Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (433)

Search Parameters:
Keywords = YOLOv4-Tiny

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2852 KB  
Article
A Lightweight Edge-AI System for Disease Detection and Three-Level Leaf Spot Severity Assessment in Strawberry Using YOLOv10n and MobileViT-S
by Raikhan Amanova, Baurzhan Belgibayev, Madina Mansurova, Madina Suleimenova, Gulshat Amirkhanova and Gulnur Tyulepberdinova
Computers 2026, 15(1), 63; https://doi.org/10.3390/computers15010063 - 16 Jan 2026
Viewed by 109
Abstract
Mobile edge-AI plant monitoring systems enable automated disease control in greenhouses and open fields, reducing dependence on manual inspection and the variability of visual diagnostics. This paper proposes a lightweight two-stage edge-AI system for strawberries, in which a YOLOv10n detector on board a [...] Read more.
Mobile edge-AI plant monitoring systems enable automated disease control in greenhouses and open fields, reducing dependence on manual inspection and the variability of visual diagnostics. This paper proposes a lightweight two-stage edge-AI system for strawberries, in which a YOLOv10n detector on board a mobile agricultural robot locates leaves affected by seven common diseases (including Leaf Spot) with real-time capability on an embedded platform. Patches are then automatically extracted for leaves classified as Leaf Spot and transmitted to the second module—a compact MobileViT-S-based classifier with ordinal output that assesses the severity of Leaf Spot on three levels (S1—mild, S2—moderate, S3—severe) on a specialised set of 373 manually labelled leaf patches. In a comparative experiment with lightweight architectures ResNet-18, EfficientNet-B0, MobileNetV3-Small and Swin-Tiny, the proposed Ordinal MobileViT-S demonstrated the highest accuracy in assessing the severity of Leaf Spot (accuracy ≈ 0.97 with 4.9 million parameters), surpassing both the baseline models and the standard MobileViT-S with a cross-entropy loss function. On the original image set, the YOLOv10n detector achieves an mAP@0.5 of 0.960, an F1 score of 0.93 and a recall of 0.917, ensuring reliable detection of affected leaves for subsequent Leaf Spot severity assessment. The results show that the “YOLOv10n + Ordinal MobileViT-S” cascade provides practical severity-aware Leaf Spot diagnosis on a mobile agricultural robot and can serve as the basis for real-time strawberry crop health monitoring systems. Full article
Show Figures

Figure 1

14 pages, 3045 KB  
Article
Exploring Runtime Sparsification of YOLO Model Weights During Inference
by Tanzeel-ur-Rehman Khan, Sanghamitra Roy and Koushik Chakraborty
J. Low Power Electron. Appl. 2026, 16(1), 3; https://doi.org/10.3390/jlpea16010003 - 13 Jan 2026
Viewed by 100
Abstract
In the pursuit of real-time object detection with constrained computational resources, the optimization of neural network architectures is paramount. We introduce novel sparsity induction methods within the YOLOv4-Tiny framework to significantly improve computational efficiency while maintaining high accuracy in pedestrian detection. We present [...] Read more.
In the pursuit of real-time object detection with constrained computational resources, the optimization of neural network architectures is paramount. We introduce novel sparsity induction methods within the YOLOv4-Tiny framework to significantly improve computational efficiency while maintaining high accuracy in pedestrian detection. We present three sparsification approaches: Homogeneous, Progressive, and Layer-Adaptive, each methodically reducing the model’s complexity without compromising its detection capability. Additionally, we refine the model’s output with a memory-efficient sliding window approach and a Bounding Box Sorting Algorithm, ensuring precise Intersection over Union (IoU) calculations. Our results demonstrate a substantial reduction in computational load by zeroing out over 50% of the weights with only a minimal 6% loss in IoU and 0.6% loss in F1-Score. Full article
Show Figures

