Plant-Based ZnO Nanoparticles for Green Nanobiocontrol of a Highly Virulent Bacterial Leaf Blight Pathogen: Mechanistic Insights and Biocompatibility Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Plant Extract and Phytochemical Screening
2.2. DPPH Radical Scavenging Assay
2.3. Green Synthesis of CA-ZnO NPs Using Aqueous Leaf Extract of C. asiatica
2.4. Characterization of CA-ZnO NPs
2.4.1. Optical Characterization by UV–Visible Spectroscopy
2.4.2. Morphological and Elemental Analysis by FE-SEM and TEM
2.4.3. Structural Characterization by X-Ray Diffraction (XRD)
2.4.4. Surface Functional Group Analysis by FTIR Spectroscopy
2.4.5. Dynamic Light Scattering (DLS) and Zeta Potential Analysis
2.5. Antibacterial Activity, Mechanistic Investigations, and Cytocompatibility Assessment
2.5.1. Bacterial Culture and Preparation
2.5.2. Agar Disk Diffusion Assay
2.5.3. Time–Kill Kinetics Assay
2.5.4. Ultrastructure of Xoo Cells
2.5.5. Fluorescence Imaging for Live/Dead Assay and ROS Detection
2.5.6. Nucleic Acid Leakage Assay
2.5.7. Zinc Ion Release Analysis Using ICP-OES
2.5.8. Biocompatibility of CA-ZnO NPs with Human Dermal Fibroblasts
2.6. Statistical Analysis
3. Results
3.1. Phytochemical Screening of C. asiatica Leaf Extract
3.2. Antioxidant Capacity (DPPH Assay)
3.3. Green Synthesis of CA-ZnO NPs
3.4. Characterization of CA-ZnO NPs
3.4.1. Optical Properties: UV–Vis Spectroscopy
3.4.2. Structural Properties: XRD and SAED Analysis
3.4.3. Morphological and Elemental Analysis
3.4.4. Functional Group Analysis: FTIR Spectroscopy
3.4.5. Size Distribution and Surface Charge: DLS and Zeta Potential Analysis
3.5. Antibacterial Activity Against Xoo
3.5.1. Minimum Inhibitory Concentration (MIC)
3.5.2. Agar Disk Diffusion Assay
3.5.3. Time–Kill Kinetics Assay
3.6. Mechanism of Antibacterial Action
3.6.1. Membrane Integrity Assessment by Live/Dead Assay
3.6.2. Ultrastructural Observation by TEM
3.6.3. Detection of Intracellular ROS Generation
3.6.4. Nucleic Acid Leakage Assay
3.6.5. Dissolution Behavior of Zn2+ Ions from CA-ZnO NPs in Deionized Water and PSB Medium
3.7. Biocompatibility Assessment on Human Dermal Fibroblasts (HDFs)
4. Discussion
4.1. Green Synthesis and Characterization of CA-ZnO NPs
4.2. Reevaluating the Bioreduction Hypothesis and Mechanism of CA-ZnO NPs Formation
4.3. Antibacterial Activity of CA-ZnO NPs Compared with Other Metal-Based Nanoparticles
4.4. Mechanism of Antibacterial Action of ZnO NPs
4.5. Biocompatibility in Human Cells
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, L.; Kumar, V.; Jain, S.K.; Kaushal, P.; Ghosh, P.K. Isolation of bacteriophages infecting Xanthomonas oryzae pv. oryzae and genomic characterization of novel phage vB_XooS_NR08 for biocontrol of bacterial leaf blight of rice. Front. Microbiol. 2023, 14, 1084025. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, R.; Sengupta, D.; Das, S.N.; Pandey, M.K.; Bohra, A.; Sharma, N.K.; Sinha, P.; Sk, H.; Ghazi, I.A.; et al. Deployment of genetic and genomic tools toward gaining a better understanding of rice-Xanthomonas oryzae pv. oryzae interactions for development of durable bacterial blight resistant rice. Front. Plant Sci. 2020, 11, 1152. [Google Scholar] [CrossRef] [PubMed]
- Ritbamrung, O.; Inthima, P.; Ratanasut, K.; Sujipuli, K.; Rungrat, T.; Buddhachat, K. Evaluating Xanthomonas oryzae pv. oryzae (Xoo) infection dynamics in rice for distribution routes and environmental reservoirs by molecular approaches. Sci. Rep. 2025, 15, 1408. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [PubMed]
