Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (951)

Search Parameters:
Keywords = ZnAl2O4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5659 KB  
Article
Development of High-Performance Catalytic Ceramic Membrane Microchannel Reactor for Carbon Dioxide Conversion to Methanol
by Aubaid Ullah, Nur Awanis Hashim, Mohamad Fairus Rabuni, Mohd Usman Mohd Junaidi, Ammar Ahmed, Mustapha Grema Mohammed and Muhammed Sahal Siddique
Membranes 2026, 16(1), 45; https://doi.org/10.3390/membranes16010045 (registering DOI) - 17 Jan 2026
Abstract
Conversion of carbon dioxide (CO2) to methanol in a traditional reactor (TR) with catalytic packed bed faces the challenge of lower reactant conversion due to thermodynamic limitations. On the contrary, membrane reactors selectively remove reaction products, enhancing the conversion, but it [...] Read more.
Conversion of carbon dioxide (CO2) to methanol in a traditional reactor (TR) with catalytic packed bed faces the challenge of lower reactant conversion due to thermodynamic limitations. On the contrary, membrane reactors selectively remove reaction products, enhancing the conversion, but it is still limited, and existing designs face challenges of structural integrity and scale-up complications. Therefore, for the first time, a ceramic membrane microchannel reactor (CMMR) system was developed with 500 µm deep microchannels, incorporated with catalytic membrane for CO2 conversion to methanol. Computational fluid dynamic (CFD) simulations confirmed the uniform flow distribution among the microchannels. A catalytic LTA zeolite membrane was synthesized with thin layer (~45 µm) of Cu-ZnO-Al2O3 catalyst coating and tested at a temperature of 220 °C and 3.0 MPa pressure. The results showed a significantly higher CO2 conversion of 82%, which is approximately 10 times higher than TR and 3 times higher than equilibrium conversion while 1.5 times higher than conventional tubular membrane reactor. Additionally, methanol selectivity and yield were achieved as 51.6% and 42.3%, respectively. The research outputs showed potential of replacing the current industrial process of methanol synthesis, addressing the Sustainable Development Goals of SDG-7, 9, and 13 for clean energy, industry innovation, and climate action, respectively. Full article
Show Figures