Figure 1

31 pages, 4778 KB  
Article
ESCFM-YOLO: Lightweight Dual-Stream Architecture for Real-Time Small-Scale Fire Smoke Detection on Edge Devices
by Jong-Chan Park, Myeongjun Kim, Sang-Min Choi and Gun-Woo Kim
Appl. Sci. 2026, 16(2), 778; https://doi.org/10.3390/app16020778 - 12 Jan 2026
Viewed by 129
Abstract
Early detection of small-scale fires is crucial for minimizing damage and enabling rapid emergency response. While recent deep learning-based fire detection systems have achieved high accuracy, they still face three key challenges: (1) limited deployability in resource-constrained edge environments due to high computational [...] Read more.
Early detection of small-scale fires is crucial for minimizing damage and enabling rapid emergency response. While recent deep learning-based fire detection systems have achieved high accuracy, they still face three key challenges: (1) limited deployability in resource-constrained edge environments due to high computational costs, (2) performance degradation caused by feature interference when jointly learning flame and smoke features in a single backbone, and (3) low sensitivity to small flames and thin smoke in the initial stages. To address these issues, we propose a lightweight dual-stream fire detection architecture based on YOLOv5n, which learns flame and smoke features separately to improve both accuracy and efficiency under strict edge constraints. The proposed method integrates two specialized attention modules: ESCFM++, which enhances spatial and channel discrimination for sharp boundaries and local flame structures (flame), and ESCFM-RS, which captures low-contrast, diffuse smoke patterns through depthwise convolutions and residual scaling (smoke). On the D-Fire dataset, the flame detector achieved 74.5% mAP@50 with only 1.89 M parameters, while the smoke detector achieved 89.2% mAP@50. When deployed on an NVIDIA Jetson Xavier NX (NVIDIA Corporation, Santa Clara, CA, USA)., the system achieved 59.7 FPS (single-stream) and 28.3 FPS (dual-tream) with GPU utilization below 90% and power consumption under 17 W. Under identical on-device conditions, it outperforms YOLOv9t and YOLOv12n by 36–62% in FPS and 0.7–2.0% in detection accuracy. We further validate deployment via outdoor day/night long-range live-stream tests on Jetson using our flame detector, showing reliable capture of small, distant flames that appear as tiny cues on the screen, particularly in challenging daytime scenes. These results demonstrate overall that modality-specific stream specialization and ESCFM attention reduce feature interference while improving detection accuracy and computational efficiency for real-time edge-device fire monitoring. Full article
Show Figures

Figure 1

39 pages, 10760 KB  
Article
Automated Pollen Classification via Subinstance Recognition: A Comprehensive Comparison of Classical and Deep Learning Architectures
by Karol Struniawski, Aleksandra Machlanska, Agnieszka Marasek-Ciolakowska and Aleksandra Konopka
Appl. Sci. 2026, 16(2), 720; https://doi.org/10.3390/app16020720 - 9 Jan 2026
Viewed by 213
Abstract
Pollen identification is critical for melissopalynology (honey authentication), ecological monitoring, and allergen tracking, yet manual microscopic analysis remains labor-intensive, subjective, and error-prone when multiple grains overlap in realistic samples. Existing automated approaches often fail to address multi-grain scenarios or lack systematic comparison across [...] Read more.
Pollen identification is critical for melissopalynology (honey authentication), ecological monitoring, and allergen tracking, yet manual microscopic analysis remains labor-intensive, subjective, and error-prone when multiple grains overlap in realistic samples. Existing automated approaches often fail to address multi-grain scenarios or lack systematic comparison across classical and deep learning paradigms, limiting their practical deployment. This study proposes a subinstance-based classification framework combining YOLOv12n object detection for grain isolation, independent classification via classical machine learning (ML), convolutional neural networks (CNNs), or Vision Transformers (ViTs), and majority voting aggregation. Five classical classifiers with systematic feature selection, three CNN architectures (ResNet50, EfficientNet-B0, ConvNeXt-Tiny), and three ViT variants (ViT-B/16, ViT-B/32, ViT-L/16) are evaluated on four datasets (full images vs. isolated grains; raw vs. CLAHE-preprocessed) for four berry pollen species (Ribes nigrum, Ribes uva-crispa, Lonicera caerulea, and Amelanchier alnifolia). Stratified image-level splits ensure no data leakage, and explainable AI techniques (SHAP, Grad-CAM++, and gradient saliency) validate biological interpretability across all paradigms. Results demonstrate that grain isolation substantially improves classical ML performance (F1 from 0.83 to 0.91 on full images to 0.96–0.99 on isolated grains, +8–13 percentage points), while deep learning excels on both levels (CNNs: F1 = 1.000 on full images with CLAHE; ViTs: F1 = 0.99). At the instance level, all paradigms converge to near-perfect discrimination (F1 ≥ 0.96), indicating sufficient capture of morphological information. Majority voting aggregation provides +3–5% gains for classical methods but only +0.3–4.8% for deep models already near saturation. Explainable AI analysis confirms that models rely on biologically meaningful cues: blue channel moments and texture features for classical ML (SHAP), grain boundaries and exine ornamentation for CNNs (Grad-CAM++), and distributed attention across grain structures for ViTs (gradient saliency). Qualitative validation on 211 mixed-pollen images confirms robust generalization to realistic multi-species samples. The proposed framework (YOLOv12n + SVC/ResNet50 + majority voting) is practical for deployment in honey authentication, ecological surveys, and fine-grained biological image analysis. Full article
(This article belongs to the Special Issue Latest Research on Computer Vision and Image Processing)
Show Figures

