Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design
2.3. Cytological and Ultrastructural Responses
2.3.1. Light Microscopy
2.3.2. Measurements of Anatomical Parameters
2.3.3. Transmission Electron Microscopy
2.4. Statistical Analysis
3. Results
3.1. Semi-Thin Measurements
3.2. Ultra-Structural Micrographs
3.3. Combined Inter-Correlation Among Semithin and Ultrastructure Traits of 70-Day-Old S. lycopersicum Plants Under the Different Eight Treatments
3.4. Multivariate Analysis: Based on Semithin and Ultrastructure Combined Data
3.4.1. Correlation Matrix with Heat Map
3.4.2. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srinivas, C.; Nirmala Devi, D.; Narasimha Murthy, K.; Mohan, C.D.; Lakshmeesha, T.R.; Singh, B.; Kalagatur, N.K.; Niranjana, S.R.; Hashem, A.; Alqarawi, A.A.; et al. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity—A review. Saudi J. Biol. Sci. 2019, 26, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.; Dubey, S.; Kumari, R.; Verma, R.J.M. Management tactics for fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Sacc.): A review. Int. J. Res. Pharm. Pharm. Sci. 2019, 1, 01–07. [Google Scholar]
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Tamboli, V.; Sharma, R.; Sreelakshmi, Y. NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. Food Chem. 2018, 259, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Abiala, M.A.; Oleru, K.; Balogun, T.; Saharia, M.; Opere, B.; Sahoo, L. Soil borne Fusarium solani exhibited pathogenic effect on tomato cultivars in Nigeria. Arch. Phytopathol. Plant Prot. 2020, 54, 137–151. [Google Scholar] [CrossRef]
- Yousaf, M.; Ahmad, S.; Anjum, R.; Majeed, M.Z. Histopathological Changes in Tomato (Lycopersicum esculentum L.) Plants Induced by the Infection of Fusarium oxysporum f. sp. lycopersici, the Cause of Tomato Wilt Disease. Sarhad J. Agric. 2021, 37, 1098–1499. [Google Scholar] [CrossRef]
- Joshi, R. A review of Fusarium oxysporum on its plant interaction and industrial use. J. Med. Plants Stud. 2018, 6, 112–115. [Google Scholar] [CrossRef]
- Shaheen, N.; Khan, U.M.; Azhar, M.T.; Tan, D.K.Y.; Atif, R.M.; Israr, M.; Yang, S.-H.; Chung, G.; Rana, I.A. Genetics and Genomics of Fusarium Wilt of Chilies: A Review. Agronomy 2021, 11, 2162. [Google Scholar] [CrossRef]
- Ishaq, H.; Khan, M.; Ali, S.; Gogi, R.D.M. Management of Fusarium wilt of Eggplant in Relation to Soil and Environmental Factors. Master’s Thesis, University of Agriculture Faisalabad, Faisalabad, Pakistan, 2019. [Google Scholar] [CrossRef]
- Ajilogba, C.F.; Babalola, O.O. Integrated Management Strategies for Tomato Fusarium Wilt. Biocontrol Sci. 2013, 18, 117–127. [Google Scholar] [CrossRef]
- Mokbel, S.A.; El-Attar, A.K. Ultrastructural changes in tomato plant induced by phytoplasma infection and attempts for its elimination using tissue culture techniques. Egypt. J. Virol. 2016, 13, 34–51. [Google Scholar]
- L’Haridon, F.; Aimé, S.; Duplessis, S.; Alabouvette, C.; Steinberg, C.; Olivain, C. Isolation of differentially expressed genes during interactions between tomato cells and a protective or a non-protective strain of Fusarium oxysporum. Physiol. Mol. Plant Pathol. 2011, 76, 9–19. [Google Scholar] [CrossRef]
