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Abstract: We quantized the interaction of gravity with Yang–Mills and spinor fields; hence, offering a
quantum theory incorporating all four fundamental forces of nature. Let us abbreviate the spatial
Hamilton functions of the standard model by HSM and the Hamilton function of gravity by HG.
Working in a fiber bundle E with base space S0 = Rn, where the fiber elements are Riemannian
metrics, we can express the Hamilton functions in the form HG + HSM = HG + t−

2
3 H̃SM, if n = 3,

where H̃SM depends on metrics σij satisfying det σij = 1. In the quantization process, we quantize
HG for general σij but H̃SM only for σij = δij by the usual methods of QFT. Let v resp. ψ be the spatial
eigendistributions of the respective Hamilton operators, then, the solutions u of the Wheeler–DeWitt
equation are given by u = wvψ, where w satisfies an ODE and u is evaluated at (t, δij) in the fibers.

Keywords: quantization of gravity; quantum gravity; standard model; temporal and spatial
eigenfunctions; Fourier quantization; symmetric spaces

1. Introduction

General relativity is a Lagrangian theory, i.e., the Einstein equations are derived as the
Euler–Lagrange equation of the Einstein–Hilbert functional∫

N
(R̄− 2Λ), (1)

where N = Nn+1, n ≥ 3, is a globally hyperbolic Lorentzian manifold, R̄ is the scalar
curvature, and Λ is a cosmological constant. We also omitted the integration density in
the integral. In order to apply a Hamiltonian description of general relativity, one usually
defines a time function x0 and considers the foliation of N given by the slices

M(t) = {x0 = t}. (2)

We may, without loss of generality, assume that the spacetime metric splits

ds̄2 = −w2(dx0)2 + gij(x0, x)dxidxj, (3)

cf. [1] (Theorem 3.2). Then, the Einstein equations also split into a tangential part

Gij + Λgij = 0 (4)

and a normal part
Gαβνανβ −Λ = 0, (5)

where the naming refers to the given foliation. For the tangential Einstein equations, one
can define equivalent Hamilton equations due to the groundbreaking paper by Arnowitt,

Universe 2022, 8, 404. https://doi.org/10.3390/universe8080404 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe8080404
https://doi.org/10.3390/universe8080404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0003-1328-1457
https://doi.org/10.3390/universe8080404
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe8080404?type=check_update&version=2


Universe 2022, 8, 404 2 of 26

Deser, and Misner [2]. The normal Einstein equations can be expressed by the so-called
Hamilton condition

H = 0, (6)

where H is the Hamiltonian used in defining the Hamilton equations. In the canonical
quantization of gravity, the Hamiltonian is transformed to a partial differential operator of
a hyperbolic type Ĥ and the possible quantum solutions of gravity are supposed to satisfy
the so-called Wheeler–DeWitt equation

Ĥu = 0 (7)

in an appropriate setting, i.e., only the Hamilton condition, (6) was quantized, or equiva-
lently, the normal Einstein equation, while the tangential Einstein equations were ignored.

In [1], we solved the Equation (7) in a fiber bundle E with the base space S0,

S0 = {x0 = 0} ≡ M(0), (8)

and fibers F(x), x ∈ S0,
F(x) ⊂ T0,2

x (S0), (9)

the elements of which are the positive definite symmetric tensors of order two, the Rieman-
nian metrics in S0. The hyperbolic operator Ĥ is then expressed in the form

Ĥ = −∆− (R− 2Λ)ϕ, (10)

where ∆ is the Laplacian of the DeWitt metric given in the fibers, R the scalar curvature of
the metrics gij(x) ∈ F(x), and ϕ is defined by

ϕ2 =
det gij

det ρij
, (11)

where ρij is a fixed metric in S0, such that, instead of densities, we consider functions.
The Wheeler–DeWitt equation could be solved in E but only as an abstract hyperbolic equation.
The solutions could not be split into corresponding spatial and temporal eigenfunctions.

In a recent paper [3], we overcame this difficulty by quantizing the Hamilton equations
instead of the Hamilton condition.

As a result, we obtained the equation

− ∆u = 0 (12)

in E, where the Laplacian is the Laplacian in (10). The lower order terms of Ĥ

(R− 2Λ)ϕ (13)

were eliminated during the quantization process. This result was valid for all dimensions
3 ≤ n, provided n 6= 4.

The fibers add additional dimensions to the quantized problem, namely,

dim F =
n(n + 1)

2
≡ m + 1. (14)

The fiber metric, the DeWitt metric, which is responsible for the Laplacian in (12), can
be expressed in the form

ds2 = −16(n− 1)
n

dt2 + ϕGABdξ AdξB, (15)
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where the coordinate system is

(ξa) = (ξ0, ξA) ≡ (t, ξ A). (16)

The (ξA), 1 ≤ A ≤ m, are coordinates for the hypersurface

M ≡ M(x) = {(gij) : t4 = det gij(x) = 1, ∀ x ∈ S0}. (17)

We also assumed that S0 = Rn and that the metric ρij in (11) is the Euclidean metric
δij. It is well-known that M is a symmetric space

M = SL(n,R)/SO(n) ≡ G/K. (18)

It is also easily verified that the induced metric of M in E is isometric to the Riemannian
metric of the coset space G/K.

Now, we were in a position to use the separation of variables, namely, we wrote a
solution of (12) in the form

u = w(t)v(ξ A), (19)

where v is a spatial eigenfunction of the induced Laplacian of M

− ∆Mv ≡ −∆v = (|λ|2 + |ρ|2)v (20)

and w is a temporal eigenfunction satisfying the ODE

ẅ + mt−1ẇ + µ0t−2w = 0 (21)

with

µ0 =
16(n− 1)

n
(|λ|2 + |ρ|2). (22)

The eigenfunctions of the Laplacian in G/K are well-known and we chose the kernel
of the Fourier transform in G/K in order to define the eigenfunctions. This choice also
allowed us to use the Fourier quantization similar to the Euclidean case, such that the
eigenfunctions were transformed to Dirac measures and the Laplacian to a multiplication
operator in the Fourier space.

In the present paper, we quantize the Einstein–Hilbert functional combined with the
functionals of the other fundamental forces of nature, i.e., we look at the Lagrangian functional

J = α−1
N

∫
Ω̃
(R̄− 2Λ)−

∫
Ω̃

1
4 γāb̄ ḡµρ2 ḡλρ1 Fā

µρ1
Fb̄

ρ2λ

−
∫

Ω̃
{ 1

2 ḡµλγāb̄Φā
µΦ̄b̄

λ + V(Φ)}

+
∫

Ω̃
{ 1

2 [ψ̃I Eµ
a γa(Dµψ)I + ψ̃I Eµ

a γa(Dµψ)I ] + mψ̃Iψ
I},

(23)

where αN is a positive coupling constant, Ω̃ b N = Nn+1 and N is a globally hyperbolic
spacetime with metric ḡαβ, 0 ≤ α, β ≤ n, where the metric splits as in (3).

The functional J consists of the Einstein–Hilbert functional, the Yang–Mills and Higgs
functional, and a massive Dirac term.