Figure 1

19 pages, 3518 KB  
Article
Al/Graphene Co-Doped ZnO Electrodes: Impact on CTS Thin-Film Solar Cell Efficiency
by Done Ozbek, Meryem Cam, Guldone Toplu, Sevde Erkan, Serkan Erkan, Ali Altuntepe, Kasim Ocakoglu, Sakir Aydogan, Yavuz Atasoy, Mehmet Ali Olgar and Recep Zan
Crystals 2026, 16(1), 64; https://doi.org/10.3390/cryst16010064 (registering DOI) - 17 Jan 2026
Abstract
This study investigates pristine and doped ZnO thin films fabricated via the sol-gel technique, aiming to address efficiency challenges when used as transparent conductive oxide (TCO) layers in thin-film solar cells. ZnO was first doped with aluminum (Al), and subsequently with both Al [...] Read more.
This study investigates pristine and doped ZnO thin films fabricated via the sol-gel technique, aiming to address efficiency challenges when used as transparent conductive oxide (TCO) layers in thin-film solar cells. ZnO was first doped with aluminum (Al), and subsequently with both Al and reduced graphene oxide (rGO), to evaluate the individual and combined effects of these dopants. The optimal pH value for the ZnO structure was initially determined, with the film produced at pH 9 exhibiting the most favorable characteristics. Al doping was then optimized at a ratio of Al/(Al + Zn) = 0.2, followed by optimization of the graphene content at 1.5 wt%. In this context, the structural, optical, and electrical properties of pristine ZnO, Al-doped ZnO (AZO), and Al and graphene co-doped ZnO (Gr:AZO) thin films were systematically investigated. These films were integrated as TCO layers into Cu2SnS3 (CTS)-based thin-film solar cells fabricated via physical vapor deposition (PVD). The cell architecture employed an 80 nm pristine ZnO window layer, while the doped ZnO films (300 nm) served as TCO layers. To assess the influence of the chemically deposited top layers, device performance was compared against a reference cell in which all layers were fabricated entirely using PVD. As expected, the reference cell exhibited superior performance compared to the cell whose AZO layer deposited chemically; however, the incorporation of both Al and graphene significantly enhanced the efficiency of the chemically modified cell, outperforming devices using only pristine or singly doped ZnO films. These results demonstrate the promising potential of co-doped solution-processed ZnO films as an alternative TCO layer in improving the performance of thin-film solar cell technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 7850 KB  
Article
Comparative Analysis of Annealing–Dissolution Techniques for Hollow Submicron Metal Oxide Fiber Synthesis
by Borislava Georgieva, Blagoy Spasov Blagoev, Albena Paskaleva, Kirilka Starbova, Nikolay Starbov, Ivalina Avramova, Peter Tzvetkov, Krastyo Buchkov and Vladimir Mehandzhiev
Materials 2026, 19(2), 327; https://doi.org/10.3390/ma19020327 - 14 Jan 2026
Viewed by 156
Abstract
Double-shell ZnO/Al2O3 submicron hollow fibers were successfully fabricated through a combined electrospinning and atomic layer deposition (ALD) approach. Polyvinyl alcohol (PVA) fibers were first produced by electrospinning and subsequently coated with a conformal Al2O3 barrier layer via [...] Read more.
Double-shell ZnO/Al2O3 submicron hollow fibers were successfully fabricated through a combined electrospinning and atomic layer deposition (ALD) approach. Polyvinyl alcohol (PVA) fibers were first produced by electrospinning and subsequently coated with a conformal Al2O3 barrier layer via low-temperature ALD employing trimethylaluminum (TMA) and deionized (DI) H2O to preserve the integrity of the temperature-sensitive polymer core. The inner polymer was then removed using two different techniques—thermal annealing and water dissolution—to compare their effects on the fiber morphology. Finally, a functional ZnO layer was deposited by thermal ALD with diethylzinc (DEZ) and DI H2O. It was found that the polymer removal method critically determined the final structural and morphological characteristics of the fibers. Thermal annealing resulted in smooth, shrunken fibers, while water dissolution led to diameter expansion and the formation of a highly rough, bubble-like surface structure due to swelling-induced micro-cracking. The selection of the polymer removal method offers a precise and controllable route for tailoring the fiber morphology. The resulting high-aspect-ratio (HAR) structures, particularly the rough and expanded fibers, exhibit enhanced specific surface area, making them highly promising for applications in sensing, catalysis, and filtration. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

1 pages, 130 KB  
Correction
Correction: Dhiman et al. Rare Earth Doped ZnO Nanoparticles as Spintronics and Photo Catalyst for Degradation of Pollutants. Molecules 2023, 28, 2838
by Pooja Dhiman, Garima Rana, Amit Kumar, Elmuez A. Dawi and Gaurav Sharma
Molecules 2026, 31(2), 216; https://doi.org/10.3390/molecules31020216 - 8 Jan 2026
Viewed by 125
Abstract
In the original publication [...] Full article
23 pages, 11387 KB  
Article
Immobilization of Lead and Zinc in Tailings Sand Using a Stabilizer Synthesized from Granite Sawdust for Mine Remediation
by Yanping Shi, Mengjia Liang, Man Xue, Zhi Li, Xianyu Yang, Chuyuan Ma, Longchen Duan and Jihua Cai
Materials 2026, 19(1), 199; https://doi.org/10.3390/ma19010199 - 5 Jan 2026
Viewed by 182
Abstract
Improper disposal of granite sawdust from stone processing and heavy metal-containing tailings sand can pose severe threats to the environment and human health. Based on their physicochemical properties, granite sawdust was used to synthesize a zeolite-based stabilizer (GFAS) for immobilizing lead (Pb) and [...] Read more.
Improper disposal of granite sawdust from stone processing and heavy metal-containing tailings sand can pose severe threats to the environment and human health. Based on their physicochemical properties, granite sawdust was used to synthesize a zeolite-based stabilizer (GFAS) for immobilizing lead (Pb) and zinc (Zn) in tailings waste. The stabilizer was prepared through an alkali fusion–hydrothermal method, followed by phosphoric acid modification. Characterization by XRD, SEM-EDS, and BET revealed that GFAS possesses a Na-P1 zeolite structure (Na6Al6Si10O32) with a micro-mesoporous texture and a specific surface area of 35.00 m2/g, representing a 10-fold increase over raw sawdust. The cation exchange capacity (CEC) of GFAS reached 57.08 cmol+/kg, a 116-fold enhancement. The stabilization mechanism involved synergistic physical adsorption, chemical precipitation (e.g., Pb3(PO4)2, Zn(OH)2), and ion exchange. This study presents a sustainable “waste-treats-waste” strategy for effectively reducing the mobility of heavy metals in tailings waste, thereby contributing to the remediation of seepage from tailings pond foundations. Full article
Show Figures