- Haruna, S.G.; Yahuza, L.; Tijjani, I. Management of Fusarium Wilt of Tomato (Fusarium oxysporum f. sp. lycopersici) and Related Soil-borne Diseases using Eco-friendly Methods: A Review. Asian J. Res. Crop Sci. 2024, 9, 154–168. [Google Scholar] [CrossRef]
- Lugtenberg, B.; Kamilova, F. Plant-Growth-Promoting Rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef]
- Nguyen, V.D.H.; Nguyen, T.T.T.; Huynh, T.N.P.; Ho, H.H.; Nguyen, A.T.V.; Trinh, L.T.P. Effective control of Fusarium wilt on tomatoes using a combination of phenolic-rich plant extracts. Eur. J. Plant Pathol. 2024, 170, 833–850. [Google Scholar] [CrossRef]
- Benhamou, N.; Belanger, R.R. Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato. Plant Physiol. 1998, 118, 1203–1212. [Google Scholar] [CrossRef]
- Adhikari, A.; Aneefi, A.G.; Sisuvanh, H.; Singkham, S.; Pius, M.V.; Akter, F.; Kwon, E.-H.; Kang, S.-M.; Woo, Y.-J.; Yun, B.-W.; et al. Dynamics of Humic Acid, Silicon, and Biochar under Heavy Metal, Drought, and Salinity with Special Reference to Phytohormones, Antioxidants, and Melatonin Synthesis in Rice. Int. J. Mol. Sci. 2023, 24, 17369. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Tong, J.; Xu, Q.; Dai, L.; Ye, J.; Wu, H.; Xu, C.; Shi, J. Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.). Environ. Pollut. 2020, 267, 115546. [Google Scholar] [CrossRef]
- Zehra, A.; Rai, A.; Singh, S.K.; Aamir, M.; Ansari, W.A.; Upadhyay, R.S. An overview of nanotechnology in plant disease management, food safety, and sustainable agriculture. Food Secur. Plant Dis. Manag. 2021, 193–219. [Google Scholar] [CrossRef]
- Rossi, L.; Fedenia, L.N.; Sharifan, H.; Ma, X.; Lombardini, L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol. Biochem. 2019, 135, 160–166. [Google Scholar] [CrossRef]
- Albahi, A.M. Eco-friendly Strategies for Wilt Disease Caused by Fusarium oxysporum to Tomato Plant. Master’s. Thesis, Faculty of Science, Mansoura University, Mansoura, Egypt, 2023. [Google Scholar]
- Karnovsky, M.J. A formaldehyde -glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 1965, 27, 137–138. [Google Scholar]
- Reynolds, E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 1963, 17, 208–212. [Google Scholar] [CrossRef]
- DeMicco, V.; Paradiso, R.; Aronne, G.; De Pascale, S.; Quarto, M.; Arena, C. Leaf Anatomy and Photochemical Behaviour of Solanum lycopersicum L. Plants from Seeds Irradiated with Low-LET Ionising Radiation. Sci. World J. 2014, 2014, 13. [Google Scholar]
- Bhattacharyya, D.; Gnanasekaran, P.; Kumar, R.K.; Kushwaha, N.K.; Sharma, V.K.; Yusuf, M.A.; Chakraborty, S. A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J. Exp. Bot. 2015, 66, 5881–5895. [Google Scholar] [CrossRef] [PubMed]
- van Wijk, K.J.; Kessler, F. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation. Annu. Rev. Plant Biol. 2017, 68, 253–289. [Google Scholar] [CrossRef]