The Yang–Mills field (Aµ)
Aµ = f c̄ Ac̄

µ (24)

corresponds to the adjoint representation of a compact, semi-simple Lie group G with Lie
algebra g. The f c̄,

f c̄ = ( f ā
c̄b̄) (25)

are the structure constants of g.
We assume the Higgs field Φ = (Φā) to have complex valued components.
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The spinor field ψ = (ψI
A) has a spinor index A, 1 ≤ A ≤ n1, and a color index I,

1 ≤ I ≤ n2. Here, we suppose that the Lie group has a unitary representation R, such that

tc̄ = R( f c̄) (26)

are anti-Hermitian matrices acting on Cn2 . The symbol Aµψ is now defined by

Aµψ = tc̄ψAc̄
µ. (27)

There are some major difficulties in achieving a quantization of the functional in (23).
Quantizing the Hamilton equations, to avoid the problem with the scalar curvature term,
runs into technical difficulties, even if the required quantization of the matter fields in
the curved spacetimes could be achieved since the resulting operator would no longer be
hyperbolic because the elliptic parts of the gravitational resp. matter Hamiltonians would
have different signs in the case of n = 3. This particular problem would not occur when
the Hamilton condition would be quantized. The Hamilton condition has the form

HG + HYM + HD + HH = 0, (28)

where the subscripts refer to gravity, Yang–Mills, Dirac, and Higgs. On the left-hand side
are the Hamilton functions of the respective fields. They depend on the Riemannian metrics
gij, the Yang–Mills connections, and the spinor and Higgs fields. The main part of the
quantized gravitational Hamiltonian is a second-order hyperbolic differential operator
with respect to the variables gij while the scalar curvature term R is of zero-order. With
this in mind, we also shall apply these categories to the gravitational Hamilton function
where the main part, quadratic in the conjugate momenta, is said to be of the second-order
and the zero-order terms consist of the scalar curvature and the cosmological constant Λ.
Similarly, we consider the matter Hamilton functions to be zero-order terms with respect to
the metric gij, i.e., there is no qualitative difference by assuming gij to be flat or non-flat,
or more precisely, quantizing a matter Hamiltonian in a curved spacetime (when gij is a
given, fixed metric and not a variable) is qualitatively the same as quantizing it for the
Euclidean metric, though the task is certainly more difficult.

Thus, the difficulties arising from quantizing the Hamilton condition can best be
explained by considering the Wheeler–DeWitt equation

ĤGu = 0 in E, (29)

cf. (7), where we wrote Ĥ instead of ĤG. This is a hyperbolic differential equation, which
can be expressed by

ĤGu = −∆u + ϕ(R− 2Λ)u = 0, (30)

where the Laplacian is the Laplacian of the fiber metric (15). In the coordinate system (16),
we have

ĤGu = t−m ∂

∂t
(tm ∂u

∂t
)− t−2∆Mu + t2(R− 2Λ)u, (31)

where M is the hypersurface (17). Since M is isometric to the symmetric space (18) it is
mathematically irresistible to solve (31) by applying separation of variables and using the
functions of the Fourier kernel of M as spatial eigenfunctions v, where v = v(σij), σij are
the elements of M. Since

gij(x) = t
4
n σij(x) (32)

the critical term R can be expressed as

R(gij) = t−
4
n R(σij) (33)
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due to the relation between the scalar curvatures of conformal metrics.
Thus, it is obvious that the ansatz

u = wv, (34)

where w = w(t) solves an ODE is only possible if R(σij) is constant

R(σij) = λ0. (35)

The constant is arbitrary but determined by the metrics we consider to be important,
e.g., in the case of a black hole, we would choose σij to be the limit metric of a converging
sequence of Cauchy hypersurfaces of the interior region of the black hole, which converge
to the event horizon topologically but the induced metrics of which converge to a Rieman-
nian metric, cf. [4,5] or [6] (Chapters 4 and 5). In the present case, where we want to include
the matter fields of the standard model, we could choose σij = δij.

However, this ansatz implies that the Wheeler–DeWitt equation is not solved for all
(t, σij) but only for the σij satisfying (35). Given the simplicity and mathematical beauty of
the solution, we are inclined to accept this restriction.

Let us now consider the quantization of the Hamilton condition (28) taking all Hamil-
ton functions into account. In view of the relation (32), let us propose the following model:
If we were able to express the non-gravitational Hamiltonians as

HYM = tpH̃YM, HD = tp H̃D, HH = tpH̃H , (36)

where the embellished Hamiltonians depend on σij, then, by choosing in addition n = 3
and σij = δij, these Hamiltonians could be quantized by the known methods of QFT, if the
Lie groups would be chosen appropriately. The Wheeler–DeWitt equation would then not
be solved for all (t, σij) but only for (t, δij). However, the spatial eigendistributions of the
Hamilton operator ĤG, i.e., the eigendistributions of the Laplacian of M, cf. (20), would
still be used but they would be evaluated at σij = δij.

In Section 4, we prove that the expressions in (36) are indeed valid with p = − 2
3

provided n = 3 and provided that the mass term in the Dirac Lagrangian and the Higgs
Lagrangian is slightly modified. The embellished Hamiltonians are then standard Hamilto-
nians without any modifications, for details, we refer to Section 4. The Hamilton constraint
then has the form

H = HG + HYM + HH + HD

= HG + t−
2
3 (H̃YM + H̃H + H̃D)

≡ HG + t−
2
3 H̃SM = 0,

(37)

where the subscript SM refers to the fields of the standard model or a corresponding subset
of fields. The solutions of the Wheeler–DeWitt equation

Ĥu = 0 (38)

can then be achieved by using the separation of variables. We proved:

Theorem 1. Let n = 3, v = eλ,b0 and let ψ be an eigendistribution of H̃SM when σij = δij
such that

− ∆Meλ,b0 = (|λ|2 + 1)eλ,b0 , (39)

H̃SMψ = λ1ψ, λ1 ≥ 0, (40)
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and let w be a solution of the ODE

t−m ∂

∂t
(tm ∂w

∂t
) +

32
3
(|λ|2 + 1)t−2w +

32
3

α−1
N λ1t−

2
3 w

+
64
3

α−2
N Λt2w = 0

(41)

then
u = weλ,b0 ψ (42)

is a solution of the Wheeler–DeWitt equation

Ĥu = 0, (43)

where eλ,b0 is evaluated at σij = δij and where we note that m = 5.

We shall refer to eλ,b0 and ψ as the spatial eigenfunctions and w as the temporal
eigenfunction.

Remark 1. We could also apply the respective Fourier transforms to−∆̃eλ,b0 resp. H̃SMψ and consider

wêλ,b0 ψ̂ (44)

as the solution in Fourier space, where ψ̂ would be expressed with the help of the ladder operators.

The temporal eigenfunctions are analyzed in Section 5. They must satisfy an ODE of
the form

ẅ + 5t−1ẇ + m1t−2w + m2
2t−

2
3 w + m3t2w = 0, (45)

where
m1 ≥

32
3

, m2 ≥ 0, m3 ∈ R. (46)

For simplicity, we shall only state the result when m3 = 0, which is tantamount to
setting Λ = 0.

Theorem 2. Assume m3 = 0 and m2 > 0, then the solutions of the ODE (45) are generated by

J( 3
2

√
m1 − 4 i, 3

2 m2t
2
3 )t−2 (47)

and
J(− 3

2

√
m1 − 4 i, 3

2 m2t
2
3 )t−2, (48)

where J(λ, t) is the Bessel function of the first kind.

Lemma 1. The solutions in the theorem above diverge to complex infinity if t tends to zero and
they converge to zero if t tends to infinity.

2. Definitions and Notations

Greek indices α, β range from 0 to n, Latin i, j, k from 1 to n, and we stipulate 0 ≤ a,
b ≤ n but 1 ≤ a′, b′ ≤ n. Barred indices ā refer to the Lie algebra g, 1 ≤ ā ≤ n0 = dim g.

γāb̄ is the Cartan–Killing metric.
The Dirac matrices are denoted by γa and they satisfy

γaγb + γbγa = 2ηab I, (49)

where ηab is the Minkowski metric with signature (−,+, . . . ,+). γ0 is anti-Hermitian and
γa′ Hermitian.
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The indices a, b are always raised or lowered with the help of the Minkowski metric,
Greek indices with the help of the spacetime metric ḡαβ.

