Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (348)

Search Parameters:
Keywords = Vicia faba

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2149 KB  
Article
Interaction Between Rhizobium leguminosarum bv. viciae and Pseudomonas alkylphenolica Enhances Faba Bean Growth and Resilience to Water Deficit Under Nitrogen-Fixing Conditions
by Mohamed Tamoudjout, Hamid Msaad, Soukaina Lahmaoui, Ahmed El Moukhtari, Cherki Ghoulam and Mohamed Farissi
Nitrogen 2026, 7(1), 7; https://doi.org/10.3390/nitrogen7010007 (registering DOI) - 1 Jan 2026
Abstract
Water deficit is a major constraint limiting the growth and yield of faba bean (Vicia faba L.). A pot experiment was conducted under controlled conditions to evaluate the effect of inoculation with Rhizobium leguminosarum bv. viciae BIHB 1148 (strain F14) and Pseudomonas [...] Read more.
Water deficit is a major constraint limiting the growth and yield of faba bean (Vicia faba L.). A pot experiment was conducted under controlled conditions to evaluate the effect of inoculation with Rhizobium leguminosarum bv. viciae BIHB 1148 (strain F14) and Pseudomonas alkylphenolica PF9 (strain L13) on faba bean drought resilience. Two irrigation regimes were applied: well-watered (80% of field capacity) versus water-stressed (40% of field capacity). Strain F14 was used to ensure effective biological nitrogen fixation, while strain L13 was applied in co-inoculation to evaluate its biostimulatory effects. The control plants received nitrogen in its chemical form. Results indicated that water deficit significantly (p < 0.001) reduced plant growth, nodulation, and photosynthesis-related parameters, and increased hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, which are key markers of oxidative stress. However, co-inoculation with strains F14 and L13 significantly enhanced shoot and root biomass, as well as most agro-morphological traits. It also stimulated (p < 0.05) the antioxidant activities of superoxide dismutase (3-fold), guaiacol peroxidase (12%), and catalase (104%), and increased proline content (119%), which led to lower levels of MDA (54% decrease) and H2O2 (55% decrease), improved membrane stability, water status, and enhanced photosynthesis. Overall, co-inoculation of faba bean with Rhizobium leguminosarum bv. viciae BIHB 1148 and Pseudomonas alkylphenolica PF9 offers a promising and sustainable approach to improve plant resilience under water deficit. Full article
Show Figures

Figure 1

16 pages, 475 KB  
Article
Effects of Polymer Application Rates on Yield and Photosynthesis in Faba Bean and Pea
by Katarzyna Czopek and Mariola Staniak
Agriculture 2026, 16(1), 56; https://doi.org/10.3390/agriculture16010056 - 26 Dec 2025
Viewed by 127
Abstract
Climate change exacerbates soil moisture deficits, necessitating efficient water retention strategies. Superabsorbent polymers (SAPs) offer a potential solution to enhance water availability for crops during dry periods. Faba bean (Vicia faba L.) and pea (Pisum sativum L.) were selected as model [...] Read more.
Climate change exacerbates soil moisture deficits, necessitating efficient water retention strategies. Superabsorbent polymers (SAPs) offer a potential solution to enhance water availability for crops during dry periods. Faba bean (Vicia faba L.) and pea (Pisum sativum L.) were selected as model legumes due to their high nutritional value, agricultural importance in temperate regions, and sensitivity to drought stress This study evaluated the effects of different SAP application rates on the yield and physiological performance of two legume species: faba bean (cv. Granit) and pea (cv. Batuta). The two-year (2017–2018) field experiments employed a randomized block design with four replicates. Treatments included three SAP doses: 0 (control, SAP0), 20 (SAP20) and 30 (SAP30) kg·ha−1. The study was conducted over two years with contrasting weather: 2017 was wetter but had uneven rainfall distribution, while 2018 was drier and characterized by moisture deficits during critical growth stages. SAP application significantly increased seed yield in faba bean and pea, with the most favorable effect observed at 20 kg ha (average yield increase of 23.6% and 17.3%, respectively). SAP did not affect yield components in faba bean. However, in peas, an increase in pod number and seed number per plant was observed with the SAP30 dose compared to the SAP20 dose. Application of superabsorbent at a dose of 20 kg ha−1 significantly increased photosynthesis rate in faba bean, the Fv/Fm index in the tested species, and the PI in peas compared to the control. However, the superabsorbent did not affect transpiration rate or the WUE coefficient in the tested legume species. Significantly higher yields in faba bean and pea and all tested plant structure parameters in pea were recorded in 2018 compared to 2017. The tested parameters of gas exchange and chlorophyll fluorescence were higher in pea in 2018 (except for transpiration intensity) and in faba bean in 2017. The findings suggest that SAPs can be a useful tool to mitigate water stress effects in legumes, although their effectiveness depends on environmental conditions. Therefore, SAP application may be a promising agronomic strategy in regions prone to irregular rainfall or moderate drought. Full article
Show Figures