- Michel, E.J.S.; Ponnala, L.; van Wijk, K.J. Tissue-type specific accumulation of the plastoglobular proteome, transcriptional networks, and plastoglobular functions. J. Exp. Bot. 2021, 72, 4663–4679. [Google Scholar] [CrossRef] [PubMed]
- Arzac, M.I.; Fernández-Marín, B.; García-Plazaola, J.I. More than just lipid balls: Quantitative analysis of plastoglobule attributes and their stress-related responses. Planta 2022, 255, 62. [Google Scholar] [CrossRef] [PubMed]
- Zechmann, B. Ultrastructure of plastids serves as reliable abiotic and biotic stress marker. PLoS ONE 2019, 14, e0214811. [Google Scholar] [CrossRef]
- Torres-Romero, D.; Gómez-Zambrano, Á.; Serrato, A.J.; Sahrawy, M.; Mérida, Á. Arabidopsis fibrillin 1-2 subfamily members exert their functions via specific protein-protein interactions. J. Exp. Bot. 2022, 73, 903–914. [Google Scholar] [CrossRef]
- Cooper, B.; Clarke, J.D.; Budworth, P.; Kreps, J.; Hutchison, D.; Park, S.; Guimil, S.; Dunn, M.; Luginbühl, P.; Ellero, C.; et al. A network of rice genes associated with stress response and seed development. Proc. Natl. Acad. Sci. USA 2003, 100, 4945–4950. [Google Scholar] [CrossRef]
- DeMicco, V.; Arena, C.; Aronne, G. Anatomical alterations of Phaseolus vulgaris L. mature leaves irradiated with X-rays. Plant Biol. 2014, 16, 187–193. [Google Scholar] [CrossRef]
- Devi, R.; Munjral, N.; Gupta, A.K.; Kaur, N. Cadmium induced changes in carbohydrate status and enzymes of carbohydrate metabolism, glycolysis and pentose phosphate pathway in pea. Environ. Exp. Bot. 2007, 61, 167–174. [Google Scholar] [CrossRef]
- Yue, J.Y.; Wei, X.J.; Wang, H.Z. Cadmium tolerant and sensitive wheat lines: Their differences in pollutant accumulation, cell damage, and autophagy. Biol. Plant. 2018, 62, 379–387. [Google Scholar] [CrossRef]
- Rahman, S.; Matsumuro, T.; Miyake, H.; Takeoka, Y. Salinity-Induced Ultrastructural Alterations in Leaf Cells of Rice (Oryza sativa L.). Plant Prod. Sci. 2000, 3, 422–429. [Google Scholar] [CrossRef]
- Hasan, R.; Ohnuki, Y.; Kawasaki, M.; Taniguchi, M.; Miyake, H. Differential Sensitivity of Chloroplasts in Mesophyll and Bundle Sheath Cells in Maize, an NADP-Malic Enzyme-Type C4 Plant, to Salinity Stress. Plant Prod. Sci. 2005, 8, 567–577. [Google Scholar] [CrossRef]
- Chernyad’ev, I. Ontogenetic changes in the photosynthetic apparatus and effect of cytokinins (Review). Appl. Biochem. Microbiol. 2000, 36, 527–539. [Google Scholar] [CrossRef]
- Monteiro, C.C.; Carvalho, R.F.; Gratão, P.L.; Carvalho, G.; Tezotto, T.; Medici, L.O.; Peres, L.E.P.; Azevedo, R.A. Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environ. Exp. Bot. 2011, 71, 306–320. [Google Scholar] [CrossRef]
- Torres, M.A. ROS in biotic interactions. Physiol. Plant. 2010, 138, 414–429. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Pompeu, G.B.; Vilhena, M.B.; Gratão, P.L.; Carvalho, R.F.; Rossi, M.L.; Martinelli, A.P.; Azevedo, R.A. Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 2016, 254, 771–783. [Google Scholar] [CrossRef]
- Oostendorp, M.; Kunz, W.; Dietrich, B.; Staub, T. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 2001, 107, 19–28. [Google Scholar] [CrossRef]