Figure 1

13 pages, 2033 KB  
Article
Production of Methanol by CO2 Hydrogenation Using a Membrane Reactor
by Fausto Gallucci, Serena Poto, Margot Anabell Llosa Tanco and David Alfredo Pacheco Tanaka
Catalysts 2026, 16(1), 53; https://doi.org/10.3390/catal16010053 - 2 Jan 2026
Viewed by 553
Abstract
The use of e-fuels, such as methanol (MeOH), is considered an alternative for the reduction of carbon emissions. MeOH can be produced from captured CO2 and green H2, with the exothermic (equilibrium-limited) reaction favoured at low temperatures and high pressures. [...] Read more.
The use of e-fuels, such as methanol (MeOH), is considered an alternative for the reduction of carbon emissions. MeOH can be produced from captured CO2 and green H2, with the exothermic (equilibrium-limited) reaction favoured at low temperatures and high pressures. However, CO2 is a very stable molecule and requires high temperature (>200 °C) to overcome the slow activation kinetics. In this study, MeOH was synthesized from CO2 and H2 in a packed-bed membrane reactor (PBMR) using a commercial Cu/ZnO/Al2O3 catalyst and a tubular-supported, water-selective composite alumina–carbon molecular sieve membrane (Al-CMSM) immersed in the catalytic bed. A mixture of H2/CO2 (3/1) was fed into both sides of the membrane to increase the driving force of the gases produced by the reaction. The effect of the temperature of reaction (200, 220, and 240 °C), pressure difference (0 and 3 bar), and the sweep gas/reacting gas ratio (SW = 1, 3, 5) in the CO2 conversion and products yield was studied. For comparison, the reactions were also carried out in a packed-bed reactor (PBR) configuration where the tubular membrane was replaced by a metallic tube of the same size. CO2 conversion and MeOH yield are much higher in PBMR than in PBR configuration, showing the benefit of using the water-selective membrane. In PBMR, MeOH yield increases with SW and slightly decreases with the temperature, overcoming the limitation imposed by the thermodynamics. Full article
(This article belongs to the Special Issue Green Heterogeneous Catalysis for CO2 Reduction)
Show Figures

Graphical abstract

16 pages, 5891 KB  
Article
Solar-Driven Photodegradation of Methylene Blue Dye Using Al-Doped ZnO Nanoparticles
by Md. Shakil Rana, Rupna Akther Putul, Nanziba Salsabil, Maliha Tasnim Kabir, Md. Shakhawoat Hossain, Shah Md. Masum and Md. Ashraful Islam Molla
Appl. Nano 2026, 7(1), 3; https://doi.org/10.3390/applnano7010003 - 2 Jan 2026
Viewed by 556
Abstract
ZnO semiconductor-based photocatalysts are mainly studied for the elimination of toxic textile dyes. Metal-doped ZnO displays better performance for this purpose. Herein, Al-doped ZnO (Al–ZnO) was prepared using the mechanochemical calcination method with varying aluminum concentrations for the degradation of the persistent methylene [...] Read more.
ZnO semiconductor-based photocatalysts are mainly studied for the elimination of toxic textile dyes. Metal-doped ZnO displays better performance for this purpose. Herein, Al-doped ZnO (Al–ZnO) was prepared using the mechanochemical calcination method with varying aluminum concentrations for the degradation of the persistent methylene blue (MB) dye. Various characterization techniques, including XRD, FTIR, FESEM, TEM, UV-DRS, and XPS, revealed the improved properties of 3% Al–ZnO in degrading the MB dye. It exhibits 96.56% degradation of 25 mg/L MB dye under 60 min of natural sunlight irradiation with a catalyst dose of 0.5 g/L at a natural pH of 6.4. A smaller particle size, a lower band gap energy of 3.264 eV, and the presence of oxygen vacancies and defect states all facilitate photocatalytic degradation. Radical scavenger experiments using ascorbic acid (for •O2), 2-propanol (for •OH), and diammonium oxalate (for h+) confirmed the crucial role of superoxide (•O2) and hydroxyl (•OH) radicals in the degradation mechanism. The achievement of 82.80% MB degradation efficiency at the 4th cycle validates the notable stability and excellent reusability of Al–ZnO. Full article
Show Figures