- An, S.-Q.; Potnis, N.; Dow, M.; Vorhölter, F.-J.; He, Y.-Q.; Becker, A.; Teper, D.; Li, Y.; Wang, N.; Bleris, L.; et al. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol. Rev. 2020, 44, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zheng, J.; Zhao, Y.; Yin, J.; Zheng, D.; Hu, H.; Liu, H.; Sun, M.; Ruan, L.; Liu, F. Population genomics and pathotypic evaluation of the bacterial leaf blight pathogen of rice reveals rapid evolutionary dynamics of a plant pathogen. Front. Cell. Infect. Microbiol. 2023, 13, 1183416. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S. Rice versus Xanthomonas oryzae pv. oryzae: A unique pathosystem. Curr. Opin. Plant Biol. 2013, 16, 188–195. [Google Scholar] [CrossRef]
- Jiang, N.; Yan, J.; Liang, Y.; Shi, Y.; He, Z.; Wu, Y.; Zeng, Q.; Liu, X.; Peng, J. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—An updated review. Rice 2020, 13, 3. [Google Scholar] [CrossRef]
- Niño-Liu, D.O.; Ronald, P.C.; Bogdanove, A.J. Xanthomonas oryzae pathovars: Model pathogens of a model crop. Mol. Plant Pathol. 2006, 7, 303–324. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Xu, Z.; Yan, J.; Wang, Y.; Wang, Y.; Cheng, G.; Zou, L.; Chen, G. TALE-induced immunity against the bacterial blight pathogen Xanthomonas oryzae pv. oryzae in rice. Phytopathol. Res. 2022, 4, 47. [Google Scholar] [CrossRef]
- Teja, B.S.; Jamwal, G.; Gupta, V.; Verma, M.; Sharma, A.; Sharma, A.; Pandit, V. Biological control of bacterial leaf blight (BLB) in rice–A sustainable approach. Heliyon 2025, 11, e41769. [Google Scholar] [CrossRef] [PubMed]
- Adedibu, P.A.; Son, O.; Tekutyeva, L.; Balabanova, L. Pathogenomic insights into Xanthomonas oryzae pv. oryzae’s resistome, virulome, and diversity for improved rice blight management. Life 2024, 14, 1690. [Google Scholar] [CrossRef]
- Sahu, S.K.; Zheng, P.; Yao, N. Niclosamide blocks rice leaf blight by inhibiting biofilm formation of Xanthomonas oryzae. Front. Plant Sci. 2018, 9, 408. [Google Scholar] [CrossRef] [PubMed]
- McManus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef]
- Sundin, G.W.; Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2018, 56, 161–180. [Google Scholar] [CrossRef]
- Guan, Y.; Shen, P.; Lin, M.; Ye, X. Exogenous alanine reverses the bacterial resistance to Zhongshengmycin with the promotion of the P cycle in Xanthomonas oryzae. Antibiotics 2022, 11, 245. [Google Scholar] [CrossRef]
- Kim, S.-I.; Song, J.T.; Jeong, J.-Y.; Seo, H.S. Niclosamide inhibits leaf blight caused by Xanthomonas oryzae in rice. Sci. Rep. 2016, 6, 21209. [Google Scholar] [CrossRef] [PubMed]
- Daniel, A.I.; Keyster, M.; Klein, A. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. Sci. Total Environ. 2023, 897, 165483. [Google Scholar] [CrossRef]
- Gupta, A.; Rayeen, F.; Mishra, R.; Tripathi, M.; Pathak, N. Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach. Plant Nano Biol. 2023, 4, 100033. [Google Scholar] [CrossRef]
- Francis, D.V.; Abdalla, A.K.; Mahakham, W.; Sarmah, A.K.; Ahmed, Z.F.R. Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement. Environ. Int. 2024, 190, 108859. [Google Scholar] [CrossRef]
- Dejene, B.K. Biosynthesized ZnO nanoparticle-functionalized fabrics for antibacterial and biocompatibility evaluations in medical applications: A critical review. Mater. Today Chem. 2024, 42, 102421. [Google Scholar] [CrossRef]
- Mendes, A.R.; Granadeiro, C.M.; Leite, A.; Pereira, E.; Teixeira, P.; Poças, F. Optimizing antimicrobial efficacy: Investigating the impact of zinc oxide nanoparticle shape and size. Nanomaterials 2024, 14, 638. [Google Scholar] [CrossRef] [PubMed]
- Naiel, B.; Fawzy, M.; Halmy, M.W.A.; Mahmoud, A.E.D. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: Characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci. Rep. 2022, 12, 20370. [Google Scholar] [CrossRef]
- Naseer, M.; Aslam, U.; Khalid, B.; Chen, B. Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 2020, 10, 9055. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef]