The γa act in

C2
n+1

2 , (50)

if n is odd and in
C2

n
2 ⊕ C2

n
2 , (51)

if n is even. In both cases, we simply refer to these spaces as

Cn1 , (52)

i.e., the spinor index A has a range of 1 ≤ A ≤ n1.
The color index I has a range of 1 ≤ I ≤ n2 and, hence, a spinor field ψI

A has values in

Cn1 ⊗Cn2 . (53)

Finally, a Hermitian form 〈·, ·〉 is anti-Hermitian in the first argument.

3. Spinor Fields

The Lagrangian of the spinor field is stated in (23). Here, ψ = (ψI
A) is a multiplet of

the spinors with spin 1
2 ; A is the spinor index, 1 ≤ A ≤ n1, and I, 1 ≤ I ≤ n2, the color

index. We shall also lower or raise the index I with the help of the Euclidean metric (δI J).
Let Γµ be the spinor connection

Γµ = 1
4 ω b

µ aγbγa, (54)

then the covariant derivative Dµψ is defined by

Dµψ = ψ,µ + Γµψ + Aµψ. (55)

Let (eb
λ) be a n-bein, such that

ḡµλ = ηabea
µeb

λ, (56)

where (ηab) is the Minkowski metric, and let (Eµ
a ) be its inverse

Eµ
a = ηab ḡµλeb

λ, (57)

cf. [7] (p. 246).
The covariant derivative of Eα

a with respect to (ḡαβ) is then given by

Eα
a;µ = Eα

a,µ + Γ̄α
µβEβ

a (58)

and
ω b

µ a = Eλ
a;µeb

λ = −Eλ
a eb

λ;µ, (59)

hence, the spin connection Γµ can be expressed as

Γµ = 1
4 ω b

µ aγbγa = 1
4 Eλ

a;µeb
λγbγa = − 1

4 Eλ
a eb

λ;µγbγa. (60)

We shall first show:

Lemma 2. Let ḡαβ be a fixed spacetime metric that is split by the time function x0, then there exists
an orthonormal frame (ea

λ), such that

e0
k = 0, 1 ≤ k ≤ n, (61)
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and
ea′

k;0 = ea′
,0 − Γ̄λ

k0ea′
λ = 0 (62)

for all 1 ≤ a′ ≤ n and 1 ≤ k ≤ n.

Proof. Assume that
ḡ00 = −w2, (63)

then define the conformal metric
g̃αβ = w−2 ḡαβ. (64)

The curves
(γα(t, x)) = (t, xi), x ∈ S0, (65)

are then geodesics with respect to g̃αβ. Let (êa′
λ ), 1 ≤ a′ ≤ n, be an orthonormal frame in

T0,1(S0) ↪→ T0,1(N), such that

êa′
0 = 0 ∀ 1 ≤ a′ ≤ n. (66)

The êa′ depend on x = (xi) ∈ S0. Let (ẽa′
λ )(t, x) be the solutions of the flow equations

D
dt

ẽa′
λ = 0,

ẽa′
λ (0, x) = êa′

λ (x),
(67)

i.e., we parallel transport êa′ along the geodesics. Setting

(ẽ0
λ) = (1, 0, . . . , 0) (68)

the (ẽa
λ) are then an orthonormal frame of 1-forms in (N, g̃αβ) such that the ẽa satisfy

ẽa
λ:0 = 0 ∀ 0 ≤ a ≤ n, (69)

where we indicate covariant differentiation with respect to g̃αβ by a colon.
Define ea

λ by
ea

λ = wẽa
λ, (70)

then the ea
λ are orthonormal frames in (N, ḡαβ). The Christoffel symbols Γ̄

γ
αβ resp. Γ̃

γ
αβ are

related by the formula

Γ̄
γ
αβ = Γ̃

γ
αβ − w−1wαδ

γ
β + w−1wβδ

γ
α − w−1w̌γ g̃αβ, (71)

where
w̌γ = g̃γλwλ. (72)

In view of (69), we then infer

0 = ẽa′
j:0 = ˙̃ea′

j − Γ̃k
0j ẽ

a′
k (73)

and we deduce further
ea′

j;0 = ẇẽa′
j + w ˙̃ea′

j − Γ̄k
0jwẽa′

k

= ẇẽa′
j + Γ̃k

0jwẽa′
k − Γ̄k

0jwẽa′
k

= 0

(74)

because of (71).

Subsequently, we shall always use these particular orthonormal frames.
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We are now able to simplify the expressions for the spin connections

Γµ = − 1
4 Eλ

a eb
λ;µγaγb. (75)

We have

4Γ0 = −Eλ
a eb

λ;0γbγa

= −Eλ
a e0

λ;0γ0γa − Eλ
a eb′

λ;0γb′γ
a

= −E0
0e0

0;0γ0γ0 − Ei
a′ e

0
i;0γ0γa′ − E0

0eb′
0;0γb′γ

0 − Ei
a′ e

b′
i;0γb′γ

a′

= −Ei
a′ e

0
i;0γ0γa′ − E0

0eb′
0;0γb′γ

0

(76)

in view of Lemma 2 and the fact that

e0
0;0 = 0. (77)

The matrices γ0γa′ and γb′γ
0 are Hermitian, since γ0 is anti-Hermitian, γa′ Hermitian,

and there holds
γ0γa′ = −γa′γ0. (78)

Hence, the quadratic form

ψ̃E0
aγaΓ0ψ = −iE0

0ψ̄Γ0ψ (79)

is imaginary and will be eliminated by adding its complex conjugate. Γ0 can therefore be
ignored, which we shall indicate by writing

Γ0 ' 0. (80)

A similar notation should apply to other terms that will be canceled when adding the
complex conjugates.

Let us consider Γk:

4Γk = −Eλ
a eb

λ;kγbγa

= −Eλ
a e0

λ;kγ0γa − Eλ
a eb′

λ;kγb′γ
a

= −E0
0e0

0;kγ0γ0 − Ei
a′ e

0
i;kγ0γa′ − E0

0eb′
0;kγb′γ

0 − Ei
a′ e

b′
i;kγb′γ

a′ .

(81)

The first term on the right-hand side vanishes, since

e0
0;k = wk − Γ̄0

0kw = 0. (82)

Furthermore, there holds

e0
i;k = −Γ̄0

ikw = − 1
2 ġikw−1 (83)

and
eb′

0;k = −Γ̄
j

0keb′
j = − 1

2 gl j ġkleb′
j , (84)

yielding
4Γk =

1
2 ġikw−1Ei

a′γ0γa′ + 1
2 w−1gl j ġkleb′

i γb′γ
0 − Ei

a′ e
b′
i;kγb′γ

a′

= w−1 ġikEi
a′γ0γa′ − Ei

a′ e
b′
i;kγb′γ

a′ ,
(85)

since
γ0γa′ = −γa′γ0. (86)
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The first term on the right-hand side of (85) has to be eliminated because of the
presence of ġik. To achieve this, fix a Riemannian metric ρij = ρij(x) ∈ T0,2(S0), and define
the function ϕ by

ϕ =

√
det gij

det ρij
(87)

and the spinors χ = (χi
A) by

χ =
√

ϕψ, (88)

then
χ̇ =
√

ϕψ̇ + 1
4 gij ġijχ (89)

and
χ,k =

1
2 ϕk ϕ−1/2χ +

√
ϕψ,k. (90)

Looking at the real part of the quadratic form

iχ̃Ek
a′γ

a′χ,k (91)

we deduce that
χ,k '

√
ϕψ,k. (92)

Moreover, we infer

iψ̃Ek
c′γ

c′Γkψ = iψ̄Ek
c′γ

0γc′Γkψ

= 1
4 iψ̄Ek

c′E
j
a′w
−1 ġjkγ0γc′γ0γa′ψ

− 1
4 iψ̄Ek

c′E
j
a′ e

b′
j;kγ0γc′γb′γ

a′ψ.