Figure 1

30 pages, 7082 KB  
Article
Stabilization of the MAPK–Epigenetic Signaling Axis Underlies the Protective Effect of Thyme Oil Against Cadmium Stress in Root Meristem Cells of Vicia faba
by Natalia Gocek-Szczurtek, Aneta Żabka, Mateusz Wróblewski and Justyna T. Polit
Int. J. Mol. Sci. 2026, 27(1), 208; https://doi.org/10.3390/ijms27010208 - 24 Dec 2025
Viewed by 226
Abstract
Cadmium (Cd) induces oxidative stress and disrupts nuclear organization and chromatin-associated metabolic processes in plant cells. Therefore, identifying natural, biodegradable, non-bioaccumulative compounds that enhance plant tolerance to heavy metals is crucial. We hypothesized that Cd exposure (175 µM CdCl2, 24 h) [...] Read more.
Cadmium (Cd) induces oxidative stress and disrupts nuclear organization and chromatin-associated metabolic processes in plant cells. Therefore, identifying natural, biodegradable, non-bioaccumulative compounds that enhance plant tolerance to heavy metals is crucial. We hypothesized that Cd exposure (175 µM CdCl2, 24 h) activates mitogen-activated protein kinases (MAPKs), triggering defined epigenetic modifications that lead to transcriptional repression, and that thyme oil (TO; 0.03% (v/v), emulsified) mitigates these effects by stabilizing chromatin organization. We analyzed nuclear MAPK (p44/42) activation, global DNA methylation (5-methylcytosine; 5-mC), and selected histone modifications as key components of early stress signaling and epigenetic regulation. We found that Cd exposure doubled global 5-mC levels and caused pronounced alterations in histone marks, including decreases in H3K4Me2 (~34%), H3T45Ph (~48%), and H4K5Ac, accompanied by strong increases in H3K9Ac (~57%) and H3K56Ac (~148%). These changes were associated with chromatin condensation and reduced transcriptional activity. In contrast, co-treatment with TO maintained MAPK activity and epigenetic parameters close to control levels, preventing chromatin compaction and transcriptional repression. Together, these findings indicate that TO stabilizes the nuclear signaling–epigenetic interface under Cd stress and represents a promising bioprotective strategy. This work provides the first demonstration that TO modulates both MAPK activation and Cd-induced histone modifications in plants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 1656 KB  
Communication
Impact of Aphis fabae Scopoli Infestation on Biochemical and Physiological Stress Markers in Faba Bean (Vicia faba L.)
by Svetlana M. Tošić, Nataša Joković, Jelena Vitorović, Marijana Ilić Milošević, Milica Stojković and Nikola Jovanović
Crops 2025, 5(6), 88; https://doi.org/10.3390/crops5060088 - 5 Dec 2025
Viewed by 248
Abstract
Vicia faba is an agriculturally and nutritionally important legume whose growth and productivity are strongly influenced by biotic stress factors. Understanding the mechanisms by which plants respond to stress is therefore essential for improving agricultural productivity and enabling the selection of stress-tolerant cultivars. [...] Read more.
Vicia faba is an agriculturally and nutritionally important legume whose growth and productivity are strongly influenced by biotic stress factors. Understanding the mechanisms by which plants respond to stress is therefore essential for improving agricultural productivity and enabling the selection of stress-tolerant cultivars. This study evaluated whether biochemical and physiological parameters can serve as early indicators of stress induced by Aphis fabae infestation in young V. faba plants. Plants were exposed to two levels of aphid infestation (low- and high-stress) and compared with aphid-free controls. Low stress caused minimal alterations in antioxidant responses: catalase (CAT) activity increased by 9.9%, glutathione (GSH) content by 20%, and malondialdehyde (MDA) levels decreased by 17.6% relative to controls. Under high stress, oxidative damage and antioxidant activation were pronounced, with CAT activity rising 2.4-fold, GSH content increasing 2.6-fold, and MDA accumulating 2.6-fold compared to control plants. Superoxide dismutase (SOD) activities increased under both stress levels, though without large differences, while nitrate reductase (NR) activity showed non-significant variation. Proline accumulation remained largely unchanged, showing only a slight 13–15% increase relative to controls. Photosynthetic pigment analysis revealed that low stress reduced contents of chlorophyll a and total chlorophyll, while increasing contents of chlorophyll b and carotenoids. Stress markedly altered pigment balance, yielding a 25.4% higher chlorophyll a/b ratio compared with control plants. The results indicate that V. faba plants can tolerate low-intensity aphid stress with minimal biochemical disturbance, whereas high infestation elicits strong oxidative stress and significant physiological changes. The measured biochemical markers, particularly CAT, MDA, and GSH, proved sensitive to early stress onset, offering valuable tools for early detection of biotic stress before visible symptoms appear. The research contributes to a better understanding of plant responses to stress, enables early detection of stress factors affecting plant physiology, facilitates the assessment of their adaptive potential, and may aid in the development of strategies to improve faba bean resistance to pest infestations. This research enhances understanding of V. faba stress responses, enabling early detection of stress factors and assessment of the plant’s adaptive potential. The insights gained may support the development of strategies to improve faba bean resistance to pest infestations and contribute to more sustainable agricultural productivity. Full article
Show Figures