- Jiang, S.; Lin, K.; Cai, M. ZnO nanomaterials: Current advancements in antibacterial mechanisms and applications. Front. Chem. 2020, 8, 580. [Google Scholar] [CrossRef]
- Ashour, M.A.; Abd-Elhalim, B.T. Biosynthesis and biocompatibility evaluation of zinc oxide nanoparticles prepared using Priestia megaterium bacteria. Sci. Rep. 2024, 14, 4147. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.A.; Tang, Y.; Naz, I.; Alam, S.S.; Wang, W.; Ahmad, M.; Najeeb, S.; Rao, C.; Li, Y.; Xie, B.; et al. Management of Ralstonia solanacearum in tomato using ZnO nanoparticles synthesized through Matricaria chamomilla. Plant Dis. 2021, 105, 3224–3230. [Google Scholar] [CrossRef]
- Rehman, F.U.; Paker, N.P.; Khan, M.; Naeem, M.; Munis, M.F.H.; Rehman, S.U.; Chaudhary, H.J. Bio-fabrication of zinc oxide nanoparticles from Picea smithiana and their potential antimicrobial activities against Xanthomonas campestris pv. Vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. World J. Microbiol. Biotechnol. 2023, 39, 176. [Google Scholar] [CrossRef]
- Parveen, A.; Siddiqui, Z.A. Zinc oxide nanoparticles affect growth, photosynthetic pigments, proline content and bacterial and fungal diseases of tomato. Arch. Phytopathol. Plant Prot. 2021, 54, 1519–1538. [Google Scholar] [CrossRef]
- González-Merino, A.M.; Hernández-Juárez, A.; Betancourt-Galindo, R.; Ochoa-Fuentes, Y.M.; Valdez-Aguilar, L.A.; Limón-Corona, M.L. Antifungal activity of zinc oxide nanoparticles in Fusarium oxysporum-Solanum lycopersicum pathosystem under controlled conditions. J. Phytopathol. 2021, 169, 533–544. [Google Scholar] [CrossRef]
- AlHarethi, A.A.; Abdullah, Q.Y.; AlJobory, H.J.; Anam, A.M.; Arafa, R.A.; Farroh, K.Y. Zinc oxide and copper oxide nanoparticles as a potential solution for controlling Phytophthora infestans, the late blight disease of potatoes. Discov. Nano 2024, 19, 105. [Google Scholar] [CrossRef]
- Aftab, Z.-H.; Mirza, F.S.; Anjum, T.; Rizwana, H.; Akram, W.; Aftab, M.; Ali, M.D.; Li, G. Antifungal potential of biogenic zinc oxide nanoparticles for controlling Cercospora leaf spot in mung bean. Nanomaterials 2025, 15, 143. [Google Scholar] [CrossRef]
- Kongtragoul, P.; Ahuja, A.J. Fungicidal activity of some essential oils and zinc oxide nanoparticles on Colletotrichum capsici and C. gloeosporioides causing chili anthracnose. Acta Hortic. 2024, 1396, 125–132. [Google Scholar] [CrossRef]
- Mosquera-Sánchez, L.P.; Arciniegas-Grijalba, P.A.; Patiño-Portela, M.C.; Guerra–Sierra, B.E.; Muñoz-Florez, J.E.; Rodríguez-Páez, J.E. Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops. Biocatal. Agric. Biotechnol. 2020, 25, 101579. [Google Scholar] [CrossRef]
- Cheema, A.I.; Ahmed, T.; Abbas, A.; Noman, M.; Zubair, M.; Shahid, M. Antimicrobial activity of the biologically synthesized zinc oxide nanoparticles against important rice pathogens. Physiol. Mol. Biol. Plants 2022, 28, 1955–1967. [Google Scholar] [CrossRef] [PubMed]
- Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.M.I.; Hossain, A.; Mo, J.; Li, B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol. 2019, 47, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, Y.; Liu, M.; Ogunyemi, S.O.; Ahmed, T.; Fouad, H.; Abdelazez, A.; Yan, C.; Yang, Y.; Chen, J.; Li, B. Bioinspired green synthesis of chitosan and zinc oxide nanoparticles with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae. Molecules 2020, 25, 4795. [Google Scholar] [CrossRef]
- Ogunyemi, S.O.; Zhang, M.; Abdallah, Y.; Ahmed, T.; Qiu, W.; Ali, M.A.; Yan, C.; Yang, Y.; Chen, J.; Li, B. The bio-synthesis of three metal oxide nanoparticles (ZnO, MnO2, and MgO) and their antibacterial activity against the bacterial leaf blight pathogen. Front. Microbiol. 2020, 11, 588326. [Google Scholar] [CrossRef]