(93)

We now observe that

γ0γc′γ0γa′ = −γ0γ0γc′γa′ = −γc′γa′ , (94)

hence,
Ek

c′E
j
a′γ

0γc′γ0γa′ = −Ek
c′E

j
a′γ

c′γa′ = −gjk (95)

and we conclude

iψ̃Eµ
c γcDµψϕ ' −iχ̄χ̇w−1

+ iχ̄Ek
c′γ

0γc′{χ,k − 1
4 Ej

a′ e
b′
j;kγb′γ

a′χ + Akχ}
(96)

Remark 2. The term in the braces is the covariant derivative of χ with respect to the spin connec-
tion Γ̃k

Γ̃b′
ka′ =

1
4 ω̃b′

ka′ = −
1
4 Ej

a′ e
b′
j;kγb′γ

a′ (97)

and the Yang–Mills connection (Aµ) satisfying A0 = 0, such that

D̃kχ = χ,k + Γ̃kχ + Akχ. (98)

The gauge transformations for both the Yang–Mills connection as well as for the spin connection
do not depend on x0 but only on x ∈ S0. In case of the Yang–Mills connection, this has already been
proved in [8] (Lemma 2.6), while the proof for the spin connection Γ̃k follows from (97) and (85) if
we only consider Lorentzian metrics of the form

ds̄2 = −dt2 + gij(x)dxidxj (99)

in a product manifold N = I × S0, as will be the case after the quantization of the Dirac field.
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Summarizing the preceding results, we obtain:

Lemma 3. The Dirac Lagrangian can be expressed in the form

LD = i
2 (χ̄I χ̇

I − ˙̄χIχI)w−1 ϕ−1 + miχ̄Iγ
0χI ϕ−1

− i
2{χ̄Iγ

0Ek
a′γ

a′ D̃kχI − χ̄Iγ0Ek
a′γ

a′ D̃kχI}ϕ−1,
(100)

where χ and D̃k are defined in (88) resp. (98).

4. Quantization of the Lagrangian

We consider the functional

J = α−1
N

∫
Ω̃
(R̄− 2Λ)−

∫
Ω̃

1
4 γāb̄ ḡµρ2 ḡλρ1 Fā

µρ1
Fb̄

ρ2λ

−
∫

Ω̃
{ 1

2 ḡµλγāb̄Φā
µΦ̄b̄

λ + V(Φ)}

+
∫

Ω̃
{ 1

2 [ψ̃I Eµ
a γa(Dµψ)I + ψ̃I Eµ

a γa(Dµψ)I ] + mψ̃Iψ
I},

(101)

where αN is a positive coupling constant and Ω̃ b N.
We use the action principle that, for an arbitrary Ω̃ as above, a solution (A, Φ, ψ, ḡ)

should be a stationary point of the functional with respect to compact variations. This
principle requires no additional surface terms for the functional.

As we proved in [1], we may only consider metrics ḡαβ that split with respect to some
fixed globally defined time function x0, such that

ds̄2 = −w2(dx0)2 + gijdxidxj (102)

where g(x0, ·) are Riemannian metrics in S0,

S0 = {x0 = 0}. (103)

The first functional on the right-hand side of (101) can be written in the form

α−1
N

∫ b

a

∫
Ω
{ 1

4 Gij,kl ġij ġklw−2 + R− 2Λ}wϕ, (104)

where
Gij,kl = 1

2{g
ikgjl + gil gjk} − gijgkl (105)

is the DeWitt metric,
(gij) = (gij)

−1, (106)

R the scalar curvature of the slices

{x0 = t} (107)

with respect to the metric gij(t, ·), and where we also assumed that Ω̃ is a cylinder

Ω̃ = (a, b)×Ω, Ω b S0, (108)

such that Ω̃ ⊂ Uk for some k ∈ N, where the Uk are special coordinate patches of N,
such that there exists a local trivialization in Uk with the properties that there is a fixed
Yang–Mills connection

Ā = (Āā
µ) = f ā Āā

µdxµ (109)

satisfying
Āā

0 = 0 in Uk, (110)
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cf. [8] (Lemma 2.5). We may then assume that the Yang–Mills connections A = (Aā
µ) are of

the form
Aā

µ(t, x) = Āā
µ(0, x) + Ãā

µ(t, x), (111)

where (Ãā
µ) is a tensor, see [8] (Section 2).

The Riemannian metrics gij(t, ·) are elements of the bundle T0,2(S0). Denote by E the
fiber bundle with base S0 where the fibers F(x) consist of the Riemannian metrics (gij).
We shall consider each fiber to be a Lorentzian manifold equipped with the DeWitt metric.
Each fiber F has the dimension

dim F =
n(n + 1)

2
≡ m + 1. (112)

Let (ξr), 0 ≤ r ≤ m, be coordinates for a local trivialization, such that

gij(x, ξr) (113)

is a local embedding. The DeWitt metric is then expressed as

Grs = Gij,kl gij,rgkl,s, (114)

where a comma indicates partial differentiation. In the new coordinate system, the curves

t→ gij(t, x) (115)

can be written in the form
t→ ξr(t, x) (116)

and we infer
Gij,kl ġij ġkl = Grs ξ̇r ξ̇s. (117)

Hence, we can express (104) as

J =
∫ b

a

∫
Ω

α−1
n { 1

4 Grs ξ̇r ξ̇sw−1 ϕ + (R− 2Λ)wϕ}, (118)

where we now refrain from writing down the density
√

ρ explicitly, since it does not depend
on (gij) and, therefore, should not be part of the Legendre transformation. Here, we follow
Mackey’s advice in [9] (p. 94) to always consider rectangular coordinates when applying
canonical quantization, which can be rephrased that the Hamiltonian has to be a coordinate
invariant, hence no densities are allowed.

Denoting the Lagrangian function in (118) by L, we define

πr =
∂L
∂ξ̇r

= ϕGrs
1

2αN
ξ̇sw−1 (119)

and we obtain for the Hamiltonian function ĤG

ĤG = ξ̇r ∂L
∂ξ̇r
− L

= ϕGrs
( 1

2αN
ξ̇rw−1)( 1

2αN
ξ̇sw−1)wαN − α−1

N (R− 2Λ)ϕw

= ϕ−1GrsπrπswαN − α−1
N (R− 2Λ)ϕw

≡ HGw,

(120)

where Grs is the inverse metric. Hence,

HG = αN ϕ−1Grsπrπs − α−1
N (R− 2Λ)ϕ (121)
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is the Hamiltonian that will enter the Hamilton constraint, for details see [6] (Chapter 1.4).
Let us recall that the fibers F can be considered Lorentzian manifolds, even globally

hyperbolic manifolds, equipped with the DeWitt metric (ϕGij,kl), where ϕ is a time function,
cf. [6] (Theorem 1.4.2). In the fibers, we can introduce new coordinates, (ξa) = (ξ0, ξA) ≡
(t, ξ A) , 0 ≤ a ≤ m, and 1 ≤ A ≤ m, such that

t =
√

ϕ (122)

and (ξ A) are coordinates for the hypersurface

M = {ϕ = 1} = {ξ0 = 1}. (123)

