka, Zuzana Novakova, Irena Chvojkova, Tereza Cervena, Kristyna Vrbova, Anezka Vimrova, Jiri Klema, Andrea Rossnerova and Vladimir Holan
J. Xenobiot. 2025, 15(4), 119; https://doi.org/10.3390/jox15040119 - 18 Jul 2025
Viewed by 388
Abstract
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing [...] Read more.
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing process. This combined treatment was hypothesized to be beneficial, as it is associated with the production of molecules supporting the healing process and antimicrobial activity. The samples were collected seven days after injury. When compared with untreated wounded animals (controls), the combined (MSCs+NPs) treatment induced the expression of Sprr2b, encoding small proline-rich protein 2B, which is involved in keratinocyte differentiation, the response to tissue injury, and inflammation. Pathways associated with keratinocyte differentiation were also affected. Ag NP treatment (alone or combined) modulated DNA methylation changes in genes involved in desmosome organization. The percentage of activated regulatory macrophages at the wound site was increased by MSC-alone and Ag-alone treatments, while the production of nitric oxide, an inflammatory marker, by stimulated macrophages was decreased by both MSC/Ag-alone and MSCs+Ag treatments. Ag induced the expression of Col1, encoding collagen-1, at the injury site. The results of the MSC and NP treatment of skin wounds (alone or combined) suggest an induction of processes accelerating the proliferative phase of healing. Thus, MSC-NP interactions are a key factor affecting global mRNA expression changes in the wound. Full article
Show Figures

Graphical abstract

30 pages, 6093 KiB  
Article
Investigation of Antioxidative Enzymes and Transcriptomic Analysis in Response to Foliar Application of Zinc Oxide Nanoparticles and Salinity Stress in Solanum lycopersicum
by Mostafa Ahmed, Zoltán Tóth, Roquia Rizk, Donia Abdul-Hamid and Kincső Decsi
Agronomy 2025, 15(7), 1715; https://doi.org/10.3390/agronomy15071715 - 16 Jul 2025
Viewed by 367
Abstract
Farmers commonly throw away tomato leaves when they harvest tomatoes, although they are a good source of vital biomolecules. ZnO nanoparticles (ZnO NPs) enhance plant growth by regulating abiotic stress and scavenging reactive oxygen species. In the current article, the activities of five [...] Read more.
Farmers commonly throw away tomato leaves when they harvest tomatoes, although they are a good source of vital biomolecules. ZnO nanoparticles (ZnO NPs) enhance plant growth by regulating abiotic stress and scavenging reactive oxygen species. In the current article, the activities of five antioxidant enzymes—glutathione reductase (GR), peroxidase (POX), glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT)—were determined spectrophotometrically to study the interaction between foliar fertilization of ZnO NPs and salt stress in tomato plants. We employed the next-generation sequencing (NGS) technique to investigate the gene expression. It was also used to generate a de novo supertranscript and then determine the sequences modulated by treatments. Differential expression analysis was used to identify increased and reduced gene clusters, and gene enrichment analysis was used to identify over- and under-expressed genes under the treatment. Gene Ontology (GO) was used to identify the functions and regulatory pathways of the differentially expressed genes (DEGs). It was found that ZnO nanoparticles had the capability to overcome the reduction in antioxidant enzyme production levels in the case of the salinity-stressed treatments and enhance the secretion of those enzymes in the non-stressed but sprayed treatments. The ZnO NPs also enhanced the reduction in stress-responsive genes associated with salt stress resistance. The results revealed the impact of ZnO nanoparticles on alleviating the salinity stress reductive effects in antioxidative enzymes and regulating the mechanism by which metabolically relevant genes adaptively respond to salt stress in tomato plants. So, spraying tomato plants (stressed or not) with ZnO NPs is a promising agricultural technique in improving different metabolic pathways that are responsible for plants’ resistance. Full article
Show Figures