- El Hadrami, I.; Ramos, T.; El Bellaj, M.; El Idrissi-Tourane, A.; Macheix, J.J. A Sinapic Derivative as an Induced Defence Compound of Date Palm Against Fusarium oxysporum f.sp. albedinis, the Agent Causing Bayoud Disease. J. Phytopathol. 1997, 145, 329–333. [Google Scholar] [CrossRef]
- Edgar, C.I.; McGrath, K.C.; Dombrecht, B.; Manners, J.M.; Maclean, D.C.; Schenk, P.M.; Kazan, K. Salicylic acid mediates resistance to the vascular wilt pathogen (Fusarium oxysporum) in the model host (Arabidopsis thaliana). Australas. Plant Pathol. 2006, 35, 581. [Google Scholar] [CrossRef]
- Mandal, S.; Mallick, N.; Mitra, A. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol. Biochem. 2009, 47, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Métraux, J.-P.; Nawrath, C.; Genoud, T. Systemic acquired resistance. Euphytica 2002, 124, 237–243. [Google Scholar] [CrossRef]
- Loffredo, E.; Berloco, M.; Casulli, F.; Senesi, N. In vitro assessment of the inhibition of humic substances on the growth of two strains of Fusarium oxysporum. Biol. Fertil. Soils 2007, 43, 759–769. [Google Scholar] [CrossRef]
- de Azevedo, I.G.; Olivares, F.L.; Ramos, A.C.; Bertolazi, A.A.; Canellas, L.P. Humic acids and Herbaspirillum seropedicae change the extracellular H+ flux and gene expression in maize roots seedlings. Chem. Biol. Technol. Agric. 2019, 6, 8. [Google Scholar] [CrossRef]
- El-Fawy, M.M.; Abdel-Fatah, B.E.; Saeed, A.S.; Abo-Elnaga, H.I.G.; Amein, A.-M.M. Effect of soil drenching with humic acid, L-methionine and phosphoric acid on Fusarium wilt and induction of enzymes related to oxidative stress and defense in tomato plants. Arch. Phytopathol. Plant Prot. 2021, 54, 1876–1895. [Google Scholar] [CrossRef]
- Khan, I.; Asaf, S.; Kang, S.-M.; Lubna; Methela, N.J.; Back, M.Y.; Yun, B.-W.; Lee, I.-J. Synergistic role of Fusarium solani IK-105 and humic acid in combating lead stress in tomato plants through physiological, biochemical and molecular modulation. Plant Stress 2025, 15, 100780. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, J.; Ma, Y.; Peng, Y.; Fenton, O.; Wang, W.; Zhang, W.; Chen, Q. Unlocking the potential of biostimulants derived from organic waste and by-product sources: Improving plant growth and tolerance to abiotic stresses in agriculture. Environ. Technol. Innov. 2024, 34, 103571. [Google Scholar] [CrossRef]
- Amoozad, N.; Zahedi, M. Effects of humic acid application on physiological and biochemical characteristics of safflower cultivars under salinity and cadmium contamination. J. Crop Sci. Biotechnol. 2024, 27, 651–661. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanisamy, K.; Babu, K.; Sharma, N.K. Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J. Glob. Biosci. 2014, 3, 415–422. [Google Scholar]
- Oloumi, H.; Soltaninejad, R.; Baghizadeh, A. The comparative effects of nano and bulk size particles of CuO and ZnO on glycyrrhizin and phenolic compounds contents in Glycyrrhiza glabra L. seedlings. Indian J. Plant Physiol. 2015, 20, 157–161. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; Dacrory, S.; Hashem, A.H.; Attia, M.S.; Hasanin, M.; Fouda, H.M.; Kamel, S.; ElSaied, H. Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatal. Agric. Biotechnol. 2021, 35, 102083. [Google Scholar] [CrossRef]