The Lorentzian metric in the fibers can then be expressed in the form

ds2 = −16(n− 1)
n

dt2 + t2GABdξAdξB, (124)

where (GAB) is a Riemannian metric on M, which is independent of t. When we work in a
local trivialization of the bundle E, the coordinates (ξA) are independent of x. The time
coordinate t is also independent of x, cf. [1] (Lemma 1.8). Moreover, the fiber elements (gij)
can be expressed in the form

gij = t
4
n σij, (125)

where (σij) is an element of M, i.e.,
t(σij) = 1, (126)

or equivalently,
det σij = det ρij. (127)

Next, let us look at the Yang–Mills Lagrangian, which can be expressed as

LYM = 1
2 γāb̄gij Ãā

i,0 Ãb̄
j,0w−1 ϕ− 1

4 FijFijwϕ. (128)

Let E0 be the adjoint bundle

E0 = (S0, g, π, Ad(G)) (129)

with base space S0, where the gauge transformations only depend on the spatial variables
x = (xi). Then the mappings t→ Ãā

i (t, ·) can be looked at as curves in T1,0(E0)⊗ T0,1(S0),
where the fibers of T1,0(E0)⊗ T0.1(S0) are the tensor products

g⊗ T0,1
x (S0), x ∈ S0, (130)

which are vector spaces equipped with the metric

γāb̄ ⊗ gij. (131)

For our purposes, it is more convenient to consider the fibers to be Riemannian
manifolds endowed with the above metric. Let (ζ p), 1 ≤ p ≤ n1n, where n0 = dim g, be
local coordinates and

(ζ p)→ Ãā
i (ζ

p) ≡ Ã(ζ) (132)

be a local embedding, then the metric has the coefficients

Gpq = 〈Ãp, Ãq〉 = γāb̄gij Ãā
i,p Ãb̄

j,q. (133)

Hence, the Lagrangian LYM in (128) can be expressed in the form

LYM = 1
2 Gpq ζ̇ p ζ̇qw−1 ϕ− 1

4 FijFijwϕ (134)



Universe 2022, 8, 404 14 of 26

and we deduce
π̃p =

∂LYM

∂ζ̇ p = Gpq ζ̇qw−1 ϕ (135)

yielding the Hamilton function

ĤYM = πp ζ̇ p − LYM

= 1
2 Gpq(ζ̇

pw−1 ϕ)(ζ̇qw−1 ϕ)wϕ−1 + 1
4 FijFijwϕ

= 1
2 Gpqπ̃pπ̃qwϕ−1 + 1

4 FijFijwϕ

≡ HYMw.

(136)

Thus, after introducing a normal Gaussian coordinate system, such that w = 1,
the Hamiltonian that will enter the Hamilton constraint equation is

HYM = 1
2 ϕ−1Gpqπ̃pπ̃q +

1
4 FijFij ϕ. (137)

Combining, now, (122), (125) and (133) we infer that the Yang–Mills Hamiltonian can
be expressed as

HYM = t
4
n−2G̃pqπ̃pπ̃q +

1
4 FijFijt2− 8

n , (138)

where the indices in the last term are raised with respect to the metric σij, i.e.,

Fij = σikσjl Fkl . (139)

In the case of n = 3, the exponents of t in (138) are equal

4
3
− 2 = 2− 8

3
= −2

3
(140)

and we can write
HYM = t−

2
3 {G̃pqπ̃pπ̃q +

1
4 FijFij}

≡ t−
2
3 H̃YM.

(141)

Moreover, if (σij) as well as (ρij) are equal to the Euclidean metric (δij), then the
quantization of H̃YM would be achieved by known methods of QFT.

Hence, we shall attempt to express the Hamiltonians of the other physical forces, such
as the Dirac and Higgs Hamiltonians, when evaluated for

σij = ρij = δij (142)

and in the case of n = 3 in the form

HD = t−
2
3 H̃D (143)

resp.
HH = t−

2
3 H̃H (144)

such that the quantization of the spatial Hamiltonian

H̃YM + H̃D + H̃H (145)

would be well known, and in the end, all spatial Hamiltonians of the standard model could
be incorporated.

Let us first consider the Dirac Hamiltonian. In the Dirac Lagrangian LD, defined
in Equation (100) on page 11, the volume density

√
g is missing, i.e., in order to define

the Hamiltonian, we have to multiply the Lagrangian with
√

g, or, since we work with
functions instead of densities, we have to multiply the Lagrangian with ϕ.
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In addition, we shall also consider—at least locally—a normal Gaussian coordinate
system, such that w = 1. Then, the final Dirac Lagrangian has the form

LD = i
2 (χ̄I χ̇

I − ˙̄χIχI) + miχ̄Iγ
0χI

− i
2{χ̄Iγ

0Ek
a′γ

a′ D̃kχI − χ̄Iγ0Ek
a′γ

a′ D̃kχI},
(146)

The spinorial variables χI
A are anti-commuting Grassmann variables. They are ele-

ments of a Grassmann algebra with involution, where the involution corresponds to the
complex conjugation and will be denoted by a bar.

The χI
A are complex variables and we define the real resp. imaginary parts as

ξ I
A = 1√

2
(χI

A + χ̄I
A) (147)

resp.
η I

A = 1√
2i
(χI

A − χ̄I
A). (148)

Then,
χI

A = 1√
2
(ξ I

A + iη I
A) (149)

and
χ̄I

A = 1√
2
(ξ I

A − iη I
A). (150)

With these definitions, we obtain

i
2
(χ̄I χ̇

I − ¯̇χIχI) =
i
2
(ξA

I ξ̇ I
A + ηA

I η̇ I
A). (151)

Casalbuoni quantized the Bose–Fermi system in [10] (section 4), the results of which
can be applied to spin 1

2 fermions. The Lagrangian in [10] is the same as the main part our
Lagrangian in (146) on page 15, and the left derivative is used in that paper; hence, we use
left derivatives as well such that the conjugate momenta of the odd variables are, e.g.,

πA
I =

∂L
∂ξ̇ I

A
= − i

2
ξ A

I , (152)

and, thus, the conclusions in [10] can be applied.
The Lagrangian has been expressed in real variables—at least the important part of

it—and it follows that the odd variables ξ I
A, η I

A satisfy, after introducing anti-commutative
Dirac brackets as in [10] (equ. (4.11)),

{ξA
I , ξ J

B}
∗
+ = −iδJ

I δA
B , (153)

{ηA
I , η J

B}
∗
+ = −iδJ

I δA
B , (154)

and
{ξA

I , η J
B}
∗
+ = 0, (155)

cf. [10] (equ. (4.19)).
In view of (149), (150) we then derive

{χ̄A
I , χJ

B}
∗
+ = −iδJ

I δA
B , (156)

where χ̄A
I are the conjugate momenta.

Canonical quantization—with h̄ = 1—then requires that the corresponding operators
χ̂I

A, ˆ̄χB
J satisfy the anti-commutative rules

[χ̂I
A, ˆ̄χB

J ]+ = i{χI
A, χ̄B

J }∗+ = δI
J δB

A (157)
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and
[ ˆ̄χA

I , ˆ̄χB
J ]+ = [χ̂I

A, χ̂J
B]+ = 0, (158)

cf. [11] (equ. (3.10)) and [10] (equ. (5.17)).
From (146), we then deduce that the spinorial Hamilton function is equal to

HD = i
2{χ̄Iγ

0Ek
a′γ

a′ D̃kχI − χ̄Iγ0Ek
a′γ

a′ D̃kχI}
−miχ̄Iγ

0χI .
(159)

When we attempt to quantize this Hamilton function, then the vielbein ea′
k and its

inverse Ek
a′ will correspond to a given element gij(x) in the fiber F, which can be expressed

as in (125), and we deduce that the vielbein

ẽa′
k = t−

2
n ea′

k (160)

and its inverse
Ẽk

a′ = t
2
n Ek

a′ (161)

correspond to the metric σij. Furthermore, the covariant derivative D̃kχI is independent of
t, in view of (97) and (98) on page 10. Thus, the Hamilton function HD can be expressed as