Figure 1

15 pages, 4750 KB  
Article
Tuning Crystallization Pathways via Phase Competition: Heat-Treatment-Induced Microstructural Evolution
by Yan Pan, Yulong Wu, Jiahui Zhang, Yanping Ma, Minghan Li and Hong Jiang
Crystals 2026, 16(1), 29; https://doi.org/10.3390/cryst16010029 - 30 Dec 2025
Viewed by 184
Abstract
Spinel-based glass-ceramics face challenges such as a narrow crystallization window for the target phase and the difficulty in suppressing the competitive LixAlxSi1−xO2 crystals. This study proposes a method to regulate the phase formation in ZnO-MgO-Al2 [...] Read more.
Spinel-based glass-ceramics face challenges such as a narrow crystallization window for the target phase and the difficulty in suppressing the competitive LixAlxSi1−xO2 crystals. This study proposes a method to regulate the phase formation in ZnO-MgO-Al2O3-SiO2 glass by precisely controlling the heat treatment temperature. The microstructural evolution was analyzed by DSC, XRD, Raman spectroscopy, SEM, TEM, and XPS. The results indicate that the heat treatment at a nucleation temperature of 780 °C for 2 h and a crystallization temperature of 880 °C for 2 h effectively inhibits the precipitation of the LixAlxSi1−xO2 secondary phase, yielding a glass-ceramic with nano-sized MgAl2O4, ZnAl2O4 spinel as the primary crystalline phase. The obtained glass-ceramic exhibits excellent mechanical properties, including a Vickers hardness of 922.6 HV, a flexural strength of 384 MPa, and an elastic modulus of 113 GPa, while maintaining a high visible light transmittance of 84.3%. This work provides a clear processing window and theoretical basis for fabricating high-performance, highly transparent spinel-based glass-ceramics through tailored heat treatment. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

18 pages, 2694 KB  
Article
Physicochemical Characteristics of Copper Smelting Slags from Kazakhstan and Their Potential for Secondary Resource Recovery
by Damir Kurmangaliyev and Saule Abdulina
Processes 2026, 14(1), 113; https://doi.org/10.3390/pr14010113 - 29 Dec 2025
Viewed by 236
Abstract
The depletion of the mineral resource base is inevitable. Therefore, it is necessary to adapt and expand the resource base by incorporating non-traditional copper sources in production. Slag samples from the Balkhash Copper Smelting Plant (Kazakhstan) were analyzed for phase composition, microstructure, and [...] Read more.
The depletion of the mineral resource base is inevitable. Therefore, it is necessary to adapt and expand the resource base by incorporating non-traditional copper sources in production. Slag samples from the Balkhash Copper Smelting Plant (Kazakhstan) were analyzed for phase composition, microstructure, and metal distribution using X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical and granulometric methods. The slags are characterized by a fayalite structure with a high content of FeO (35–45%) and SiO2 (25–35%). Sample composition was determined as 0.7–0.8% Cu, 0.39–0.43% Pb, 2.53% Zn, 0.075 g/t Au, and 2.6 g/t Ag. Mineralogical and granulometric analysis revealed a uniform distribution of iron and slag-forming components (SiO2, Al2O3, etc.) across the fractions. In contrast, non-ferrous and precious metals concentrated in the fine classes. Laboratory tests confirmed that the fine dissemination of valuable components led to low efficiency in magnetic and gravity separation, necessitating specific preliminary slag preparation to improve recovery. Flotation tests showed improved recovery, yielding copper concentrates with 4.57% copper content when the material was crushed to 80–90% of the −0.074 mm class. The research creates a basis for the development of environmentally safe and resource-saving technologies and provides initial data for future recovery technologies. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 2050 KB  
Article
Egg White Assisted Synthesis of Fe-Mn Spinel Oxides: Effects of Egg White Ratio, Oxygen Partial Pressure, and Life Cycle Impacts
by Ann-Katrin Emmerich, Vanessa Zeller, Xingmin Liu, Anke Weidenkaff and Marc Widenmeyer
Inorganics 2026, 14(1), 13; https://doi.org/10.3390/inorganics14010013 - 27 Dec 2025
Viewed by 292
Abstract
Egg white was chosen as a renewable, non-toxic agent for the synthesis of FeMn2O4 spinel pre-catalysts to avoid the use of critical transition metals such as Ni and Co. However, synthesizing phase-pure FeMn2O4 remains challenging due to [...] Read more.
Egg white was chosen as a renewable, non-toxic agent for the synthesis of FeMn2O4 spinel pre-catalysts to avoid the use of critical transition metals such as Ni and Co. However, synthesizing phase-pure FeMn2O4 remains challenging due to (i) the requirement of low oxygen partial pressures to counter rapid reoxidation of Mn3O4 in the presence of iron oxides, which can be achieved by the preferred oxidation of the egg white during the calcination, and (ii) the probable formation of Fe3O4 and Mn3O4 during intermediate steps in the reaction, leading to multiphase spinel formation caused by a miscibility gap between the spinels. In contrast, spinels with Ni, Co, Zn, or Al are phase-pure. Egg white has significant environmental impacts in the synthesis of all spinel manganites, as assessed from a life-cycle perspective, which can exceed those of petroleum-based agents such as ethylenediaminetetraacetic acid (EDTA) in most impact categories. Therefore, our results show that the investigated synthesis route is not more sustainable, and we demonstrate that implementing quantitative evaluation of environmental impacts already at an early stage is essential to determine whether a synthesis is truly sustainable. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