Figure 1

19 pages, 1855 KiB  
Article
Enhanced Antimicrobial Activity of Green-Synthesized Artemisia-ZnO Nanoparticles: A Comparative Study with Pure ZnO Nanoparticles and Plant Extract
by Noor Akhras, Abuzer Çelekli and Hüseyin Bozkurt
Foods 2025, 14(14), 2449; https://doi.org/10.3390/foods14142449 - 11 Jul 2025
Viewed by 656
Abstract
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using Artemisia absinthium L. extract has gained considerable attention due to its eco-friendly approach and potential applications in food science. This study investigates the synthesis and characterization of Artemisia-mediated ZnO NPs, focusing on [...] Read more.
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using Artemisia absinthium L. extract has gained considerable attention due to its eco-friendly approach and potential applications in food science. This study investigates the synthesis and characterization of Artemisia-mediated ZnO NPs, focusing on their physicochemical properties. The nanoparticles were characterized using ultraviolet–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDX). Successful synthesis was achieved through a co-precipitation method, resulting in an average particle size of 36.6 nm. The presence of polyphenols and flavonoids in A. absinthium L. extract acted as both a reducing agent and stabilizer for the nanoparticles. The physicochemical characterization revealed strong absorption peaks indicative of ZnO, confirming successful nanoparticle formation. In addition to the structural findings, this study presents novel insights by demonstrating that Artemisia-mediated ZnO NPs possess significantly enhanced antimicrobial activity compared to both pure ZnO NPs and the plant extract alone. The biosynthesized nanoparticles exhibited notably lower minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values against Staphylococcus aureus, Escherichia coli, and Candida albicans, suggesting a strong synergistic effect between ZnO and the phytochemicals of A. absinthium L. Thus, the study confirms and quantifies the superior antibacterial potential of Artemisia-derived ZnO NPs, offering promising implications for food, biomedical and pharmaceutical applications. Full article
Show Figures

Figure 1

24 pages, 6634 KiB  
Article
Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications
by Yasmin M. Heikal, Amal M. Albahi, Amal A. Alyamani, Hala M. Abdelmigid, Samia A. Haroun and Hoda M. Soliman
Cells 2025, 14(14), 1055; https://doi.org/10.3390/cells14141055 - 10 Jul 2025
Viewed by 420
Abstract
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy [...] Read more.
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy of salicylic acid (SA), humic acid (HA), and zinc oxide nanoparticles (ZnO-NPs) as control and inducer agents. FW infection resulted in notable structural alterations, including decreased leaf blade and mesophyll thickness and increased Adaxial epidermal cell wall thickness, thereby disrupting the leaf structure. Also, it caused severe chloroplast damage, such as membrane detachment and a reduced count of starch granules, which could impair photosynthetic efficiency. The different treatments exhibited significant effectiveness in reversing these adverse effects, leading to increased thickness of the leaf blade, mesophyll, palisade, and spongy tissues and enhanced structural integrity. Furthermore, ultrastructural improvements included activated mitochondria, compact chloroplasts with increased numbers, and proliferation of plastoglobuli, indicating adaptive metabolic changes. Principal component analysis (PCA-biplot) highlighted the significant parameters distinguishing treatment groups, providing insights into trait-based differentiation. This study concluded the potential of SA, HA, and ZnO-NPs as sustainable solutions for managing Fusarium wilt and enhancing tomato plant resilience, thereby contributing to improved agricultural practices and food security. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Graphical abstract