Figure 1

25 pages, 7611 KB  
Article
BFRI-YOLO: Harmonizing Multi-Scale Features for Precise Small Object Detection in Aerial Imagery
by Xue Zeng, Shenghong Fang and Qi Sun
Electronics 2026, 15(2), 297; https://doi.org/10.3390/electronics15020297 - 9 Jan 2026
Viewed by 180
Abstract
Identifying minute targets within UAV-acquired imagery continues to pose substantial technical hurdles, primarily due to blurred boundaries, scarce textural details, and drastic scale variations amidst complex backgrounds. In response to these limitations, this paper proposes BFRI-YOLO, an enhanced architecture based on the YOLOv11n [...] Read more.
Identifying minute targets within UAV-acquired imagery continues to pose substantial technical hurdles, primarily due to blurred boundaries, scarce textural details, and drastic scale variations amidst complex backgrounds. In response to these limitations, this paper proposes BFRI-YOLO, an enhanced architecture based on the YOLOv11n baseline. The framework is built upon four synergistic components designed to achieve high-precision localization and robust feature representation. First, we construct a Balanced Adaptive Feature Pyramid Network (BAFPN) that utilizes a resolution-aware attention mechanism to promote bidirectional interaction between deep and shallow features. This is complemented by incorporating the Receptive Field Convolutional Block Attention Module (RFCBAM) to refine the backbone network. By constructing the C3K2_RFCBAM block, we effectively enhance the feature representation of small objects across diverse receptive fields. To further refine the prediction phase, we develop a Four-Shared Detail Enhancement Detection Head (FSDED) to improve both efficiency and stability. Finally, regarding the loss function, we formulate the Inner-WIoU strategy by integrating auxiliary bounding boxes with dynamic focusing mechanisms to ensure precise target localization. The experimental results on the VisDrone2019 benchmark demonstrate that our method secures mAP@0.5 and mAP@0.5:0.95 scores of 42.1% and 25.6%, respectively, outperforming the baseline by 8.8% and 6.2%. Extensive tests on the TinyPerson and DOTA1.0 datasets further validate the robust generalization capability of our model, confirming that BFRI-Yolo strikes a superior balance between detection accuracy and computational overhead in aerial scenes. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