- Imran, M.; Abo-Elyousr, K.A.M.; El-Sharnouby, M.E.; Ali, E.F.; Sallam, N.M.A.; Bagy, H.M.M.K.; Abdel-Rahim, I.R. Biocontrol Potential of Trichoderma harzianum and Zinc Nanoparticles to Mitigate Gray Mold Disease of Tomato. Gesunde Pflanz. 2022, 75, 151–163. [Google Scholar] [CrossRef]
- Bouqellah, N.A.; El-Sayyad, G.S.; Attia, M.S. Induction of tomato plant biochemical immune responses by the synthesized zinc oxide nanoparticles against wilt-induced Fusarium oxysporum. Int. Microbiol. 2023, 27, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Jomeyazdian, A.; Pirnia, M.; Alaei, H.; Taheri, A.; Sarani, S. Control of Fusarium wilt disease of tomato and improvement of some growth factors through green synthesized zinc oxide nanoparticles. Eur. J. Plant Pathol. 2024, 169, 333–345. [Google Scholar] [CrossRef]
- Li, L.; Zhu, T.; Song, Y.; Feng, L.; Kear, P.J.; Riseh, R.S.; Sitohy, M.; Datla, R.; Ren, M. Salicylic acid fights against Fusarium wilt by inhibiting target of rapamycin signaling pathway in Fusarium oxysporum. J. Adv. Res. 2022, 39, 1–13. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; Salem, S.S.; Khalil, A.M.A.; El-Wakil, D.A.; Fouda, H.M.; Hashem, A.H. Potential of biosynthesized zinc oxide nanoparticles to control Fusarium wilt disease in eggplant (Solanum melongena) and promote plant growth. Biomet. Int. J. Role Met. Ions Biol. Biochem. Med. 2022, 35, 601–616. [Google Scholar] [CrossRef]
Treatment/Leaf Parameters | Leaf Blade Thickness (µm) | Cuticle Thickness (µm) | Adaxial Epidermis Thickness (µm) | Abaxial Epidermis Thickness (µm) | Mesophyll Thickness (µm) | Palisade Thickness (µm) | Spongy Thickness (µm) | Palisade Parenchyma Area (µm2) | Spongy Parenchyma Area (µm2) | Vascular Bundle Area (µm2) |
---|---|---|---|---|---|---|---|---|---|---|
T0− | 239.02 ± 8.28 bc | 4.62 ± 0.13 c | 13.63 ± 0.31 a | 15.37 ± 0.36 c | 195.31 ± 5.64 cd | 82.18 ± 1.90 c | 100.46 ± 3.48 b | 1049.79 ± 30.31 d | 711.29 ± 20.53 bc | 256.94 ± 8.90 abc |
T0+ | 212.71 ± 7.37 ab | 4.94 ± 0.14 c | 15.86 ± 0.37 a | 16.31 ± 0.38 c | 179.81 ± 5.19 bc | 96.16 ± 2.22 e | 76.51 ± 2.65 a | 1479.93 ± 42.72 e | 422.08 ± 12.18 a | 351.18 ± 12.16 c |
T1 | 290.35 ± 10.06 d | 2.40 ± 0.07 b | 19.59 ± 0.45 b | 11.21 ± 0.26 b | 258.40 ± 7.46 f | 144.39 ± 3.33 f | 115.49 ± 4.00 b | 2102.60 ± 60.70 f | 1203.83 ± 34.75 d | 768.79 ± 26.63 d |
T2 | 196.37 ± 6.80 a | 2.58 ± 0.08 b | 24.32 ± 0.56 c | 19.97 ± 0.46 d | 169.98 ± 4.91 abc | 92.83 ± 2.14 de | 77.47 ± 2.68 a | 967.65 ± 27.93 cd | 697.17 ± 20.13 bc | 335.47 ± 11.62 bc |
T3 | 188.93 ± 6.54 a | 5.06 ± 0.14 c | 23.48 ± 0.54 c | 12.99 ± 0.30 b | 148.84 ± 4.30 a | 65.35 ± 1.51 b | 73.28 ± 2.54 a | 872.40 ± 25.18 c | 815.76 ± 23.55 c | 164.28 ± 5.69 a |
T4 | 271.32 ± 9.40 cd | 2.09 ± 0.06 b | 20.53 ± 0.47 b | 26.59 ± 0.61 e | 227.42 ± 6.57 e | 84.56 ± 1.95 cd | 138.71 ± 4.80 c | 1068.66 ± 30.85 d | 677.14 ± 19.55 b | 1913.68 ± 66.29 f |