22 pages, 1605 KiB  
Review
Zinc Oxide Nanoparticles as Next-Generation Feed Additives: Bridging Antimicrobial Efficacy, Growth Promotion, and Sustainable Strategies in Animal Nutrition
by Jiayi Yang, Dongwei Xiong and Miao Long
Nanomaterials 2025, 15(13), 1030; https://doi.org/10.3390/nano15131030 - 2 Jul 2025
Viewed by 441
Abstract
Zinc oxide nanoparticles (ZnO NPs) have attracted significant attention due to their wide-ranging applications in animal production, largely because of their notable biocompatibility, low toxicity, and strong antimicrobial activity. These properties make ZnO NPs a promising substitute for traditional antibiotics. Their application could [...] Read more.
Zinc oxide nanoparticles (ZnO NPs) have attracted significant attention due to their wide-ranging applications in animal production, largely because of their notable biocompatibility, low toxicity, and strong antimicrobial activity. These properties make ZnO NPs a promising substitute for traditional antibiotics. Their application could address the growing concern of antibiotic resistance in livestock industries. This review examines the unique physicochemical characteristics of ZnO NPs, including their nanoscale size and high surface area, which contribute to their biological functionality. Emphasis is placed on green synthesis methods that minimize environmental impact while producing high-quality ZnO NPs. In animal farming, ZnO NPs play a crucial role not only in promoting growth and improving immune responses, but also in enhancing meat and egg quality. Additionally, this review discusses the environmental and safety implications of ZnO NPs, considering their sustainable application potential in future animal production practices, aimed at fostering a more eco-friendly and efficient livestock sector. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

30 pages, 7589 KiB  
Article
Plant-Based ZnO Nanoparticles for Green Nanobiocontrol of a Highly Virulent Bacterial Leaf Blight Pathogen: Mechanistic Insights and Biocompatibility Evaluation
by Preeda Chanthapong, Duangkamol Maensiri, Paweena Rangsrisak, Thanee Jaiyan, Kanchit Rahaeng, Atcha Oraintara, Kunthaya Ratchaphonsaenwong, Jirawat Sanitchon, Piyada Theerakulpisut and Wuttipong Mahakham
Nanomaterials 2025, 15(13), 1011; https://doi.org/10.3390/nano15131011 - 30 Jun 2025
Viewed by 1182
Abstract
Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), poses a serious threat to rice cultivation. This study presents the green synthesis of zinc oxide nanoparticles (ZnO NPs) using an aqueous leaf extract of the medicinal plant Centella asiatica [...] Read more.
Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), poses a serious threat to rice cultivation. This study presents the green synthesis of zinc oxide nanoparticles (ZnO NPs) using an aqueous leaf extract of the medicinal plant Centella asiatica (L.) Urban and evaluates their potential as dual-function nanopesticides. The synthesized CA-ZnO NPs exhibited high crystallinity, a hexagonal to quasi-spherical morphology, and nanoscale dimensions (~22.5 nm), as confirmed by UV–Vis spectroscopy, XRD, FTIR, SEM, TEM, and SAED analyses. These nanoparticles demonstrated potent antibacterial activity against a highly virulent, field-derived Thai Xoo strain, with a minimum inhibitory concentration (MIC) of 8 µg/mL. Mechanistic investigations revealed substantial membrane disruption, intracellular nanoparticle penetration, and elevated reactive oxygen species (ROS) generation in treated cells. Cytotoxicity testing using human dermal fibroblasts (HDFs) revealed excellent biocompatibility, with no statistically significant reduction in cell viability at concentrations up to 500 µg/mL. In contrast, viability markedly declined at 1000 µg/mL. These findings underscore the selective antibacterial efficacy and minimal mammalian cytotoxicity of CA-ZnO NPs. Overall, CA-ZnO NPs offer a promising green nanopesticide platform that integrates potent antibacterial activity with biocompatibility, supporting future applications in sustainable crop protection and biomedical nanotechnology. Full article
(This article belongs to the Topic Nano-Enabled Innovations in Agriculture)
Show Figures

