Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Wheeler-deWitt quantization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1135 KB  
Article
Birth of an Isotropic and Homogeneous Universe with a Running Cosmological Constant
by A. Oliveira Castro Júnior, A. Corrêa Diniz, G. Oliveira-Neto and G. A. Monerat
Universe 2025, 11(9), 310; https://doi.org/10.3390/universe11090310 - 11 Sep 2025
Viewed by 508
Abstract
The present work discusses the birth of the Universe via quantum tunneling through a potential barrier, based on quantum cosmology, taking a running cosmological constant into account. We consider the Friedmann–Lemaître–Robertson–Walker (FLRW) metric with positively curved spatial sections (k=1) [...] Read more.
The present work discusses the birth of the Universe via quantum tunneling through a potential barrier, based on quantum cosmology, taking a running cosmological constant into account. We consider the Friedmann–Lemaître–Robertson–Walker (FLRW) metric with positively curved spatial sections (k=1) and the matter’s content is a dust perfect fluid. The model was quantized by the Dirac formalism, leading to a Wheeler–DeWitt equation. We solve that equation both numerically and using a WKB approximation. We study the behavior of tunneling probabilities TPWKB and TPint by varying the energy E of the dust perfect fluid, the phenomenological parameter ν, the present value of the Hubble function H0, and the constant energy density ρΛ0, with the last three parameters all being associated with the running cosmological constant. We observe that both tunneling probabilities, TPWKB and TPint, decrease as one increases ν. We also note that TPWKB and TPint grow as E increases, indicating that the Universe is more likely to be born with higher dust energy E values. The same is observed for the parameter ρΛ0, that is, TPWKB and TPint are larger for higher values of ρΛ0. Finally, the tunneling probabilities decrease as one increases the value of H0. Therefore, the best conditions for the Universe to be born, in the present model, would be to have the highest possible values for E and Λ and the lowest possible values for ν and H0. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

14 pages, 3378 KB  
Article
The pcGR Within the Hořava-Lifshitz Gravity and the Wheeler-deWitt Quantization
by Peter O. Hess, César A. Zen Vasconcellos and Dimiter Hadjimichef
Galaxies 2025, 13(4), 85; https://doi.org/10.3390/galaxies13040085 - 1 Aug 2025
Cited by 1 | Viewed by 1115
Abstract
We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended formulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with modified gravitational theories through the introduction of a minimal length scale. Focusing on Schwarzschild [...] Read more.
We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended formulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with modified gravitational theories through the introduction of a minimal length scale. Focusing on Schwarzschild black holes, we derive the Wheeler-deWitt equation, obtaining a quantized description of pcGR. Using perturbative methods and semi-classical approximations, we analyze the solutions of the equations and their physical implications. A key finding is the avoidance of the central singularity due to nonlinear interaction terms in the Hořava-Lifshitz action. Notably, extrinsic curvature (kinetic energy) contributions prove essential for singularity resolution, even in standard GR. Furthermore, the theory offers new perspectives on dark energy, proposing an alternative mechanism for its accumulation. Full article
(This article belongs to the Special Issue Cosmology and the Quantum Vacuum—2nd Edition)
Show Figures