Figure 1

17 pages, 325 KB  
Article
A New Resistant Starch Material Obtained from Faba Beans (Vicia faba L. Creole): Potential Modulation of the Diabetic Condition in Diabetic Wistar Rat Model
by Teodoro Suárez-Diéguez, Mariza Olvera Nájera, Mariana Silva, Guadalupe López-Rodríguez, José Alberto Ariza-Ortega, Aurora García-Tejedor and Juan Antonio Nieto
Nutrients 2025, 17(23), 3807; https://doi.org/10.3390/nu17233807 - 4 Dec 2025
Viewed by 555
Abstract
Background: Resistant starch, and specially retrograded starches (RS), have been suggested as useful biological molecules to improve the glucose management in diabetic conditions. However, the influence of the botanical origin in the RS biological capacities make necessary its evaluation, where RS from legumes [...] Read more.
Background: Resistant starch, and specially retrograded starches (RS), have been suggested as useful biological molecules to improve the glucose management in diabetic conditions. However, the influence of the botanical origin in the RS biological capacities make necessary its evaluation, where RS from legumes have been paid less attention compared to other sources as cereals. Objectives: A RS product obtained from creole Faba beans (Vicia faba L. creole), was evaluated for the first time as a material capable of improving glucose homeostasis in diabetic conditions. Methods: The RS ingredient investigated (with a reduced digestibility of 50%) was tested in a Wistar rat model with induced diabetes, fed with a 15 or 30% replacement of RS ingredient in the diet. Diverse nutritional and biomarkers were analysed. Results: As a result of the reduced digestibility of the RS ingredient, diabetic animals fed with RS replacement (15% or 30%) showed attenuated postprandial hyperglycemia responses, reducing the hyperglycemic condition close to 29% compared to non-treated diabetic animals (24.56 ± 7.50 and 25.02 ± 3.54 vs. 34.65 ± 1.89 mmol/L, respectively). In addition, fasting serum glucose levels were significantly reduced (22%). Other biochemical parameters associated with glucose metabolism, such as glycosylated hemoglobin and AGEs levels, also improved. Furthermore, significant improvements in nutritional parameters (such as weight gain) and a lower insulin resistance index were determined. In contrast, no clear effects were observed in lipid metabolism and oxidative stress biomarkers in the treated group. Conclusions: The results of this research suggest that the retrograded starch from creole beans evaluated could be a potential functional food ingredient capable of enhancing glucose homeostasis in diabetic conditions. Full article
(This article belongs to the Special Issue Health Benefit Assessment of Novel Ingredients and Diets)
Show Figures

Figure 1

18 pages, 4519 KB  
Article
Effect of Silicon Formulation on Protecting and Boosting Faba Bean Growth Under Herbicide Damage
by Olga Ushakova, Nadezhda Golubkina, Vladimir Ushakov, Mikhail Fedotov, Andrey Alpatov, Dmitry Kravchenko, Ksenia Datsyuk, Marina Antoshkina, Anna Sindireva, Otilia Cristina Murariu and Gianluca Caruso
Stresses 2025, 5(4), 68; https://doi.org/10.3390/stresses5040068 - 30 Nov 2025
Viewed by 274
Abstract
Herbicide treatment for agricultural crops may cause dramatic damage to production amount and quality. The aim of the present investigation was to compare different silicon formulations to assess their efficiency in maintaining faba bean plant growth with the herbicide spray Dicameron. Soil pollution [...] Read more.
Herbicide treatment for agricultural crops may cause dramatic damage to production amount and quality. The aim of the present investigation was to compare different silicon formulations to assess their efficiency in maintaining faba bean plant growth with the herbicide spray Dicameron. Soil pollution due to Dicameron caused an intensive oxidant stress, decreasing bean pods, seed number and weight, antioxidant activity (AOA) and polyphenol content (TP), leaf chlorophyll, and carotene, sharply increasing proline level, and creating pod and leaf anomalies. All the Si formulations, i.e., ionic Si forms in the presence of microelements (Siliplant) or terpenes (BioSi), Si nanoparticles, and organic silicon adjuvant siloxane polyalkylene oxide (Atomic), significantly restored bean antioxidant status and leaf photosynthetic pigment accumulation, enhancing plant defense, as indicated by the proline level decrease. Only the ionic form of Si in the Siliplant formulation, containing essential microelements, facilitated the recovery of pod form and seed weight, while nano-Si was the most effective treatment for bean AOA restoration, and Atomic was the best in rebalancing chlorophyll and the worst in decreasing proline content. A strong beneficial effect of ionic Si in the presence of terpenes (BioSi) was recorded only on the yield of the control plants which did not undergo herbicide spraying. The results indicate a moderate beneficial effect of siloxane adjuvant on plant performance and antioxidant defense level and the highest positive impact on broad bean protection in response to the ionic Si (Siliplant formulation) supply also containing Cu, Zn, Mo, Mn, Fe, and B. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Graphical abstract