HD = t−
2
3
( i

2{χ̄Iγ
0Ẽk

a′γ
a′ D̃kχI − χ̄Iγ0Ẽk

a′γ
a′ D̃kχI}

)
−miχ̄Iγ

0χI ,
(162)

i.e., the main part already has the form that we looked for in (143), provided n = 3, only
the mass term spoils the necessary configuration. To overcome this setback, we either have
to omit the mass term or modify it by multiplying the mass term in (23) on page 3 with
the factor

ϕ−
1
n , (163)

where ϕ is defined in (87) on page 10. Note that ϕ = 1 if

gij = ρij = δij (164)

as is the case in QFT. Either by omitting or by modifying the mass term, the Dirac Hamilton
function can be expressed in the required form

HD = t−
2
3 H̃D, (165)

where the underlying Riemannian metric is σij, provided n = 3.
The remaining Hamiltonian is the Hamiltonian of the Higgs field. The Higgs La-

grangian is defined by
LH = − 1

2 ḡαβγabΦa
αΦb

β −V(Φ), (166)

where V is a smooth potential. We assume that in a local coordinate system Φ has real
coefficients. The covariant derivatives of Φ are defined by a connection A = (Aa

µ) in E0

Φa
µ = Φa

,µ + f a
cb Ac

µΦb. (167)

As in the preceding section, we work in a local trivialization of E0 using the temporal
gauge, i.e.,

Aa
0 = 0, (168)

hence, we conclude
Φa

0 = Φa
,0. (169)
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Expressing the density g as in (87) on page 10, we obtain Lagrangian

LH = 1
2 γabΦa

,0Φb
,0 ϕ− 1

2 gijγabΦa
i Φb

j ϕ−V(Φ)ϕ, (170)

where, again, we use local coordinates, such that w = 1. In order to apply our approach,
outlined in (144), we have to modify the Lagrangian. Instead of the above Lagrangian, we
have to consider

LHmod = { 1
2 γabΦa

,0Φb
,0 − 1

2 gijγabΦa
i Φb

j }ϕ1+γ1 −V(Φ)ϕ1+γ2 . (171)

Let us define
pa =

∂LH

∂Φ̇a , Φ̇a = Φa
,0, (172)

then we obtain the Hamilton function

HHmod = paΦ̇a − LH

= 1
2 γab pa pb ϕ−(1+γ1) + 1

2 gijγabΦa
i Φb

j ϕ1+γ1 + V(Φ)ϕ1+γ2 .
(173)

After quantization, the gij are elements of the fiber F, i.e.,

gij = t
4
n σij. (174)

If n = 3, then γ1 has to be chosen, such that

− 2(1 + γ1) = −
4
3
+ 2(1 + γ1) = −

2
3

(175)

which is the case if
γ1 = −2

3
. (176)

For γ2, we obtain

2(1 + γ2) = −
2
3

(177)

yielding

γ2 = −4
3

. (178)

Thus, the Hamilton function of the modified Higgs field has the required form

HHmod = t−
2
3 H̃Hmod, (179)

where
H̃Hmod = 1

2 γab pa pb +
1
2 σijγabΦa

i Φb
j + V(Φ) (180)

is a standard Hamiltonian of a Higgs field in QFT by choosing σij = δij and Φ, V(Φ) as
well as the Yang–Mills connection appropriately.

Combining the four Hamilton functions in (120), (138), (179) and (162), the Hamilton
constraint has the form

H = HG + HYM + HH + HD

= HG + t−
2
3 (H̃YM + H̃H + H̃D)

≡ HG + t−
2
3 H̃SM = 0,

(181)

where we omit the subscript mod and where SM refers to the fields of the standard model
or to a corresponding subset of fields.
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The Hamiltonian

HG = αN ϕ−1Grsπrπs − α−1
N (R− 2Λ)ϕ (182)

we quantize, as in our former papers [1,12], to obtain

HG = −αN∆− α−1
N Rt2 + 2α−1

N Λt2, (183)

where the Laplacian is the Laplacian of the metric (124) acting in the fibers F of E. The Lapla-
cian acts on smooth functions u of the form u = u(gij). Choosing the Gaussian coordinate
system (ξa) = (t, ξA), such that the fiber metric has form as in (124), then, the hyperbolic
term −∆u can be expressed as

− ∆u =
n

16(n− 1)
t−m ∂

∂t
(tm ∂u

∂t
)− t−2∆̄u, (184)

where ∆̄ is the Laplacian of the hypersurface

M = {t = 1}. (185)

Using the separation of variables we consider functions u which are products

u(t, ξ A) = w(t)v(ξA), (186)

where v is a spatial eigenfunction, or eigendistribution, of the Laplacian ∆̄

− ∆̄v = λv. (187)

The hypersurface
M = {ϕ = 1} (188)

can be considered a subbundle of E, where each fiber M(x) is a hypersurface in the fiber
F(x) of E. We shall use the same notation M for the subbundle as well as for the hypersur-
face, and in general, we shall omit the reference to the base point x ∈ S0. Furthermore, we
specify the metric ρij ∈ T0,2(S0), which we used to define ϕ, to be equal to the Euclidean
metric, such that in Euclidean coordinates

ϕ2 =
det gij

det δij
= det gij. (189)

Then, it is well-known that each M(x) with the induced metric (GAB) is a symmetric
space, namely, it is isometric to the coset space

G/K = SL(n,R)/SO(n), (190)

cf. [13] (equ. (5.17), p. 1123) and [14] (p. 3). The eigenfunctions in symmetric spaces,
and especially of the coset space in (190), are well-known; they are the so-called spherical
functions. One can also define a Fourier transformation for functions in L2(G/K) and
prove a Plancherel formula, similar to the Euclidean case, cf. [15] (Chapter III). Moreover,
similar to the Euclidean case, we shall use the Fourier kernel to define the eigenfunctions
or eigendistributions, cf. [3] (Section 5).

Let
G = NAK (191)
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be an Iwasawa decomposition of G, where N is the subgroup of unit upper triangle
matrices, A is the abelian subgroup of the diagonal matrices with strictly positive diagonal
components and K = SO(n). The corresponding Lie algebras are denoted by

g, n, a and k. (192)

Here,

g = real matrices with zero trace

n = subspace of strictly upper triangular matrices with zero diagonal

a = subspace of diagonal matrices with zero trace

k = subspace of skew-symmetric matrices.

(193)

The Iwasawa decomposition is unique, when

g = nak (194)

we define the maps n, A, k by
g = n(g)A(g)k(g). (195)

We also use the expression log A(g), where log is the matrix logarithm. In the case of
diagonal matrices,

a = diag(a1, . . . , an) (196)

with positive entries
log a = diag(log ai), (197)

hence,
A(g) = elog A(g). (198)

Remark 3. (i) The Lie algebra a is a (n − 1)-dimensional real algebra, which, as a vector space, is
equipped with a natural real, symmetric scalar product, namely, the trace form

〈H1, H2〉 = tr(H1H2), Hi ∈ a. (199)

(ii) Let a∗ be the dual space of a. Its elements will be denoted by Greek symbols, some of which
have special meanings in the literature. The linear forms are also called additive characters.