- Parveen, K.; Kumar, N.; Ledwani, L. Green synthesis of zinc oxide nanoparticles mediated from Cassia renigera bark and detect its effects on four varieties of rice. ChemistrySelect 2022, 7, e202200415. [Google Scholar] [CrossRef]
- Jaithon, T.; Atichakaro, T.; Phonphoem, W.; T-Thienprasert, J.; Sreewongchai, T.; T-Thienprasert, N.P. Potential usage of biosynthesized zinc oxide nanoparticles from mangosteen peel ethanol extract to inhibit Xanthomonas oryzae and promote rice growth. Heliyon 2024, 10, e24076. [Google Scholar] [CrossRef] [PubMed]
- Chumpol, A.; Monkham, T.; Saepaisan, S.; Sanitchon, J.; Falab, S.; Chankaew, S. Phenotypic broad spectrum of bacterial blight disease resistance from Thai indigenous upland rice germplasms implies novel genetic resource for breeding program. Agronomy 2022, 12, 1930. [Google Scholar] [CrossRef]
- Dey, S.; lochan Mohanty, D.; Divya, N.; Bakshi, V.; Mohanty, A.; Rath, D.; Das, S.; Mondal, A.; Roy, S.; Sabui, R. A critical review on zinc oxide nanoparticles: Synthesis, properties and biomedical applications. Int. Pharm. 2025, 3, 53–70. [Google Scholar] [CrossRef]
- Al-darwesh, M.Y.; Ibrahim, S.S.; Mohammed, M.A. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. Results Chem. 2024, 7, 101368. [Google Scholar] [CrossRef]
- Sugitha, S.K.J.; Venkatesan, R.; Latha, R.G.; Vetcher, A.A.; Al-Asbahi, B.A.; Kim, S.-C. A study on the antibacterial, antispasmodic, antipyretic, and anti-inflammatory activity of ZnO nanoparticles using leaf extract from Jasminum sambac (L. Aiton). Molecules 2024, 29, 1464. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.E.; Alcazar Magana, A.; Lak, P.; Wright, K.M.; Quinn, J.; Stevens, J.F.; Maier, C.S.; Soumyanath, A. Centella asiatica: Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem. Rev. 2018, 17, 161–194. [Google Scholar] [CrossRef]
- Kunjumon, R.; Johnson, A.J.; Baby, S. Centella asiatica: Secondary metabolites, biological activities and biomass sources. Phytomed. Plus 2022, 2, 100176. [Google Scholar] [CrossRef]
- Pavan Kumar, M.A.; Suresh, D.; Sneharani, A.H. Centella asiatica mediated facile green synthesis of nano zinc oxide and its photo-catalytic and biological properties. Inorg. Chem. Commun. 2021, 133, 108865. [Google Scholar] [CrossRef]
- Vipina Vinod, T.N.; Mathew, A.S.; Mathew, D.; Mathew, J.; Radhakrishnan, E.K. Facile microwave-assisted green synthesis and characterization of flower shaped zinc oxide nanoclusters using Centella asiatica (Linn.) leaf extract and evaluation of its antimicrobial activity and in vivo toxic effects on Artemia nauplii. Prep. Biochem. Biotechnol. 2025, 1–14. [Google Scholar] [CrossRef]
- AOAC. Guidelines for the Standardization of Botanical Ingredients; AOAC International: Rockville, MD, USA, 2023. [Google Scholar]
- Mahakham, W.; Theerakulpisut, P.; Maensiri, S.; Phumying, S.; Sarmah, A.K. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci. Total Environ. 2016, 573, 1089–1102. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, B.; Biswas, M.; Khurshid Alam, A.H.M. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 2015, 8, 621. [Google Scholar] [CrossRef] [PubMed]
- Chandra, H.; Patel, D.; Kumari, P.; Jangwan, J.S.; Yadav, S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C 2019, 102, 212–220. [Google Scholar] [CrossRef]
- Gupta, M.; Tomar, R.S.; Kaushik, S.; Mishra, R.K.; Sharma, D. Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front. Microbiol. 2018, 9, 2030. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Hui, S.; Yuan, M. Xanthomonas oryzae pv. oryzae inoculation and growth rate on rice by leaf clipping method. Bio-Protocol 2017, 7, e2568. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol; American Society for Microbiology: Washington, DC, USA, 2009. [Google Scholar]