17 pages, 8451 KB  
Article
Atomic Layer Deposition of Oxide-Based Nanocoatings for Regulation of AZ31 Alloy Biocorrosion in Ringer’s Solution
by Denis Nazarov, Lada Kozlova, Vladislava Vartiajnen, Sergey Kirichenko, Maria Rytova, Anton P. Godun, Maxim Maximov, Arina Ilina, Stephanie E. Combs, Mark Pitkin and Maxim Shevtsov
Corros. Mater. Degrad. 2026, 7(1), 3; https://doi.org/10.3390/cmd7010003 - 26 Dec 2025
Viewed by 245
Abstract
Research into methods for regulating the biocorrosion rate of biodegradable magnesium implants is one of the most urgent tasks in the field of biomedical materials science. Atomic layer deposition (ALD) is a highly effective method for the preparation of nanocoatings, which can be [...] Read more.
Research into methods for regulating the biocorrosion rate of biodegradable magnesium implants is one of the most urgent tasks in the field of biomedical materials science. Atomic layer deposition (ALD) is a highly effective method for the preparation of nanocoatings, which can be used to regulate the biodegradation rate. The present paper presents the findings of a research study in which the most commonly used simple oxide ALD coatings (Al2O3, TiO2, and ZnO) were examined, in addition to mixed coatings obtained by alternating ALD cycles of the application of ZnO-TiO2 (ZTO) and Al2O3-TiO2 (ATO). The coating thicknesses exhibited a variation within the most typical range for ALD coatings, measuring between 20 and 80 nanometres. The biocorrosion testing was conducted in Ringer’s physiological solution through the measurement of potentiodynamic polarisation curves and impedance spectroscopy. The findings demonstrated that, for Al2O3 coatings, the protective properties exhibited an increase with increasing thickness, while for TiO2, the trend was found to be dependent on the type of precursor utilised. The protective properties of titanium tetraisopropoxide (TTIP) have been observed to increase with increasing thickness. Conversely, the protective properties of titanium tetrachloride (TiCl4) have been observed to decrease. The application of mixed ZTO oxides with a thickness of 40 nm has been demonstrated to reduce the corrosion current by 1.7 and 3.4 times, depending on the use of TiCl4 or TTIP. Furthermore, the effectiveness of ATO coatings of similar thicknesses has been shown to be higher, with a reduction in corrosion currents of 54 and 24 times for samples obtained using TiCl4 and TTIP, respectively. A thorough analysis of the collected data unequivocally demonstrates the superior efficacy of mixed oxides in comparison to their pure oxide counterparts. Full article
(This article belongs to the Special Issue Advances in Material Surface Corrosion and Protection)
Show Figures