Figure 1

27 pages, 400 KB  
Article
Extending Solutions and the Equations of Quantum Gravity Past the Big Bang Singularity
by Claus Gerhardt
Symmetry 2025, 17(2), 262; https://doi.org/10.3390/sym17020262 - 9 Feb 2025
Viewed by 1028
Abstract
We recently proved that in our model of quantum gravity, the solutions to the quantized version of the full Einstein equations or to the Wheeler–DeWitt equation could be expressed as products of spatial and temporal eigenfunctions, or eigendistributions, of self-adjoint operators acting in [...] Read more.
We recently proved that in our model of quantum gravity, the solutions to the quantized version of the full Einstein equations or to the Wheeler–DeWitt equation could be expressed as products of spatial and temporal eigenfunctions, or eigendistributions, of self-adjoint operators acting in corresponding separable Hilbert spaces. Moreover, near the big bang singularity, we derived sharp asymptotic estimates for the temporal eigenfunctions. In this paper, we show that, by using these estimates, there exists a complete sequence of unitarily equivalent eigenfunctions which can be extended past the singularity by even or odd mirroring as sufficiently smooth functions such that the extended functions are solutions of the appropriately extended equations valid in R in the classical sense. We also use this phenomenon to explain the missing antimatter. Full article
(This article belongs to the Section Physics)
12 pages, 300 KB  
Article
Quantum de Sitter Geometry
by Mohammad Vahid Takook
Universe 2024, 10(2), 70; https://doi.org/10.3390/universe10020070 - 2 Feb 2024
Cited by 4 | Viewed by 2906
Abstract
Quantum de Sitter geometry is discussed using elementary field operator algebras in Krein space quantization from an observer-independent point of view, i.e., ambient space formalism. In quantum geometry, the conformal sector of the metric becomes a dynamical degree of freedom, which can be [...] Read more.
Quantum de Sitter geometry is discussed using elementary field operator algebras in Krein space quantization from an observer-independent point of view, i.e., ambient space formalism. In quantum geometry, the conformal sector of the metric becomes a dynamical degree of freedom, which can be written in terms of a massless minimally coupled scalar field. The elementary fields necessary for the construction of quantum geometry are introduced and classified. A complete Krein–Fock space structure for elementary fields is presented using field operator algebras. We conclude that since quantum de Sitter geometry can be constructed by elementary fields operators, the geometry quantum state is immersed in the Krein–Fock space and evolves in it. The total number of accessible quantum states in the universe is chosen as a parameter of quantum state evolution, which has a relationship with the universe’s entropy. Inspired by the Wheeler–DeWitt constraint equation in cosmology, the evolution equation of the geometry quantum state is formulated in terms of the Lagrangian density of interaction fields in ambient space formalism. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2023—Field Theory)
14 pages, 417 KB  
Article
Quantum Big Bounce of the Isotropic Universe Using Relational Time
by Eleonora Giovannetti, Fabio Maione and Giovanni Montani
Universe 2023, 9(8), 373; https://doi.org/10.3390/universe9080373 - 16 Aug 2023
Cited by 9 | Viewed by 1770
Abstract
We analyze the canonical quantum dynamics of the isotropic Universe with a metric approach by adopting a self-interacting scalar field as relational time. When the potential term is absent, we are able to associate the expanding and collapsing dynamics of the Universe with [...] Read more.
We analyze the canonical quantum dynamics of the isotropic Universe with a metric approach by adopting a self-interacting scalar field as relational time. When the potential term is absent, we are able to associate the expanding and collapsing dynamics of the Universe with the positive- and negative-frequency modes that emerge in the Wheeler–DeWitt equation. On the other side, when the potential term is present, a non-zero transition amplitude from positive- to negative-frequency states arises, as in standard relativistic scattering theory below the particle creation threshold. In particular, we are able to compute the transition probability for an expanding Universe that emerges from a collapsing regime both in the standard quantization procedure and in the polymer formulation. The probability distribution results similar in the two cases, and its maximum takes place when the mean values of the momentum essentially coincide in the in-going and out-going wave packets, as it would take place in a semiclassical Big Bounce dynamics. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2023—Cosmology)
Show Figures

Figure 1

19 pages, 373 KB  
Article
Quasi-Hermitian Formulation of Quantum Mechanics Using Two Conjugate Schrödinger Equations
by Miloslav Znojil
Axioms 2023, 12(7), 644; https://doi.org/10.3390/axioms12070644 - 28 Jun 2023
Cited by 7 | Viewed by 2204
Abstract
To the existing list of alternative formulations of quantum mechanics, a new version of the non-Hermitian interaction picture is added. What is new is that, in contrast to the more conventional non-Hermitian model-building recipes, the primary information about the observable phenomena is provided [...] Read more.
To the existing list of alternative formulations of quantum mechanics, a new version of the non-Hermitian interaction picture is added. What is new is that, in contrast to the more conventional non-Hermitian model-building recipes, the primary information about the observable phenomena is provided not only by the Hamiltonian but also by an additional operator with a real spectrum (say, R(t)) representing another observable. In the language of physics, the information carried by R(t)R(t) opens the possibility of reaching the exceptional-point degeneracy of the real eigenvalues, i.e., a specific quantum phase transition. In parallel, the unitarity of the system remains guaranteed, as usual, via a time-dependent inner-product metric Θ(t). From the point of view of mathematics, the control of evolution is provided by a pair of conjugate Schrödiner equations. This opens the possibility od an innovative dyadic representation of pure states, by which the direct use of Θ(t) is made redundant. The implementation of the formalism is illustrated via a schematic cosmological toy model in which the canonical quantization leads to the necessity of working with two conjugate Wheeler-DeWitt equations. From the point of view of physics, the “kinematical input” operator R(t) may represent either the radius of a homogeneous and isotropic expanding empty Universe or, if you wish, its Hubble radius, or the scale factor a(t) emerging in the popular Lemaitre-Friedmann-Robertson-Walker classical solutions, with the exceptional-point singularity of the spectrum of R(t) mimicking the birth of the Universe (“Big Bang”) at t=0. Full article
(This article belongs to the Section Hilbert’s Sixth Problem)
Show Figures