(iii) Let λ ∈ a∗, then there exists a unique matrix Hλ ∈ a, such that

λ(H) = 〈Hλ, H〉 ∀H ∈ a. (200)

This definition allows defining a dual trace form in a∗ by setting for λ, µ ∈ a∗

〈λ, µ〉 = 〈Hλ, Hµ〉. (201)

The Fourier theory in X = G/K, which we summarized in [3] (Section 6), uses
the functions

eλ,b(x) = e(iλ+ρ) log A(x,b), (λ, b) ∈ a∗ × B, x ∈ X, (202)

as the Fourier kernel, where
B = K/M. (203)

Here, M is the centralizer of A in K and ρ is a special character with the norm

〈ρ, ρ〉 = 1
12

(n− 1)2n, (204)

cf. [3] (Lemma 1). If n = 3, then
|ρ|2 = 1. (205)
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For a precise definition of A(x, b) ∈ A, we refer to [3] (p. 19), which also contains
references to the corresponding mathematical literature given, especially to Helgason’s
book [15] (Chapter III).

The Fourier transform for functions f ∈ C∞
c (X,C) is then defined by

f̂ (λ, b) =
∫

X
f (x)e(−iλ+ρ) log A(x,b)dx (206)

for λ ∈ a∗ and b ∈ B, or, if we use the definition in (202)

eλ,b(x) = e(iλ+ρ) log A(x,b), (207)

by

f̂ (λ, b) =
∫

X
f (x)eλ,b(x)dx. (208)

The functions eλ,b are real analytics in x and are eigenfunctions of the Laplacian, cf. [15]
(Prop. 3.14, p. 99),

− ∆̃eλ,b = (|λ|2 + |ρ|2)eλ,b, (209)

where
|λ|2 = 〈λ, λ〉, (210)

cf. (201), and similarly for |ρ|2. We also denote the Fourier transform by F , such that

F ( f ) = f̂ . (211)

In Equation (209), we identified

∆̃ = ∆M = ∆X . (212)

In [3], we finally dropped the embellishment and simply wrote ∆ when referring to
the above Laplacian, but at the moment we refrain from doing so to avoid confusion.

We shall consider the eigenfunctions eλ,b as tempered distributions of the Schwartz
space S(X) and shall use their Fourier transforms

êλ,b = δ(λ,b) = δλ ⊗ δb (213)

as the spatial eigenfunctions of

F (−∆) = m(µ) = (|µ|2 + |ρ|2), (214)

which is a multiplication operator, such that

F (−∆)êλ,b = m(µ)êλ,b = (|λ|2 + |ρ|2)êλ,b, (215)

cf. [3] (Section 6) for details.
Looking at the Fourier transformed eigenfunctions

êλ,b = δλ ⊗ δb (216)

it is obvious that the dependence on b has to be eliminated, since there is neither a physical
nor a mathematical motivation to distinguish between eλ,b and eλ,b′ . We discard the
integration over B in [3] (Section 6) and pick instead a special element b0 ∈ B, namely,

b0 = eM, e = id ∈ K, (217)

and only consider the eigenfunctions eλ,b0 with corresponding Fourier transforms

δλ ≡ δλ ⊗ δb0 = êλ,b0 , λ ∈ a∗. (218)
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For justification, see [3] (Lemma 4) and the arguments preceding the referenced Lemma.
The eigenfunctions eλ,b0 depend on the characters λ ∈ a∗ but not all characters are

physically relevant. For a definition of the physically relevant characters, let us rephrase [3]
(Remark 2, p. 18):

Remark 4. There are characters αij, 1 ≤ i < j ≤ n, that will represent the elementary gravitons
stemming from the degrees of freedom in choosing the coordinates

gij, 1 ≤ i < j ≤ n, (219)

of a metric tensor. The diagonal elements offer, in general, additional n degrees of freedom, but in
our case, where we consider metrics satisfying

det gij = 1, (220)

only (n − 1) diagonal components can be freely chosen, and we shall choose the first (n − 1)
entries, namely,

gii, 1 ≤ i ≤ n− 1. (221)

The corresponding additive characters are named αi, 1 ≤ i ≤ n− 1.
The characters αi, 1 ≤ i ≤ n − 1, and αij 1 ≤ i < j ≤ n will represent the (n+2)(n−1)

2
elementary gravitons at the character level. We shall normalize the characters by defining

α̃i = ‖Hαi‖
−1αi (222)

and
α̃ij = ‖Hαij‖

−1αij (223)

such that the normalized characters have unit norm, cf. (201).

We can now define the corresponding forms in a∗ with arbitrary energy levels:

Definition 1. Let λ ∈ R+ be arbitrary. Then we consider the characters

λα̃i ∧ λα̃ij, (224)

where we recall that the terms embellished by a tilde refer to the corresponding unit vectors. Then
the eigenfunctions representing the elementary gravitons are eλα̃i ,b0 and eλα̃ij ,b0 .

The corresponding eigenvalue with respect to −∆̃ is |λ|2 + |ρ|2, where, by a slight abuse of
notation, |λ|2 = λ2 and |ρ|2 = 〈ρ, ρ〉. Note that |ρ|2 = 1 if n = 3, cf. (205).

We define a zero-point energy eigenfunction by choosing λ ∈ a∗ = 0. The corresponding
eigenfunction would be e0,b0 , satisfying

− ∆̃e0,b0 = |ρ|2e0,b0 = e0,b0 . (225)

if n = 3.

We are now able to quantize the Hamiltonian H in (181). For brevity we denote
the quantized Hamiltonians, which are operators, by using the same symbols as for the
Hamilton functions. For the Hamilton operator HG, we express as in (183)

HGu = −αN
n

16(n− 1)
t−m ∂

∂t
(tm ∂w

∂t
)v− αNt−2w∆̄v

− α−1
N t2− 4

n R(σij)wv + 2α−1
N Λt2wv,

(226)
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where we use the separation of variables in (186), the form of the metric in (125), namely,

gij = t
4
n σij (227)

and the relation between the scalar curvatures of conformal metrics

R(g) = t−
4
n R(σ). (228)

Let us recall that for the quantization of H̃SM we shall specify σij = δij, such that the
spatial eigendistributions, or approximate eigendistributions, ψ, satisfying

H̃SMψ = λ1ψ, λ1 ≥ 0 (229)

can be derived by applying standard methods of QFT. We then solve the Wheeler–DeWitt
equation

Hu = 0 (230)

not for all (t, σij) ∈ R+ × M but only for (t, δij), where t > 0 is arbitrary. Thus, we
shall solve

− ∆̃v = (|λ|2 + |ρ|2)v (231)

by using
v = eλ,b0 (232)

for arbitrary σij ∈ M, but we shall evaluate eλ,b0 only at σij = δij. Furthermore, we observe
that for x = gK ∈ X and b = kM ∈ B, we have

A(x, b) = A(gK, kM) = A(k−1g), (233)

cf. [3] (equ. (202), p. 18), hence, if b = b0, i.e., if k = e = id, then

A(x, b0) = A(g). (234)

Moreover, let
π : G/K → M (235)

be the isometry, then
π(gK) = gg∗, (236)

where g∗ is the adjoint. Thus, if g = (δij) = e, we infer

σij = δij ∈ M =⇒ eλ,b0(σij) = 1, (237)

and we have proved:

Theorem 3. Let n = 3, v = eλ,b0 , and let ψ be an eigendistribution of H̃SM when σij = δij
such that

− ∆̃eλ,b0 = (|λ|2 + 1)eλ,b0 , (238)

H̃SMψ = λ1ψ, λ1 ≥ 0, (239)

and let w be a solution of the ODE

t−m ∂

∂t
(tm ∂w

∂t
) +

32
3
(|λ|2 + 1)t−2w +

32
3

α−1
N λ1t−

2
3 w

+
64
3

α−2
N Λt2w = 0

(240)

then
u = weλ,b0 ψ (241)
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is a solution of the Wheeler–DeWitt equation

Hu = 0, (242)

where eλ,b0 is evaluated at σij = δij and where we note that m = 5.