- Ramalingam, B.; Parandhaman, T.; Das, S.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2016, 8, 4963–4976. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 24th ed.; APHA Press: Washington, DC, USA, 2023; ISBN 978-0-87553-299-8. [Google Scholar]
- Freshney, R.I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; ISBN 978-0-470-64936-7. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Król, A.; Railean-Plugaru, V.; Pomastowski, P.; Buszewski, B. Phytochemical investigation of Medicago sativa L. extract and its potential as a safe source for the synthesis of ZnO nanoparticles: The proposed mechanism of formation and antimicrobial activity. Phytochem. Lett. 2019, 31, 170–180. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Som, I.; Saha, R.; Mondal, S. A critical review on novel eco-friendly green approach to synthesize zinc oxide nanoparticles for photocatalytic degradation of water pollutants. Int. J. Environ. Anal. Chem. 2024, 104, 489–516. [Google Scholar] [CrossRef]
- Uysal, Y.; Görkem Doğaroğlu, Z.; Çaylali, Z.; Karakulak, D.S. Rosemary-mediated green synthesis of ZnO nanoparticles and their integration into hydrogel matrices: Evaluating effects on wheat growth and antibacterial properties. Glob. Chall. 2024, 8, 2400120. [Google Scholar] [CrossRef]
- Alahdal, F.A.M.; Qashqoosh, M.T.A.; Manea, Y.K.; Salem, M.A.S.; Khan, A.M.T.; Naqvi, S. Eco-friendly synthesis of zinc oxide nanoparticles as nanosensor, nanocatalyst and antioxidant agent using leaf extract of P. austroarabica. OpenNano 2022, 8, 100067. [Google Scholar] [CrossRef]
- Younas, M.U.; Iqbal, M.; Ahmad, N.; Iqbal, S.; Kausar, A.; Nazir, A.; Mohammed, O.A.; Anjum, F. Biogenic synthesis of zinc oxide nanoparticles using NARC G1 garlic (Allium sativum) extract, their photocatalytic activity for dye degradation and antioxidant activity of the extract. Results Chem. 2025, 13, 102035. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, S.; Kaur, G.; Basu, S.; Rawat, M. Biogenic ZnO nanoparticles: A study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight. Green Process. Synth. 2019, 8, 272–280. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Rajendran, N.K.; George, B.P.; Houreld, N.N.; Abrahamse, H. Synthesis of zinc oxide nanoparticles using Rubus fairholmianus root extract and their activity against pathogenic bacteria. Molecules 2021, 26, 3029. [Google Scholar] [CrossRef]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef]
- Rahman, F.; Majed Patwary, M.A.; Bakar Siddique, M.A.; Bashar, M.S.; Haque, M.A.; Akter, B.; Rashid, R.; Haque, M.A.; Royhan Uddin, A.K.M. Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: Characterization, antimicrobial, antioxidant and photocatalytic activity. R. Soc. Open Sci. 2022, 9, 220858. [Google Scholar] [CrossRef]
- Alharbi, F.N.; Abaker, Z.M.; Makawi, S.Z.A. Phytochemical substances—Mediated synthesis of zinc oxide nanoparticles (ZnO NPS). Inorganics 2023, 11, 328. [Google Scholar] [CrossRef]
- Hosseinzadeh, E.; Foroumadi, A.; Firoozpour, L. What is the role of phytochemical compounds as capping agents for the inhibition of aggregation in the green synthesis of metal oxide nanoparticles? A DFT molecular level response. Inorg. Chem. Commun. 2023, 147, 110243. [Google Scholar] [CrossRef]
- Sharma, A.R.; Sharma, G.; Nath, S.; Lee, S.-S. Screening the phytochemicals in Perilla leaves and phytosynthesis of bioactive silver nanoparticles for potential antioxidant and wound-healing application. Green Process. Synth. 2024, 13, 20240050. [Google Scholar] [CrossRef]
- Mahajan, M.; Kumar, S.; Gaur, J.; Kaushal, S.; Dalal, J.; Singh, G.; Misra, M.; Ahlawat, D.S. Green synthesis of ZnO nanoparticles using Justicia adhatoda for photocatalytic degradation of malachite green and reduction of 4-nitrophenol. RSC Adv. 2025, 15, 2958–2980. [Google Scholar] [CrossRef] [PubMed]