Figure 1

16 pages, 3747 KB  
Article
A Wheeler–DeWitt Quantum Approach to the Branch-Cut Gravitation with Ordering Parameters
by Benno August Ludwig Bodmann, César Augusto Zen Vasconcellos, Peter Otto Hess Bechstedt, José Antonio de Freitas Pacheco, Dimiter Hadjimichef, Moisés Razeira and Gervásio Annes Degrazia
Universe 2023, 9(6), 278; https://doi.org/10.3390/universe9060278 - 8 Jun 2023
Cited by 11 | Viewed by 2118
Abstract
In this contribution to the Festschrift for Prof. Remo Ruffini, we investigate a formulation of quantum gravity using the Hořava–Lifshitz theory of gravity, which is General Relativity augmented by counter-terms to render the theory regularized. We are then led to the Wheeler–DeWitt (WDW) [...] Read more.
In this contribution to the Festschrift for Prof. Remo Ruffini, we investigate a formulation of quantum gravity using the Hořava–Lifshitz theory of gravity, which is General Relativity augmented by counter-terms to render the theory regularized. We are then led to the Wheeler–DeWitt (WDW) equation combined with the classical concepts of the branch-cut gravitation, which contemplates as a new scenario for the origin of the Universe, a smooth transition region between the contraction and expansion phases. Through the introduction of an energy-dependent effective potential, which describes the space-time curvature associated with the embedding geometry and its coupling with the cosmological constant and matter fields, solutions of the WDW equation for the wave function of the Universe are obtained. The Lagrangian density is quantized through the standard procedure of raising the Hamiltonian, the helix-like complex scale factor of branched gravitation as well as the corresponding conjugate momentum to the category of quantum operators. Ambiguities in the ordering of the quantum operators are overcome with the introduction of a set of ordering factors α, whose values are restricted, to make contact with similar approaches, to the integers α=[0,1,2], allowing this way a broader class of solutions for the wave function of the Universe. In addition to a branched universe filled with underlying background vacuum energy, primordial matter and radiation, in order to connect with standard model calculations, we additionally supplement this formulation with baryon matter, dark matter and quintessence contributions. Finally, the boundary conditions for the wave function of the Universe are imposed by assuming the Bekenstein criterion. Our results indicate the consistency of a topological quantum leap, or alternatively a quantum tunneling, for the transition region of the early Universe in contrast to the classic branched cosmology view of a smooth transition. Full article
(This article belongs to the Special Issue Remo Ruffini Festschrift)
Show Figures

Figure 1

9 pages, 354 KB  
Communication
A Wheeler–DeWitt Equation with Time
by Marcello Rotondo
Universe 2022, 8(11), 580; https://doi.org/10.3390/universe8110580 - 3 Nov 2022
Cited by 5 | Viewed by 3532
Abstract
The equation for canonical gravity produced by Wheeler and DeWitt in the late 1960s still presents difficulties both in terms of its mathematical solution and its physical interpretation. One of these issues is, notoriously, the absence of an explicit time. In this short [...] Read more.
The equation for canonical gravity produced by Wheeler and DeWitt in the late 1960s still presents difficulties both in terms of its mathematical solution and its physical interpretation. One of these issues is, notoriously, the absence of an explicit time. In this short note, we suggest one simple and straightforward way to avoid this occurrence. We go back to the classical equation that inspired Wheeler and DeWitt (namely, the Hamilton–Jacobi–Einstein equation) and make explicit, before quantization, the presence of a known, classically meaningful notion of time. We do this by allowing Hamilton’s principal function to be explicitly dependent on this time locally. This choice results in a Wheeler–DeWitt equation with time. A working solution for the de Sitter minisuperspace is shown. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
Show Figures