23 pages, 7583 KB  
Article
Attention–Diffusion–Fusion Paradigm for Fine-Grained Lentinula edodes Maturity Detection
by Xingmei Xu, Jiali Wang, Zhanchen Wei, Shujuan Wei and Jinying Li
Horticulturae 2026, 12(1), 76; https://doi.org/10.3390/horticulturae12010076 - 8 Jan 2026
Viewed by 147
Abstract
The maturity of Lentinus edodes directly affects its quality, taste, and market value. Currently, maturity assessment primarily relies on manual experience, making it difficult to ensure efficiency and consistency. To achieve efficient and accurate detection of Lentinus edodes maturity, this study proposes an [...] Read more.
The maturity of Lentinus edodes directly affects its quality, taste, and market value. Currently, maturity assessment primarily relies on manual experience, making it difficult to ensure efficiency and consistency. To achieve efficient and accurate detection of Lentinus edodes maturity, this study proposes an improved lightweight object detection model, YOLOv8n-CFS. Based on YOLOv8n, the model integrates the SegNeXt Attention structure to enhance key feature extraction capabilities and optimize feature representation. A Feature Diffusion Propagation Network (FDPN) is designed to improve the expressive ability of objects at different scales through cross-layer feature propagation, enabling precise detection. The CSFCN module combines global cue reasoning with fine-grained spatial information to enhance detection robustness and generalization performance in complex environments. The CWD method is adopted to further optimize the model. Experimental results demonstrate that the proposed model achieves 97.34% mAP50 and 84.5% mAP95 on the Lentinus edodes maturity detection task, representing improvements of 2.02% and 4.92% compared to the baseline method, respectively. It exhibits excellent stability in five-fold cross-validation and outperforms models such as Faster R-CNN, YOLOv5n, YOLOv7-tiny, YOLOv8n, YOLOv8s, YOLOv10n, YOLOv11n, and YOLOv12. This study provides efficient and reliable technical support for Lentinus edodes maturity detection and holds significant implications for the intelligent production of edible fungi. Full article
Show Figures

Figure 1

25 pages, 2831 KB  
Article
Lightweight Vision–Transformer Network for Early Insect Pest Identification in Greenhouse Agricultural Environments
by Wenjie Hong, Shaozu Ling, Pinrui Zhu, Zihao Wang, Ruixiang Zhao, Yunpeng Liu and Min Dong
Insects 2026, 17(1), 74; https://doi.org/10.3390/insects17010074 - 8 Jan 2026
Viewed by 324
Abstract
This study addresses the challenges of early recognition of fruit and vegetable diseases and pests in facility horticultural greenhouses and the difficulty of real-time deployment on edge devices, and proposes a lightweight cross-scale intelligent recognition network, Light-HortiNet, designed to achieve a balance between [...] Read more.
This study addresses the challenges of early recognition of fruit and vegetable diseases and pests in facility horticultural greenhouses and the difficulty of real-time deployment on edge devices, and proposes a lightweight cross-scale intelligent recognition network, Light-HortiNet, designed to achieve a balance between high accuracy and high efficiency for automated greenhouse pest and disease detection. The method is built upon a lightweight Mobile-Transformer backbone and integrates a cross-scale lightweight attention mechanism, a small-object enhancement branch, and an alternative block distillation strategy, thereby effectively improving robustness and stability under complex illumination, high-humidity environments, and small-scale target scenarios. Systematic experimental evaluations were conducted on a greenhouse pest and disease dataset covering crops such as tomato, cucumber, strawberry, and pepper. The results demonstrate significant advantages in detection performance, with mAP@50 reaching 0.872, mAP@50:95 reaching 0.561, classification accuracy reaching 0.894, precision reaching 0.886, recall reaching 0.879, and F1-score reaching 0.882, substantially outperforming mainstream lightweight models such as YOLOv8n, YOLOv11n, MobileNetV3, and Tiny-DETR. In terms of small-object recognition capability, the model achieved an mAP-small of 0.536 and a recall-small of 0.589, markedly enhancing detection stability for micro pests such as whiteflies and thrips as well as early-stage disease lesions. In addition, real-time inference performance exceeding 20 FPS was achieved on edge platforms such as Jetson Nano, demonstrating favorable deployment adaptability. Full article
Show Figures