- Venkateasan, A.; Prabakaran, R.; Sujatha, V. Phytoextract-mediated synthesis of zinc oxide nanoparticles using aqueous leaves extract of Ipomoea pes-caprae (L).R.br revealing its biological properties and photocatalytic activity. Nanotechnol. Environ. Eng. 2017, 2, 8. [Google Scholar] [CrossRef]
- Oluwaniyi, O.O.; Oyewo, B.T. Green Synthesis of Zinc Oxide nanoparticles via Dennettia tripetala extracts: Optimization, characterization, and biological activity evaluation. Nano Sel. 2024, 6, e202400110. [Google Scholar] [CrossRef]
- Das, R.K.; Borthakur, B.B.; Bora, U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Mater. Lett. 2010, 64, 1445–1447. [Google Scholar] [CrossRef]
- Pham, X.N.; Nguyen, H.T.; Pham, N.T. Green synthesis and antibacterial activity of HAp@Ag nanocomposite using Centella asiatica (L.) Urban extract and eggshell. Int. J. Biomater. 2020, 2020, 8841221. [Google Scholar] [CrossRef] [PubMed]
- Adhavan, R.; Selvam, K.; Prakash, P.; Manimegalai, P.; Kirubakaran, D.; Shivakumar, M.S. Bioefficacy of zinc oxide nanoparticle synthesis and their biological, environmental applications from Eranthemum roseum. Toxicol. Rep. 2024, 13, 101758. [Google Scholar] [CrossRef]
- Gnanasekaran, R.; Yuvaraj, D.; Reddy, G.K.; Shangar, S.N.; Vijayakumar, V.; Iyyappan, J. Zinc oxide nanoparticles from leaf extract of Eclipta prostrata: Biosynthesis and characterization towards potential agent against film forming bacteria in metal working fluids. Environ. Chem. Ecotoxicol. 2024, 6, 206–215. [Google Scholar] [CrossRef]
- Fernandes, C.A.; Jesudoss, M.N.; Nizam, A.; Krishna, S.B.N.; Lakshmaiah, V.V. Biogenic synthesis of zinc oxide nanoparticles mediated by the extract of Terminalia catappa fruit pericarp and its multifaceted applications. ACS Omega 2023, 8, 39315–39328. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain. Chem. Pharm. 2020, 15, 100223. [Google Scholar] [CrossRef]
- Mongy, Y.; Shalaby, T. Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells. Sci. Rep. 2024, 14, 13470. [Google Scholar] [CrossRef] [PubMed]
- Jan, H.; Shah, M.; Usman, H.; Khan, M.A.; Zia, M.; Hano, C.; Abbasi, B.H. Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan columbine (Aquilegia pubiflora). Front. Mater. 2020, 7, 249. [Google Scholar] [CrossRef]
- Selvanathan, V.; Aminuzzaman, M.; Tan, L.X.; Win, Y.F.; Guan Cheah, E.S.; Heng, M.H.; Tey, L.-H.; Arullappan, S.; Algethami, N.; Alharthi, S.S.; et al. Synthesis, characterization, and preliminary in vitro antibacterial evaluation of ZnO nanoparticles derived from soursop (Annona muricata L.) leaf extract as a green reducing agent. J. Mater. Res. Technol. 2022, 20, 2931–2941. [Google Scholar] [CrossRef]
- Bin Ali, M.; Iftikhar, T.; Majeed, H. Green synthesis of zinc oxide nanoparticles for the industrial biofortification of (Pleurotus pulmonarius) mushrooms. Heliyon 2024, 10, e37927. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 86th ed.; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0-8493-0486-5. [Google Scholar]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Shobha, B.; Lakshmeesha, T.R.; Ansari, M.A.; Almatroudi, A.; Alzohairy, M.A.; Basavaraju, S.; Alurappa, R.; Niranjana, S.R.; Chowdappa, S. Mycosynthesis of ZnO nanoparticles using Trichoderma spp. isolated from rhizosphere soils and its synergistic antibacterial effect against Xanthomonas oryzae pv. oryzae. J. Fungi 2020, 6, 181. [Google Scholar] [CrossRef]
- Trzcińska-Wencel, J.; Wypij, M.; Terzyk, A.P.; Rai, M.; Golińska, P. Biofabrication of novel silver and zinc oxide nanoparticles from Fusarium solani IOR 825 and their potential application in agriculture as biocontrol agents of phytopathogens, and seed germination and seedling growth promoters. Front. Chem. 2023, 11, 1235437. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; ur Rahman, A.; Tajuddin, N.; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 2018, 13, 141. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, D.; Cui, J. A graphene oxide/silver nanoparticle composite as a novel agricultural antibacterial agent against Xanthomonas oryzae pv. oryzae for crop disease management. New J. Chem. 2017, 41, 13692–13699. [Google Scholar] [CrossRef]