We shall refer to eλ,b0 and ψ as the spatial eigenfunctions and to w as the tempo-
ral eigenfunction.

Remark 5. We could also apply the respective Fourier transforms to −∆̃eλ,b0 resp. H̃SMψ and
consider

wêλ,b0 ψ̂ (243)

as the solution in the Fourier space, where ψ̂ would be expressed with the help of the ladder operators.

In the next section, we shall analyze the temporal eigenfunctions.

5. Temporal Eigenfunctions

The temporal eigenfunctions have to satisfy the ODE (240) or equivalently

ẅ + 5t−1ẇ +
32
3
(|λ|2 + 1)t−2w +

32
3

α−1
N λ1t−

2
3 w

+
64
3

α−2
N Λt2w = 0,

(244)

where we used that m = 5, since we assume n = 3. Let us denote the other constants in
front of the three lower order terms by mi, m2

2 resp. m3, then the ODE appears as

ẅ + 5t−1ẇ + m1t−2w + m2
2t−

2
3 w + m3t2w = 0, (245)

where
m1 ≥

32
3

, m2 ≥ 0, m3 ∈ R. (246)

The ODE (245) has two linearly independent solutions that are smooth and defined
for all t > 0. However, if m2, as well as m3 are both different from zero, then the solution
cannot be expressed by known functions, such as variants of the Bessel functions. Only if
this is not valid, the solutions can be expressed by known functions.

Theorem 4. Assume m3 = 0 and m2 > 0, then the solutions of the ODE (245) are generated by

J( 3
2

√
m1 − 4 i, 3

2 m2t
2
3 )t−2 (247)

and
J(− 3

2

√
m1 − 4 i, 3

2 m2t
2
3 )t−2, (248)

where J(λ, t) is the Bessel function of the first kind.

Proof. We used Mathematica to obtain these solutions. The verification that these functions
are indeed solutions is straightforward.

Lemma 4. The solutions in the theorem above diverge to complex infinity if t tends to zero and
they converge to zero if t tends to infinity.

Proof. The results can be derived by looking at a series expansion of the corresponding
Bessel functions near the origin resp. near infinity.
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Next, let us consider the solutions when m2 = 0 and m3 6= 0. Then we distinguish two
cases m3 > 0 resp. m3 < 0. For a better distinction, we shall express m3 in the form

m3 = m2
4, m4 > 0, (249)

in the first case, and as
m3 = −m2

4, m4 > 0, (250)

in the second case.

Theorem 5. Assume m2 = 0 and m3 > 0, then the solutions of the ODE (245) are generated by
the functions

J( 1
2

√
m1 − 4 i, 1

2 m4t2)t−2 (251)

and
J(− 1

2

√
m1 − 4 i, 1

2 m4t2)t−2, (252)

where J(λ, t) is the Bessel function of the first kind.

Similarly, we obtain in the second case:

Theorem 6. Assume m2 = 0 and m3 < 0, then the solutions of the ODE (245) are generated by
the functions

I( 1
2

√
m1 − 4 i, 1

2 m4t2)t−2 (253)

and
I(− 1

2

√
m1 − 4 i, 1

2 m4t2)t−2, (254)

where I(λ, t) is the modified Bessel function of the first kind. In Mathematica, this function is
denoted by BesselI[λ, t].

The arguments in the proof of Theorem 4 also apply in the case of Theorems 5 and 6.

Lemma 5. The solutions in Theorem 5 resp. Theorem 6 diverge to complex infinity if t tends to
zero, as well as if t tends to infinity.

Proof. The same arguments as in the proof of Lemma 4 apply.

6. Conclusions

The temporal eigenfunctions in the theorems of the previous section all become
unbounded if t→ 0, which can be described as a big bang on a quantum level. Furthermore,
if we consider t < 0, then the functions

w̃(t) = w(−t), t < 0, (255)

also satisfy the ODE (244) for t < 0, if we replace t−
2
3 by |t|− 2

3 , i.e., they are also temporal
eigenfunctions if the light cone in E is flipped.

Thus, we conclude

Theorem 7. The quantum model we derived for gravity combined with the forces of the standard
model can be described by products of spatial and temporal eigenfunctions of corresponding self-
adjoint operators with a continuous spectrum.

We have a zero-point energy state as a spatial eigendistribution of the gravitational Hamiltonian
with the smallest eigenvalue |ρ|2 = 1, which could be considered the source of the dark energy.

Furthermore, we have a big bang singularity in t = 0. Since the same quantum model is also
valid by switching from t > 0 to t < 0, with appropriate changes to the temporal eigenfunctions,
one could argue that at the big bang, two universes with different time orientations could have
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been created, such that, in view of the CPT theorem, one was filled with matter and the other with
anti-matter.

Remark 6. One of the reviewers raised two questions. First, he wondered about the logic to combine
a low energy event, the quantization of the fields of the standard model with a flat metric, with an
high-energy event, the quantization of gravity. As we have already pointed out in the introduction,
a unified quantization of gravity and matter fields leads to a hyperbolic equation of second order in a
fiber space, where the main part of the hyperbolic operator acts in the fibers. The zero-order terms of
the operator contain the contributions of the quantized matter Hamiltonian and the interaction of
gravity with matter fields occurs with the help of the fiber variables (t, σij). The metric σij is used
in the quantization of the matter fields. Looking at the spatial eigenfunction v of the gravitational
Hamiltonian and its eigenvalue, which expresses the energy, then the eigenvalue is independent of
the metric σij at which v is evaluated and only the evaluation point is relevant for the interaction,
i.e., even if a non-flat metric σij would have been used in the quantization of the matter fields, the
contribution to the unified operator would not have changed qualitatively. Furthermore, as we
already mentioned in the introduction, due to the scalar curvature term R, we cannot expect to solve
the Wheeler–DeWitt equation for all (t, σij) if we use the separation of variables, instead, we have to
choose metrics with constant scalar curvatures. Thus, we opted for σij = δij, also out of necessity
because we could not quantize the matter field in the curved spacetime.

The second interaction with respect to the variable t, the quantum time, is realized in the
ODE, where the contributions by the spatial gravitational resp. matter eigenfunctions and also by
the cosmological constant Λ have a power of t as a multiplicative factor with different exponents.
For small t, the gravitational energy dominates because of the factor t−2, for larger t, the matter
energy dominates because of the factor t−

2
3 , and if Λ 6= 0, then the cosmological constant dominates

for very large t because of the factor t2. This is also reflected in the results of Lemmas 4 and 5.
The second question raised concerned the QFT renormalizability in this unified setting.
The quantization of gravity takes place in the fibers of E while the quantization of the matter

fields takes place in the base space S0 = Rn, which we equipped with the Euclidean metric for this
task. Hence, the usual renormalization techniques can be used to deal with infinities. The fibers are
ignored in this process.

Remark 7. The Academic Editor of the journal also requested some observational predictions of the
theory presented in this paper.

In Theorem 7, we already offered possible answers to two open questions, namely, the source of
the dark energy and why matter dominates anti-matter.

The Big Bang is only predicted by the singularity of the Friedmann model, a classical theory.
In this paper, the Big Bang is predicted on a quantum level, which is a more appropriate level because
the Big Bang is certainly a quantum event.

Powerful gravitational waves might be caused by quantum gravitational forces, such as the
collision of two black holes. If this is the case, then they should satisfy an ODE similar to what we
analyzed in Section 5. The patterns produced by the wave detectors should be similar to the plots
produced by the solutions of the ODE in (244) on page 23, though the scalar curvature term does
not appear in the ODE since R(δij) = 0, and in the case of black holes, R would be constant but

different from zero, i.e., the ODE should contain a term, probably positive, with the factor t
2
3 , and

most likely no contribution by the standard model fields.
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