Figure 1

36 pages, 42073 KB  
Article
FEM Numerical Calculations and Experimental Verification of Extrusion Welding Process of 7075 Aluminium Alloy Tubes
by Dariusz Leśniak, Konrad Błażej Laber and Jacek Madura
Materials 2026, 19(1), 75; https://doi.org/10.3390/ma19010075 - 24 Dec 2025
Viewed by 478
Abstract
Extrusion of AlZnMgCu alloys is associated with a very high plastic resistance of the materials at forming temperatures and significant friction resistance, particularly at the contact surface between the ingots and the container. In technological practice, this translates into high maximum extrusion forces, [...] Read more.
Extrusion of AlZnMgCu alloys is associated with a very high plastic resistance of the materials at forming temperatures and significant friction resistance, particularly at the contact surface between the ingots and the container. In technological practice, this translates into high maximum extrusion forces, often close to the capacity of hydraulic presses, and the occurrence of surface cracking of extruded profiles, resulting in a reduction in metal exit speed (production process efficiency). The accuracy of mathematical material models describing changes in the plastic stress of a material as a function of deformation, depending on the forming temperature and deformation speed, plays a very important role in the numerical modelling of extrusion processes using the finite element method (FEM). Therefore, three mathematical material models of the tested aluminium alloy were analysed in this study. In order to use the results of plastometric tests determined on the Gleeble device, they were approximated with varying degrees of accuracy using the Hnsel–Spittel equation and then implemented into the material database of the QForm-Extrusion® programme. A series of numerical FEM calculations were performed for the extrusion of Ø50 × 3 mm tubes made of 7075 aluminium alloy using chamber dies for two different billet heating temperatures, 480 °C and 510 °C, and for three different material models. The metal flow was analysed in terms of geometric stability and dimensional deviations in the wall thickness of the extruded tube and its surface quality, as well as the maximum force in the extrusion process. Experimental studies of the industrial extrusion process of the tubes, using a press with a maximum force of 28 MN and a container diameter of 7 inches, confirmed the significant impact of the accuracy of the material model used on the results of the FEM numerical calculations. It was found that the developed material model of aluminium alloy 7075 number 1 allows for the most accurate representation of the actual conditions of deformation and quality of extruded tubes. Moreover, the material data obtained on the Gleeble simulator made it possible to determine the limit temperature of the extruded alloy, above which the material loses its cohesion and cracks appear on the surface of the extruded profiles. Full article
(This article belongs to the Special Issue Advances in Materials Processing (4th Edition))
Show Figures

Figure 1

14 pages, 1871 KB  
Article
Aluminium-Doped Zinc Oxide Thin Films Fabricated by the Aqueous Spray Method and Their Photocatalytic Activities
by Wilka N. Titus, Alina Uusiku and Philipus N. Hishimone
Coatings 2026, 16(1), 20; https://doi.org/10.3390/coatings16010020 - 24 Dec 2025
Viewed by 363
Abstract
The fabrication of undoped and aluminium-doped zinc oxide thin films on quartz glass substrates through the aqueous spray method is reported. The prepared aqueous precursor solutions containing Zn2+ and varying mole percentages (0, 2, 4, and 8%) of Al3+ complexes were [...] Read more.
The fabrication of undoped and aluminium-doped zinc oxide thin films on quartz glass substrates through the aqueous spray method is reported. The prepared aqueous precursor solutions containing Zn2+ and varying mole percentages (0, 2, 4, and 8%) of Al3+ complexes were spray-coated onto quartz glass substrates preheated at 180 °C. The as-sprayed films obtained were then heat-treated at 450 °C for 30 min in a furnace to produce the various thin films. The structural and optical properties of the resultant thin films were analysed using the X-ray diffractometer (XRD) and ultraviolet–visible (UV-Vis) spectrophotometer. The XRD results revealed that the fabricated thin films have a prominent peak correlating to the (002) Miller index, which is the preferred orientation of the zinc oxide hexagonal wurtzite phase. The fabricated thin films with a film thickness of approximately 189 nm absorb light in the visible region and have a transmittance of over 80% even after being doped with aluminium. The photocatalytic activities of the thin films were evaluated via visible light irradiation of an aqueous methyl orange solution, and the Al-doped ZnO thin films exhibited good photocatalytic activities, which resulted in an increase in the doping mole percentages of aluminium. Full article
(This article belongs to the Special Issue Recent Advances in Functional Metal Oxide Thin Films)
Show Figures