Figure 1

26 pages, 366 KB  
Article
A Unified Quantization of Gravity and Other Fundamental Forces of Nature
by Claus Gerhardt
Universe 2022, 8(8), 404; https://doi.org/10.3390/universe8080404 - 1 Aug 2022
Cited by 3 | Viewed by 2135
Abstract
We quantized the interaction of gravity with Yang–Mills and spinor fields; hence, offering a quantum theory incorporating all four fundamental forces of nature. Let us abbreviate the spatial Hamilton functions of the standard model by HSM and the Hamilton function of [...] Read more.
We quantized the interaction of gravity with Yang–Mills and spinor fields; hence, offering a quantum theory incorporating all four fundamental forces of nature. Let us abbreviate the spatial Hamilton functions of the standard model by HSM and the Hamilton function of gravity by HG. Working in a fiber bundle E with base space S0=Rn, where the fiber elements are Riemannian metrics, we can express the Hamilton functions in the form HG+HSM=HG+t23H˜SM, if n=3, where H˜SM depends on metrics σij satisfying detσij=1. In the quantization process, we quantize HG for general σij but H˜SM only for σij=δij by the usual methods of QFT. Let v resp. ψ be the spatial eigendistributions of the respective Hamilton operators, then, the solutions u of the Wheeler–DeWitt equation are given by u=wvψ, where w satisfies an ODE and u is evaluated at (t,δij) in the fibers. Full article
(This article belongs to the Special Issue Quantum Gravity Phenomenology)
21 pages, 388 KB  
Article
Wheeler-DeWitt Equation and the Applicability of Crypto-Hermitian Interaction Representation in Quantum Cosmology
by Miloslav Znojil
Universe 2022, 8(7), 385; https://doi.org/10.3390/universe8070385 - 20 Jul 2022
Cited by 11 | Viewed by 2825
Abstract
In the broader methodical framework of the quantization of gravity, the crypto-Hermitian (or non-Hermitian) version of Dirac’s interaction picture is considered. The formalism is briefly outlined and shown to be well suited for an innovative treatment of certain cosmological models. In particular, it [...] Read more.
In the broader methodical framework of the quantization of gravity, the crypto-Hermitian (or non-Hermitian) version of Dirac’s interaction picture is considered. The formalism is briefly outlined and shown to be well suited for an innovative treatment of certain cosmological models. In particular, it is demonstrated that the Wheeler-DeWitt equation could be a promising candidate for the description of the evolution of the quantized Universe near its initial Big Bang singularity. Full article
(This article belongs to the Special Issue Selected Topics in Gravity, Field Theory and Quantum Mechanics)
Show Figures

Figure 1

12 pages, 353 KB  
Article
The Birth of the Universe as a Result of the Change of the Metric Signature
by Tatyana P. Shestakova
Physics 2022, 4(1), 160-171; https://doi.org/10.3390/physics4010012 - 7 Feb 2022
Cited by 4 | Viewed by 3731
Abstract
In this paper, I discuss the idea that the birth of our Universe may be a result of a quantum transition from a physical continuum with the Euclidean signature to a Lorentzian spacetime. A similar idea was expressed by Andrei D. Sakharov At [...] Read more.
In this paper, I discuss the idea that the birth of our Universe may be a result of a quantum transition from a physical continuum with the Euclidean signature to a Lorentzian spacetime. A similar idea was expressed by Andrei D. Sakharov At the classical level, the idea was studied by George F. R. Ellis and his collaborators, who explored if solutions to the classical Einstein equation exist which admit a change of metric signature. The present paper aims at examining possible realizations of this idea at the level of quantum gravity, in the framework of the Wheeler–DeWitt theory and in the extended phase space approach to quantization of gravity. I intend to answer the questions: to answer the questions: Does the Hartle–Hawking wave function imply such a realization? How can this idea be realized in the extended phase space approach to quantum gravity, where the change of signature is described by imposing special conditions on g00-component of the metric in different regions of the physical continuum? The conclusion is that the idea can be realized from a formal mathematical point of view, but it can hardly help in understanding how spacetime structure and time itself appeared from a timeless continuum. Full article
Show Figures

Figure 1

17 pages, 358 KB  
Review
Quantum and Classical Cosmology in the Brans–Dicke Theory
by Carla R. Almeida, Olesya Galkina and Julio César Fabris
Universe 2021, 7(8), 286; https://doi.org/10.3390/universe7080286 - 5 Aug 2021
Cited by 10 | Viewed by 2597
Abstract
In this paper, we discuss classical and quantum aspects of cosmological models in the Brans–Dicke theory. First, we review cosmological bounce solutions in the Brans–Dicke theory that obeys energy conditions (without ghost) for a universe filled with radiative fluid. Then, we quantize this [...] Read more.
In this paper, we discuss classical and quantum aspects of cosmological models in the Brans–Dicke theory. First, we review cosmological bounce solutions in the Brans–Dicke theory that obeys energy conditions (without ghost) for a universe filled with radiative fluid. Then, we quantize this classical model in a canonical way, establishing the corresponding Wheeler–DeWitt equation in the minisuperspace, and analyze the quantum solutions. When the energy conditions are violated, corresponding to the case ω<32, the energy is bounded from below and singularity-free solutions are found. However, in the case ω>32, we cannot compute the evolution of the scale factor by evaluating the expectation values because the wave function is not finite (energy spectrum is not bounded from below). However, we can analyze this case using Bohmian mechanics and the de Broglie–Bohm interpretation of quantum mechanics. Using this approach, the classical and quantum results can be compared for any value of ω. Full article
(This article belongs to the Special Issue Quantum Cosmology)
Show Figures