Figure 1

30 pages, 8453 KB  
Article
PBZGNet: A Novel Defect Detection Network for Substation Equipment Based on Gradual Parallel Branch Architecture
by Mintao Hu, Yang Zhuang, Jiahao Wang, Yaoyi Hu, Desheng Sun, Dawei Xu and Yongjie Zhai
Sensors 2026, 26(1), 300; https://doi.org/10.3390/s26010300 - 2 Jan 2026
Viewed by 467
Abstract
As power systems expand and grow smarter, the safe and steady operation of substation equipment has become a prerequisite for grid reliability. In cluttered substation scenes, however, existing deep learning detectors still struggle with small targets, multi-scale feature fusion, and precise localization. To [...] Read more.
As power systems expand and grow smarter, the safe and steady operation of substation equipment has become a prerequisite for grid reliability. In cluttered substation scenes, however, existing deep learning detectors still struggle with small targets, multi-scale feature fusion, and precise localization. To overcome these limitations, we introduce PBZGNet, a defect-detection network that couples a gradual parallel-branch backbone, a zoom-fusion neck, and a global channel-recalibration module. First, BiCoreNet is embedded in the feature extractor: dual-core parallel paths, reversible residual links, and channel recalibration cooperate to mine fault-sensitive cues. Second, cross-scale ZFusion and Concat-CBFuse are dynamically merged so that no scale loses information; a hierarchical composite feature pyramid is then formed, strengthening the representation of both complex objects and tiny flaws. Third, an attention-guided decoupled detection head (ADHead) refines responses to obscured and minute defect patterns. Finally, within the Generalized Focal Loss framework, a quality rating scheme suppresses background interference while distribution regression sharpens the localization of small targets. Across all scales, PBZGNet clearly outperforms YOLOv11. Its lightweight variant, PBZGNet-n, attains 83.9% mAP@50 with only 2.91 M parameters and 7.7 GFLOPs—9.3% above YOLOv11-n. The full PBZGNet surpasses the current best substation model, YOLO-SD, by 7.3% mAP@50, setting a new state of the art (SOTA). Full article
(This article belongs to the Special Issue Deep Learning Based Intelligent Fault Diagnosis)
Show Figures

Figure 1

15 pages, 3046 KB  
Article
Maritime Small Target Image Detection Algorithm Based on Improved YOLOv11n
by Zhaohua Liu, Yanli Sun, Pengfei He, Ningbo Liu and Zhongxun Wang
Sensors 2026, 26(1), 163; https://doi.org/10.3390/s26010163 - 26 Dec 2025
Viewed by 264
Abstract
Aiming at the problems of small-sized ships (such as small patrol boats) in complex open-sea backgrounds, including small sizes, insufficient feature information, and high missed detection rates, this paper proposes a maritime small target image detection algorithm based on the improved YOLOv11n. Firstly, [...] Read more.
Aiming at the problems of small-sized ships (such as small patrol boats) in complex open-sea backgrounds, including small sizes, insufficient feature information, and high missed detection rates, this paper proposes a maritime small target image detection algorithm based on the improved YOLOv11n. Firstly, the BIE module is introduced into the neck feature fusion stage of YOLOv11n. Utilizing its dual-branch information interaction design, independent branches for key features of maritime small targets in infrared and visible light images are constructed, enabling the progressive fusion of infrared and visible light target features. Secondly, RepViTBlock is incorporated into the backbone network and combined with the C3k2 module of YOLOv11n to form C3k2-RepViTBlock. Through the lightweight attention mechanism and multi-branch convolution structure, this addresses the insufficient capture of tiny target features by the C3k2 module and enhances the model’s ability to extract local features of maritime small targets. Finally, the ConvAttn module is embedded at the end of the backbone network. With its dynamic small-kernel convolution, it adaptively extracts the contour features of small targets, maintaining the overall model’s light weight while reducing the missed detection rate for maritime small targets. Experiments on a collected infrared and visible light ship image dataset (IVships) and a public dataset (SeaShips) show that, on the basis of increasing only a small number of parameters, the improved algorithm increases the mAP@0.5 by 1.9% and 1.7%, respectively, and the average precision by 2.2% and 2.4%, respectively, compared with the original model, which significantly improves the model’s small target detection capabilities. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