- Majumdar, T.D.; Singh, M.; Thapa, M.; Dutta, M.; Mukherjee, A.; Ghosh, C.K. Size-dependent antibacterial activity of copper nanoparticles against Xanthomonas oryzae pv. oryzae—A synthetic and mechanistic approach. Colloids Interface Sci. Commun. 2019, 32, 100190. [Google Scholar] [CrossRef]
- Namburi, K.R.; Kora, A.J.; Chetukuri, A.; Kota, V.S.M.K. Biogenic silver nanoparticles as an antibacterial agent against bacterial leaf blight causing rice phytopathogen Xanthomonas oryzae pv. oryzae. Bioprocess Biosyst. Eng. 2021, 44, 1975–1988. [Google Scholar] [CrossRef]
- Tiwari, V.; Mishra, N.; Gadani, K.; Solanki, P.S.; Shah, N.A.; Tiwari, M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol. 2018, 9, 1218. [Google Scholar] [CrossRef]
- Babayevska, N.; Przysiecka, Ł.; Iatsunskyi, I.; Nowaczyk, G.; Jarek, M.; Janiszewska, E.; Jurga, S. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci. Rep. 2022, 12, 8148. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.B.A.; Anbazhagan, V. Synthesis of copper sulfide nanoparticles and evaluation of in vitro antibacterial activity and in vivo therapeutic effect in bacteria-infected zebrafish. RSC Adv. 2017, 7, 36644–36652. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, J.; Wu, S.; Zhou, R.; Zhang, K.; Zhang, Z.; Liu, J.; Qin, S.; Shi, J. Nanomaterial-based zinc ion interference therapy to combat bacterial infections. Front. Immunol. 2022, 13, 899992. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, L.; Lin, D. Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environ. Sci. Technol. 2011, 45, 1977–1983. [Google Scholar] [CrossRef]
- Rashid, M.H.-O.; Akter, M.M.; Uddin, J.; Islam, S.; Rahman, M.; Jahan, K.; Sarker, M.M.R.; Sadik, G. Antioxidant, cytotoxic, antibacterial and thrombolytic activities of Centella asiatica L.: Possible role of phenolics and flavonoids. Clin. Phytosci. 2023, 9, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Liu, Z.; Zhi, Y.; Mei, C.; Wang, H. Flavonoids as promising natural compounds for combating bacterial infections. Int. J. Mol. Sci. 2025, 26, 2455. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, M.; Niranjan, R.; Thangam, R.; Madhan, B.; Pandiyarasan, V.; Ramachandran, C.; Oh, D.-H.; Venkatasubbu, G.D. Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 2019, 479, 1169–1177. [Google Scholar] [CrossRef]
- Aydin Acar, C.; Gencer, M.A.; Pehlivanoglu, S.; Yesilot, S.; Donmez, S. Green and eco-friendly biosynthesis of zinc oxide nanoparticles using Calendula officinalis flower extract: Wound healing potential and antioxidant activity. Int. Wound J. 2024, 21, e14413. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.I.; Sonbol, F.I.; El-Banna, T.E.; Negm, W.A.; Elekhnawy, E. Antibacterial and wound healing potential of biosynthesized zinc oxide nanoparticles against carbapenem-resistant Acinetobacter baumannii: An in vitro and in vivo study. Microb. Cell Fact. 2024, 23, 281. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Hu, A.; Lu, J.; Lin, Y.; Li, X.; Yamaguchi, T.; Tabuchi, M.; Kawakami, Z.; Ikarashi, Y.; Kobayashi, H. Protective effects of Centella asiatica against senescence and apoptosis in epidermal cells. Biology 2025, 14, 202. [Google Scholar] [CrossRef]
Phytoconstituents | Name of Detection Test/Reagent | Inference |
---|---|---|
Biomolecules | ||
Amino acids | Ninhydrin reagent | + |
Carbohydrates | Anthrone reagent | + |
Proteins | Biuret test | − |