Figure 1

13 pages, 279 KB  
Article
Minisuperspace Quantization of f(T, B) Cosmology
by Andronikos Paliathanasis
Universe 2021, 7(5), 150; https://doi.org/10.3390/universe7050150 - 16 May 2021
Cited by 13 | Viewed by 2644
Abstract
We discuss the quantization in the minisuperspace for the generalized fourth-order teleparallel cosmological theory known as fT, B. Specifically we focus on the case where the theory is linear on the torsion scalar, in that consideration we are able [...] Read more.
We discuss the quantization in the minisuperspace for the generalized fourth-order teleparallel cosmological theory known as fT, B. Specifically we focus on the case where the theory is linear on the torsion scalar, in that consideration we are able to write the cosmological field equations with the use of a scalar field different from the scalar tensor theories, but with the same dynamical constraints as that of scalar tensor theories. We use the minisuperspace description to write for the first time the Wheeler-DeWitt equation. With the use of the theory of similarity transformations we are able to find exact solutions for the Wheeler-DeWitt equations as also to investigate the classical and semiclassical limit in the de Broglie -Bohm representation of quantum mechanics. Full article
(This article belongs to the Special Issue Teleparallel Gravity: Foundations and Observational Constraints)
46 pages, 1135 KB  
Review
Bouncing Quantum Cosmology
by Nelson Pinto-Neto
Universe 2021, 7(4), 110; https://doi.org/10.3390/universe7040110 - 20 Apr 2021
Cited by 13 | Viewed by 4091
Abstract
The goal of this contribution is to present the properties of a class of quantum bouncing models in which the quantum bounce originates from the Dirac canonical quantization of a midi-superspace model composed of a homogeneous and isotropic background, together with small inhomogeneous [...] Read more.
The goal of this contribution is to present the properties of a class of quantum bouncing models in which the quantum bounce originates from the Dirac canonical quantization of a midi-superspace model composed of a homogeneous and isotropic background, together with small inhomogeneous perturbations. The resulting Wheeler-DeWitt equation is interpreted in the framework of the de Broglie-Bohm quantum theory, enormously simplifying the calculations, conceptually and technically. It is shown that the resulting models are stable and they never get to close to the Planck energy, where another more involved quantization scheme would have to be evoked, and they are compatible with present observations. Some physical effects around the bounce are discussed, like baryogenesis and magnetogenesis, and the crucial role of dark matter and dark energy is also studied. Full article
(This article belongs to the Special Issue Bounce Cosmology)
Show Figures

Figure 1

28 pages, 362 KB  
Article
The Quantization of Gravity: Quantization of the Hamilton Equations
by Claus Gerhardt
Universe 2021, 7(4), 91; https://doi.org/10.3390/universe7040091 - 7 Apr 2021
Cited by 4 | Viewed by 2847
Abstract
We quantize the Hamilton equations instead of the Hamilton condition. The resulting equation has the simple form Δu=0 in a fiber bundle, where the Laplacian is the Laplacian of the Wheeler–DeWitt metric provided n4. Using then [...] Read more.
We quantize the Hamilton equations instead of the Hamilton condition. The resulting equation has the simple form Δu=0 in a fiber bundle, where the Laplacian is the Laplacian of the Wheeler–DeWitt metric provided n4. Using then separation of variables, the solutions u can be expressed as products of temporal and spatial eigenfunctions, where the spatial eigenfunctions are eigenfunctions of the Laplacian in the symmetric space SL(n,R)/SO(n). Since one can define a Schwartz space and tempered distributions in SL(n,R)/SO(n) as well as a Fourier transform, Fourier quantization can be applied such that the spatial eigenfunctions are transformed to Dirac measures and the spatial Laplacian to a multiplication operator. Full article
(This article belongs to the Special Issue Advances in Loop Quantum Cosmology)
Back to TopTop