T5 | 276.58 ± 9.58 cd | 4.78 ± 0.14 c | 23.37 ± 0.54 c | 26.56 ± 0.61 e | 220.48 ± 6.37 de | 54.02 ± 1.25 a | 160.85 ± 5.57 d | 427.98 ± 12.36 a | 1614.09 ± 46.60 e | 1192.74 ± 41.32 e |
T6 | 179.42 ± 6.22 a | 0.78 ± 0.02 a | 18.40 ± 0.42 b | 8.90 ± 0.20 a | 154.38 ± 4.46 ab | 74.62 ± 1.72 bc | 72.97 ± 2.53 a | 602.64 ± 17.40 b | 428.85 ± 12.38 a | 194.97 ± 6.75 ab |
Quantitative Parameters/Treatments | Cell Wall Thickness (µm) | Mitochondria Number/Cell Profile | Chloroplast Number/Cell Profile | Chloroplast Area (µm2) | Chloroplast Length (µm) | Chloroplast Width (µm) | Plastoglobuli Number/Cell Profile | Starch Grain Number/Cell Profile | Starch Grain Length (µm) | Starch Grains Area (µm2) |
---|---|---|---|---|---|---|---|---|---|---|
T0− | 0.23 ± 0.01 a | 1.50 ± 0.08 a | 6.50 ± 0.33 c | 9.89 ± 0.49 b | 5.31 ± 0.27 bc | 2.25 ± 0.11 bc | 19.38 ± 0.97 bc | 9.25 ± 0.46 e | 4.50 ± 0.23 d | 5.35 ± 0.27 d |
T0+ | 0.29 ± 0.02 c | 1.50 ± 0.09 a | 1.90 ± 0.11 a | 7.13 ± 0.43 a | 4.08 ± 0.25 a | 1.15 ± 0.07 a | 21.33 ± 1.28 cd | 3.33 ± 0.20 a | 3.13 ± 0.19 b | 3.15 ± 0.19 b |
T1 | 0.43 ± 0.02 d | 1.20 ± 0.05 a | 4.20 ± 0.17 b | 7.35 ± 0.29 a | 4.61 ± 0.18 ab | 2.01 ± 0.08 b | 34.64 ± 1.39 f | 6.30 ± 0.25 c | 0.99 ± 0.04 a | 0.75 ± 0.03 a |
T2 | 0.27 ± 0.01 bc | 3.50 ± 0.14 d | 3.60 ± 0.14 b | 10.18 ± 0.41 b | 5.69 ± 0.23 cd | 2.41 ± 0.10 cd | 18.10 ± 0.72 b | 4.80 ± 0.19 b | 3.44 ± 0.14 bc | 4.79 ± 0.19 cd |
T3 | 0.29 ± 0.01 c | 3.00 ± 0.15 c | 3.64 ± 0.19 b | 8.65 ± 0.43 ab | 5.43 ± 0.28 cd | 2.22 ± 0.11 bc | 11.27 ± 0.57 a | 6.10 ± 0.31 c | 3.55 ± 0.18 bc | 3.53 ± 0.18 b |
T4 large SG | 0.27 ± 0.01 bc | 4.14 ± 0.17 e | 7.64 ± 0.31 d | 11.99 ± 0.48 c | 5.23 ± 0.21 bc | 2.72 ± 0.11 d | 25.55 ± 1.03 e | 12.00 ± 0.48 f | 4.47 ± 0.18 d | 7.31 ± 0.29 e |
T4 small SG | -- | --- | -- | -- | -- | -- | -- | -- | 1.36± 0.08 b | 0.85 ± 0.02 c |
T5 | 0.22 ± 0.02 a | 2.50 ± 0.15 b | 4.13 ± 0.25 b | 17.96 ± 1.08 d | 6.13 ± 0.37 d | 4.30 ± 0.26 e | 12.86 ± 0.77 a | 8.00 ± 0.48 d | 3.61 ± 0.22 c | 4.25 ± 0.26 c |
T6 | 0.25 ± 0.02 ab | 2.20 ± 0.11 b | 4.00 ± 0.20 b | 7.85 ± 0.39 a | 5.13 ± 0.26 bc | 2.03 ± 0.10 b | 23.00 ± 1.15 de | 6.50 ± 0.33 c | 1.35 ± 0.07 a | 0.46 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heikal, Y.M.; Albahi, A.M.; Alyamani, A.A.; Abdelmigid, H.M.; Haroun, S.A.; Soliman, H.M. Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications. Cells 2025, 14, 1055. https://doi.org/10.3390/cells14141055
Heikal YM, Albahi AM, Alyamani AA, Abdelmigid HM, Haroun SA, Soliman HM. Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications. Cells. 2025; 14(14):1055. https://doi.org/10.3390/cells14141055
Chicago/Turabian StyleHeikal, Yasmin M., Amal M. Albahi, Amal A. Alyamani, Hala M. Abdelmigid, Samia A. Haroun, and Hoda M. Soliman. 2025. "Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications" Cells 14, no. 14: 1055. https://doi.org/10.3390/cells14141055
APA StyleHeikal, Y. M., Albahi, A. M., Alyamani, A. A., Abdelmigid, H. M., Haroun, S. A., & Soliman, H. M. (2025). Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications. Cells, 14(14), 1055. https://doi.org/10.3390/cells14141055