Figure 1

17 pages, 2827 KB  
Article
Electromagnetic Disintegration of Water Treatment Sludge: Physicochemical Changes and Leachability Assessment
by Izabela Płonka, Barbara Pieczykolan and Maciej Thomas
Appl. Sci. 2026, 16(1), 110; https://doi.org/10.3390/app16010110 - 22 Dec 2025
Viewed by 253
Abstract
This paper presents the results of the study of electromagnetic disintegration of sludge in a microwave oven at power levels 180 W, 360 W, 540 W, 720 W and 900 W applied at 30 s intervals from 30 to 300 s, originating from [...] Read more.
This paper presents the results of the study of electromagnetic disintegration of sludge in a microwave oven at power levels 180 W, 360 W, 540 W, 720 W and 900 W applied at 30 s intervals from 30 to 300 s, originating from a water treatment process where polyaluminum chloride ([Al2(OH)nCl6-n]m) as a coagulant was applied. The selected physicochemical parameters of water treatment sludge, including the total solids content (TS), volatile solids content (VS), capillary suction time (CST), settleability, chemical oxygen demand (COD), heavy metals (Cu, Zn, Ni, Pb, Cd, Cr) and macro elements (K, Na, Ca) in the water extract and in the sludge liquid were measured. The results indicated that after 24 h of sedimentation, the sediment volume was within the range of 50–60 mL for almost all the samples, CST decreased to 23.06 and 25.72 s (for 720 and 900 W, respectively) and the COD increased to approximately 140 mg O2/L when the microwave exposure time was extended at least to 120 s. The degree of disintegration of the water treatment sludge increased to 13.4–14.3% for 540–720 W and 270–300 s irradiation time. Heavy metals are not leached from the sludge after microwave disintegration in concentrations that could pose a threat to the environment. The use of electromagnetic disintegration is the viable option for the treatment of sludge from water treatment process. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

26 pages, 26611 KB  
Article
Data-Driven Decoupling of Metallogenic Patterns: A Case Study of Skarn-Type vs. Hydrothermal Vein-Type Pb-Zn Deposits in the Shanghulin Area, Inner Mongolia, China
by Lichun Fu, Guihu Chen, Qingyuan Song, Tiankun Xie, He Yuan, Xuefeng Li, Yu Su, Keyan Xiao and Rui Tang
Minerals 2026, 16(1), 6; https://doi.org/10.3390/min16010006 - 20 Dec 2025
Viewed by 284
Abstract
The close spatial and genetic coexistence of Skarn-type and Hydrothermal Vein-type Pb-Zn deposits in the Shanghulin area, Inner Mongolia, poses a significant challenge to conventional “ undifferentiated” prediction models. This study aims to decouple these distinct metallogenic patterns using a data-driven, “type-specific modeling” [...] Read more.
The close spatial and genetic coexistence of Skarn-type and Hydrothermal Vein-type Pb-Zn deposits in the Shanghulin area, Inner Mongolia, poses a significant challenge to conventional “ undifferentiated” prediction models. This study aims to decouple these distinct metallogenic patterns using a data-driven, “type-specific modeling” strategy, establishing separate prediction models for Skarn-type and Hydrothermal Vein-type mineralization. Our workflow first employs Lasso–RFECV for rigorous pre-screening of over 60 geoscience features to identify the optimal predictive subset. Subsequently, an XGBoost model is trained on these selected features, and the SHAP framework is applied to interpret the geological significance of its decision logic. The results confirm two distinct indicator systems. (1) The Skarn-type model is controlled by spatial proximity to a heat source, heavily relying on Distance_to_Volcano and high-temperature indicators (CLR_Mo, CLR_W, CLR_Mn). (2) The Hydrothermal Vein-type model is “chemical fingerprint-driven”, prioritizing CLR_Y and identifying a complex “leaching-enrichment” pattern: mineralization requires simultaneous wall-rock leaching (low CLR_Al2O3, low CLR_Y) and specific metal enrichment (high CLR_Co, high CLR_Zn). This study confirms the controlling factors: Skarn-type deposits are governed by magmatic proximity, whereas Hydrothermal Vein-type deposits are defined by specific alteration geochemical signatures. The proposed “Lasso–RFECV → XGBoost → SHAP” workflow successfully decouples these independent, geologically meaningful prospectivity models from complex data, offering a new paradigm for precise exploration. Full article
(This article belongs to the Special Issue Geochemical Exploration for Critical Mineral Resources, 2nd Edition)
Show Figures

Figure 1

Back to TopTop