32 pages, 5130 KB  
Article
MDB-YOLO: A Lightweight, Multi-Dimensional Bionic YOLO for Real-Time Detection of Incomplete Taro Peeling
by Liang Yu, Xingcan Feng, Yuze Zeng, Weili Guo, Xingda Yang, Xiaochen Zhang, Yong Tan, Changjiang Sun, Xiaoping Lu and Hengyi Sun
Electronics 2026, 15(1), 97; https://doi.org/10.3390/electronics15010097 - 24 Dec 2025
Viewed by 418
Abstract
The automation of quality control in agricultural food processing, particularly the detection of incomplete peeling in taro, constitutes a critical frontier for ensuring food safety and optimizing production efficiency in the Industry 4.0 era. However, this domain is fraught with significant technical challenges, [...] Read more.
The automation of quality control in agricultural food processing, particularly the detection of incomplete peeling in taro, constitutes a critical frontier for ensuring food safety and optimizing production efficiency in the Industry 4.0 era. However, this domain is fraught with significant technical challenges, primarily stemming from the inherent visual characteristics of residual peel: extremely minute scales relative to the vegetable body, highly irregular morphological variations, and the dense occlusion of objects on industrial conveyor belts. To address these persistent impediments, this study introduces a comprehensive solution comprising a specialized dataset and a novel detection architecture. We established the Taro Peel Industrial Dataset (TPID), a rigorously annotated collection of 18,341 high-density instances reflecting real-world production conditions. Building upon this foundation, we propose MDB-YOLO, a lightweight, multi-dimensional bionic detection model evolved from the YOLOv8s architecture. The MDB-YOLO framework integrates a synergistic set of innovations designed to resolve specific detection bottlenecks. To mitigate the conflict between background texture interference and tiny target detection, we integrated the C2f_EMA module with a Wise-IoU (WIoU) loss function, a combination that significantly enhances feature response to low-contrast residues while reducing the penalty on low-quality anchor boxes through a dynamic non-monotonic focusing mechanism. To effectively manage irregular peel shapes, a dynamic feature processing chain was constructed utilizing DySample for morphology-aware upsampling, BiFPN_Concat2 for weighted multi-scale fusion, and ODConv2d for geometric preservation. Furthermore, to address the issue of missed detections caused by dense occlusion in industrial stacking scenarios, Soft-NMS was implemented to replace traditional greedy suppression mechanisms. Experimental validation demonstrates the superiority of the proposed framework. MDB-YOLO achieves a mean Average Precision (mAP50-95) of 69.7% and a Recall of 88.0%, significantly outperforming the baseline YOLOv8s and advanced transformer-based models like RT-DETR-L. Crucially, the model maintains high operational efficiency, achieving an inference speed of 1.1 ms on an NVIDIA A100 and reaching 27 FPS on an NVIDIA Jetson Xavier NX using INT8 quantization. These findings confirm that MDB-YOLO provides a robust, high-precision, and cost-effective solution for real-time quality control in agricultural food processing, marking a significant advancement in the application of computer vision to complex biological targets. Full article
(This article belongs to the Special Issue Advancements in Edge and Cloud Computing for Industrial IoT)
Show Figures

Figure 1

20 pages, 5205 KB  
Article
Determining the Origin of Multi Socket Fires Using YOLO Image Detection
by Hoon-Gi Lee, Thi-Ngot Pham, Viet-Hoan Nguyen, Ki-Ryong Kwon, Jun-Ho Huh, Jae-Hun Lee and YuanYuan Liu
Electronics 2026, 15(1), 22; https://doi.org/10.3390/electronics15010022 - 22 Dec 2025
Viewed by 352
Abstract
In the Republic of Korea, fire outbreaks caused by electrical devices are one of the most frequent accidents, causing severe damage to human lives and infrastructure. The metropolitan police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire [...] Read more.
In the Republic of Korea, fire outbreaks caused by electrical devices are one of the most frequent accidents, causing severe damage to human lives and infrastructure. The metropolitan police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire root-cause inspections to determine whether these fires are external or internal infrastructure fires. However, obtaining results is a complex process. In addition, the situation has been hampered by the lack of sufficient digital forensics and relevant programs. Apart from electrical devices, multi-sockets are among the main fire instigators. In this study, we aim to verify the feasibility of utilizing YOLO-based deep-learning object detection models for fire-cause inspection systems for multi-sockets. Particularly, we have created a novel image dataset of multi-socket fire causes with 3300 images categorized into the three classes of socket, both burnt-in and burnt-out. This data was used to train various models, including YOLOv4-csp, YOLOv5n, YOLOR-csp, YOLOv6, and YOLOv7-Tiny. In addition, we have proposed an improved YOLOv5n-SE by adding a squeeze-and-excitation network (SE) into the backbone of the conventional YOLOv5 network and deploying it into a two-stage detector framework with a first stage of socket detection and a second stage of burnt-in/burnt-out classification. From the experiment, the performance of these models was evaluated, revealing that our work outperforms other models, with an accuracy of 91.3% mAP@0.5. Also, the improved YOLOv5-SE model was deployed in a web browser application. Full article
Show Figures