Reducing sugars | Fehling’s test | − |
Phytochemicals | ||
Alkaloids | Mayer’s test | + |
Anthraquinone | Ammonium solution | − |
Cardiac glycoside | Keller–Kiliani test | − |
Flavonoids | Alkaline reagent/Shinoda test | + |
Glycoside | Ammonium solution | − |
Phenol | Ferric chloride | + |
Quinone | Sulphuric acid test | + |
Saponin | Foam/Froth test | + |
Steroids | Salkowski test | + |
Tannins | Ferric chloride | + |
Terpenoids | Salkowski’s test | + |
Peak Number | Peak Position 2θ (°) | FWHM β (°) | Particle Size (D) [nm] | Average Crystallite Size (nm) |
---|---|---|---|---|
1 | 31.74 | 0.3687 | 22.40 | 19.80 |
2 | 34.39 | 0.2939 | 28.30 | |
3 | 36.23 | 0.3943 | 21.20 | |
4 | 47.51 | 0.5347 | 16.23 | |
5 | 56.58 | 0.4615 | 19.55 | |
6 | 62.83 | 0.5079 | 18.33 | |
7 | 66.37 | 0.5526 | 17.18 | |
8 | 67.93 | 0.4852 | 19.74 | |
9 | 69.04 | 0.5409 | 17.83 | |
10 | 72.54 | 0.4938 | 19.95 | |
11 | 76.93 | 0.5923 | 17.13 |
Treatment | Zone of Inhibition (ZOI) (mm) |
---|---|
Control | 0 |
4 µg/disk | 0 |
8 µg/disk | 0 |
16 µg/disk | 9.4 ± 0.4 |
32 µg/disk | 11.5 ± 0.9 |
Step | Event | Representative Reaction |
---|---|---|
1 | Complexation | Zn2+ + phytochemicals → Zn2+ − ligand complex |
2 | Hydroxylation | Zn2+ − ligand + OH− → Zn(OH)2 + ligands |
3 | Dehydration/Nucleation | Zn(OH)2 (heat, aqueous) → ZnO nuclei + H2O |
4 | Growth | Aggregation and directional growth of ZnO nanocrystals |
5 | Capping and Stabilization | ZnO + phytochemicals → surface-capped, stabilized NPs |
No. | Biological Source | Size (nm) | Shape | MIC (µg/mL) | Reference |
---|---|---|---|---|---|
1 | Centella asiatica leaves | 22.5 ± 6.5 | Hexagonal/quasi-spherical | 8 | This study |
2 | Chamomile flower | 41.0 ± 2.0 | Cubic | 16 | [37] |
3 | Olive leaves | 51.2 ± 3.2 | Cubic | 16 | [37] |
4 | Red tomato fruit | 51.6 ± 3.6 | Cubic | 16 | [37] |
5 | Rhizophytic bacteria Paenibacillus polymyxa strain Sx3 | 56.1–110 | Cubic | 16 | [39] |
6 | Mangosteen peel | 321 ± 84 | Spherical | 4000 | [41] |
7 | Trichoderma spp. | 12–35 | Hexagonal | 25–50 | [95] |
8 | Fusarium solani | 117.8–175.1 | Irregular/nanorod-like | 256–512 | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanthapong, P.; Maensiri, D.; Rangsrisak, P.; Jaiyan, T.; Rahaeng, K.; Oraintara, A.; Ratchaphonsaenwong, K.; Sanitchon, J.; Theerakulpisut, P.; Mahakham, W. Plant-Based ZnO Nanoparticles for Green Nanobiocontrol of a Highly Virulent Bacterial Leaf Blight Pathogen: Mechanistic Insights and Biocompatibility Evaluation. Nanomaterials 2025, 15, 1011. https://doi.org/10.3390/nano15131011
Chanthapong P, Maensiri D, Rangsrisak P, Jaiyan T, Rahaeng K, Oraintara A, Ratchaphonsaenwong K, Sanitchon J, Theerakulpisut P, Mahakham W. Plant-Based ZnO Nanoparticles for Green Nanobiocontrol of a Highly Virulent Bacterial Leaf Blight Pathogen: Mechanistic Insights and Biocompatibility Evaluation. Nanomaterials. 2025; 15(13):1011. https://doi.org/10.3390/nano15131011
Chicago/Turabian StyleChanthapong, Preeda, Duangkamol Maensiri, Paweena Rangsrisak, Thanee Jaiyan, Kanchit Rahaeng, Atcha Oraintara, Kunthaya Ratchaphonsaenwong, Jirawat Sanitchon, Piyada Theerakulpisut, and Wuttipong Mahakham. 2025. "Plant-Based ZnO Nanoparticles for Green Nanobiocontrol of a Highly Virulent Bacterial Leaf Blight Pathogen: Mechanistic Insights and Biocompatibility Evaluation" Nanomaterials 15, no. 13: 1011. https://doi.org/10.3390/nano15131011
APA StyleChanthapong, P., Maensiri, D., Rangsrisak, P., Jaiyan, T., Rahaeng, K., Oraintara, A., Ratchaphonsaenwong, K., Sanitchon, J., Theerakulpisut, P., & Mahakham, W. (2025). Plant-Based ZnO Nanoparticles for Green Nanobiocontrol of a Highly Virulent Bacterial Leaf Blight Pathogen: Mechanistic Insights and Biocompatibility Evaluation. Nanomaterials, 15(13), 1011. https://doi.org/10.3390/nano15131011