Graphical abstract

16 pages, 2389 KiB  
Article
Collaboration of Two UV-Absorbing Dyes in Cholesteric Liquid Crystals Films for Infrared Broadband Reflection and Ultraviolet Shielding
by Mengqi Xie, Yutong Liu, Xiaohui Zhao, Zhidong Liu, Jinghao Zhang, Dengyue Zuo, Guang Cui, Hui Cao and Maoyuan Li
Photonics 2025, 12(7), 656; https://doi.org/10.3390/photonics12070656 - 29 Jun 2025
Viewed by 352
Abstract
This study developed cholesteric liquid crystal broadband reflective films using zinc oxide nanoparticles (ZnO NPs) and homotriazine UV-absorbing dye (UV-1577) to enhance infrared shielding. Unlike benzotriazole-based UV absorber UV-327, which suffers from volatility and contamination, UV-1577 exhibits superior compatibility with liquid crystals, higher [...] Read more.
This study developed cholesteric liquid crystal broadband reflective films using zinc oxide nanoparticles (ZnO NPs) and homotriazine UV-absorbing dye (UV-1577) to enhance infrared shielding. Unlike benzotriazole-based UV absorber UV-327, which suffers from volatility and contamination, UV-1577 exhibits superior compatibility with liquid crystals, higher UV absorption efficiency, and enhanced processing stability due to its larger molecular structure. By synergizing UV-1577 with ZnO NPs, we achieved a gradient UV intensity distribution across the film thickness, inducing a pitch gradient that broadened the reflection bandwidth to 915 nm and surpassing the performance of previous systems using UV-327/ZnO NPs (<900 nm). We conducted a detailed examination of the factors influencing the reflective bandwidth. These included the UV-1577/ZnO NP ratio, the concentrations of the polymerizable monomer (RM257) and chiral dopant (R5011), along with polymerization temperature, UV irradiation intensity, and irradiation time. The resultant films demonstrated efficient ultraviolet shielding via the UV-1577/ZnO NPs collaboration and infrared shielding through the induced pitch gradient. This work presents a scalable strategy for energy-saving smart windows. Full article
(This article belongs to the Special Issue Liquid Crystals in Photonics II)
Show Figures

Figure 1

21 pages, 7150 KiB  
Article
Morphology and Coating of ZnO Nanoparticles Affect Growth and Gas Exchange Parameters of Bell Pepper Seedlings
by Eneida A. Pérez Velasco, Luis A. Valdez-Aguilar, Rebeca Betancourt Galindo, Adolfo Baylon Palomino and Bertha A. Puente Urbina
Agronomy 2025, 15(7), 1579; https://doi.org/10.3390/agronomy15071579 - 28 Jun 2025
Viewed by 254
Abstract
The use of zinc oxide nanoparticles (ZnO-NPs) is a promising strategy to enhance zinc availability and promote plant growth due to their physicochemical properties and biocompatibility. This study evaluated the effects of ZnO-NP morphology (spherical and hexagonal), maltodextrin (MD) surface coating, and a [...] Read more.
The use of zinc oxide nanoparticles (ZnO-NPs) is a promising strategy to enhance zinc availability and promote plant growth due to their physicochemical properties and biocompatibility. This study evaluated the effects of ZnO-NP morphology (spherical and hexagonal), maltodextrin (MD) surface coating, and a concentration range of 0–2000 mg L−1 on growth and gas exchange in bell pepper seedlings. ZnO-NPs increased seedling height, especially at 750 and 1000 mg L−1 for MD-coated spherical NPs and at 250 and 500 mg L−1 for MD-coated hexagonal NPs. Spherical NPs also enhanced stem diameter, root length, and the dry weight of roots and stems. Leaf dry weight was highest with MD-coated spherical NPs, while hexagonal forms had milder effects. Dose–response analysis revealed that, with the exception of hexagonal MD-coated NPs, the total dry weight of seedlings stabilized at concentrations ranging 219.6 to 313.6 mg L−1. Gas exchange parameters were significantly influenced by the evaluated factors. Uncoated hexagonal NPs at 1500 mg L−1 increased the photosynthetic rate by 239%. MD coating improved performance, particularly in spherical NPs at 750 and 1000 mg L−1. The transpiration rate rose with MD-coated hexagonal NPs at 500–2000 mg L−1, and SPAD units increased with both morphologies. Overall, this study confirms that ZnO-NP morphology and surface coating play key roles in enhancing growth and physiological responses in bell pepper seedlings. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

Back to TopTop