Figure 1

14 pages, 17578 KB  
Article
A Two-Stage High-Precision Recognition and Localization Framework for Key Components on Industrial PCBs
by Li Wang, Liu Ouyang, Huiying Weng, Xiang Chen, Anna Wang and Kexin Zhang
Mathematics 2026, 14(1), 4; https://doi.org/10.3390/math14010004 - 19 Dec 2025
Viewed by 235
Abstract
Precise recognition and localization of electronic components on printed circuit boards (PCBs) are crucial for industrial automation tasks, including robotic disassembly, high-precision assembly, and quality inspection. However, strong visual interference from silkscreen characters, copper traces, solder pads, and densely packed small components often [...] Read more.
Precise recognition and localization of electronic components on printed circuit boards (PCBs) are crucial for industrial automation tasks, including robotic disassembly, high-precision assembly, and quality inspection. However, strong visual interference from silkscreen characters, copper traces, solder pads, and densely packed small components often degrades the accuracy of deep learning-based detectors, particularly under complex industrial imaging conditions. This paper presents a two-stage, coarse-to-fine PCB component localization framework based on an optimized YOLOv11 architecture and a sub-pixel geometric refinement module. The proposed method enhances the backbone with a Convolutional Block Attention Module (CBAM) to suppress background noise and strengthen discriminative features. It also integrates a tiny-object detection branch and a weighted Bi-directional Feature Pyramid Network (BiFPN) for more effective multi-scale feature fusion, and it employs a customized hybrid loss with vertex-offset supervision to enable pose-aware bounding box regression. In the second stage, the coarse predictions guide contour-based sub-pixel fitting using template geometry to achieve industrial-grade precision. Experiments show significant improvements over baseline YOLOv11, particularly for small and densely arranged components, indicating that the proposed approach meets the stringent requirements of industrial robotic disassembly. Full article
(This article belongs to the Special Issue Complex Process Modeling and Control Based on AI Technology)
Show Figures

Figure 1

27 pages, 6470 KB  
Article
Lightweight YOLO-SR: A Method for Small Object Detection in UAV Aerial Images
by Sirong Liang, Xubin Feng, Meilin Xie, Qiang Tang, Haoran Zhu and Guoliang Li
Appl. Sci. 2025, 15(24), 13063; https://doi.org/10.3390/app152413063 - 11 Dec 2025
Viewed by 753
Abstract
To address challenges in small object detection within drone aerial imagery—such as sparse feature information, intense background interference, and drastic scale variations—this paper proposes YOLO-SR, a lightweight detection algorithm based on attention enhancement and feature reuse mechanisms. First, we designed the lightweight feature [...] Read more.
To address challenges in small object detection within drone aerial imagery—such as sparse feature information, intense background interference, and drastic scale variations—this paper proposes YOLO-SR, a lightweight detection algorithm based on attention enhancement and feature reuse mechanisms. First, we designed the lightweight feature extraction module C2f-SA, which incorporates Shuffle Attention. By integrating channel shuffling and grouped spatial attention mechanisms, this module dynamically enhances edge and texture feature responses for small objects, effectively improving the discriminative power of shallow-level features. Second, the Spatial Pyramid Pooling Attention (SPPC) module captures multi-scale contextual information through spatial pyramid pooling. Combined with dual-path (channel and spatial) attention mechanisms, it optimizes feature representation while significantly suppressing complex background interference. Finally, the detection head employs a decoupled architecture separating classification and regression tasks, supplemented by a dynamic loss weighting strategy to mitigate small object localization inaccuracies. Experimental results on the RGBT-Tiny dataset demonstrate that compared to the baseline model YOLOv5s, our algorithm achieves a 5.3% improvement in precision, a 13.1% increase in recall, and respective gains of 11.5% and 22.3% in mAP0.5 and mAP0.75, simultaneously reducing the number of parameters by 42.9% (from 7.0 × 106 to 4.0 × 106) and computational cost by 37.2% (from 60.0 GFLOPs to 37.7 GFLOPs). The comprehensive improvement across multiple metrics validates the superiority of the proposed algorithm in both accuracy and efficiency. Full article
Show Figures

Figure 1

18 pages, 3213 KB  
Article
YOLOv7-tiny-CR: A Causal Intervention Framework for Infrared Small Target Detection with Feature Debiasing
by Honglong Wang and Lihui Sun
Appl. Sci. 2025, 15(24), 13008; https://doi.org/10.3390/app152413008 - 10 Dec 2025
Viewed by 278
Abstract
The performance of infrared small target detection is often hindered by spurious correlations learned between features and labels. To address this feature bias at its root, this paper proposes a debiased detection framework grounded in causal reasoning. Built upon the YOLOv7-tiny architecture, the [...] Read more.
The performance of infrared small target detection is often hindered by spurious correlations learned between features and labels. To address this feature bias at its root, this paper proposes a debiased detection framework grounded in causal reasoning. Built upon the YOLOv7-tiny architecture, the framework introduces a three-stage debiasing mechanism. First, a Structural Causal Model (SCM) is adopted to disentangle causal features from non-causal image cues. Second, a Causal Attention Mechanism (CAM) is embedded into the backbone, where a causality-guided feature weighting strategy enhances the model’s focus on semantically critical target characteristics. Finally, a Causal Intervention (CI) module is incorporated into the neck, leveraging backdoor adjustments to suppress spurious causal links induced by contextual confounders. Extensive experiments on the public FLIR_ADASv2 dataset demonstrate notable gains in feature discriminability, with improvements of 2.9% in mAP@50 and 2.7% in mAP@50:95 compared to the baseline. These results verify that the proposed framework effectively mitigates feature bias and enhances generalization capability, outperforming the baseline by a substantial margin. Full article
(This article belongs to the Special Issue Object Detection Technology—2nd Edition)
Show Figures

Figure 1

19 pages, 10997 KB  
Article
YOLO-AEB: PCB Surface Defect Detection Based on Adaptive Multi-Branch Attention and Efficient Atrous Spatial Pyramid Pooling
by Chengzhi Deng, Yingbo Wu, Zhaoming Wu, Weiwei Zhou, You Zhang, Xiaowei Sun and Shengqian Wang
Computers 2025, 14(12), 543; https://doi.org/10.3390/computers14120543 - 10 Dec 2025
Cited by 1 | Viewed by 347
Abstract
The surface defect detection of printed circuit boards (PCBs) plays a crucial role in the field of industrial manufacturing. However, the existing PCB defect detection methods have great challenges in detecting the accuracy of tiny defects under the complex background due to its [...] Read more.
The surface defect detection of printed circuit boards (PCBs) plays a crucial role in the field of industrial manufacturing. However, the existing PCB defect detection methods have great challenges in detecting the accuracy of tiny defects under the complex background due to its compact layout. To address this problem, we propose a novel YOLO-AMBA-EASPP-BiFPN (YOLO-AEB) network based on the YOLOv10 framework that achieves high precision and real-time detection of tiny defects through multi-level architecture optimization. In the backbone network, an adaptive multi-branch attention mechanism (AMBA) is first proposed, which employs an adaptive reweighting algorithm (ARA) to dynamically optimize fusion weights within the multi-branch attention mechanism (MBA), thereby optimizing the ability to represent tiny defects under complex background noise. Then, an efficient atrous spatial pyramid pooling (EASPP) is constructed, which fuses AMBA and atrous spatial pyramid pooling-fast (ASPF). This integration effectively mitigates feature degradation while preserving expansive receptive fields, and the extraction of defect detail features is strengthened. In the neck network, the bidirectional feature pyramid network (BiFPN) is used to replace the conventional path aggregation network (PAN), and the bidirectional cross-scale feature fusion mechanism is used to improve the transfer ability of shallow detail features to deep networks. Comprehensive experimental evaluations demonstrate that our proposed network achieves state-of-the-art performance, whose F1 score can reach 95.7% and mean average precision (mAP) can reach 97%, representing respective improvements of 7.1% and 5.8% over the baseline YOLOv10 model. Feature visualization analysis further verifies the effectiveness and feasibility of YOLO-AEB. Full article
Show Figures

Figure 1

Back to TopTop