19 pages, 2983 KB  
Article
Structure and Functionality of Fermented Faba Bean: Influence of Particle Size and Rhizopus spp.
by Deepa Agarwal, Priyanka Kharangarh, Pengfei (Alfie) Hao, Mark I. Bradbury, Pankaj Maharjan, Yakindra P. Timilsena, Cassandra K. Walker, Monika S. Doblin and Roman Buckow
Foods 2025, 14(23), 4105; https://doi.org/10.3390/foods14234105 - 29 Nov 2025
Viewed by 565
Abstract
This study investigated the influence of particle size and Rhizopus species on the fermentability, structure, and functionality of faba bean (Vicia faba L.) during controlled solid-state fermentation. Split seeds, coarse particles, and 1000–2000 µm fractions were fermented with either R. oryzae or [...] Read more.
This study investigated the influence of particle size and Rhizopus species on the fermentability, structure, and functionality of faba bean (Vicia faba L.) during controlled solid-state fermentation. Split seeds, coarse particles, and 1000–2000 µm fractions were fermented with either R. oryzae or R. oligosporus. Analyses included compositional profiling, SDS-PAGE, FTIR, DPPH antioxidant activity, phytic acid quantification, and rheological yield stress measurements. Particle size strongly affected mycelial growth and matrix structure: coarse particles supported more uniform mycelial networks, particularly with R. oryzae. After 48 h of fermentation, total protein and phytic acid contents remained largely unchanged; however, SDS-PAGE and FTIR results indicated proteolysis and alterations in secondary structure, accompanied by higher antioxidant activity. Rheological data showed significant species–particle size interactions influencing yield stress, with R. oligosporus-fermented samples exhibiting higher yield stress than those fermented with R. oryzae. Overall, these findings demonstrate that optimising particle size and fungal strain combinations can enhance the structural and functional characteristics of fermented faba bean. Full article
(This article belongs to the Special Issue Development of Plant-Based Fermented Food Products)
Show Figures

Figure 1

23 pages, 8753 KB  
Article
Deciphering the Relationships Between Soil Enzymatic Activities and N- and P-Cycling Functional Genes Under Long-Term Fertilization
by Dong Xue, Shumiao Jiang, Na Zhao, Mengnan Yao, Enqiang Zhou, Yongqiang Wang, Furong Dong, Xue Gao, Xuejun Wang, Yamei Miao, Libin Wei, Kaihua Wang and Anyong Hu
Microorganisms 2025, 13(12), 2719; https://doi.org/10.3390/microorganisms13122719 - 28 Nov 2025
Viewed by 359
Abstract
Long-term fertilization profoundly influences soil biochemical processes and microbial functionality, yet the coupling mechanisms between soil enzyme activities and functional genes in nutrient cycling remain unclear. This study investigated the effects of different fertilization regimes—nitrogen alone (N), nitrogen–phosphorus–potassium fertilizer (NPK), organic fertilizer (M), [...] Read more.
Long-term fertilization profoundly influences soil biochemical processes and microbial functionality, yet the coupling mechanisms between soil enzyme activities and functional genes in nutrient cycling remain unclear. This study investigated the effects of different fertilization regimes—nitrogen alone (N), nitrogen–phosphorus–potassium fertilizer (NPK), organic fertilizer (M), and combined organic–inorganic fertilizer (MNPK)—on soil properties, enzyme activities, N- and P-cycling-related functional gene abundances, and faba bean (Vicia faba L.) yield in a 45-year ongoing field experiment in subtropical eastern China. Results showed that long-term fertilization significantly affected soil pH, electrical conductivity, nutrient contents, and crop yield. Organic fertilizer addition (M and MNPK) markedly improved soil organic matter, total and available nutrients, and enhanced faba bean grain yield by 75.07–92.79% compared with NPK, whereas NPK had limited benefits on total and available soil nutrients compared with N-only application. Soil enzyme activity analysis revealed that the MNPK treatment achieved the highest urease and neutral protease activities, while acid and alkaline protease activities responded inconsistently. Phosphorus-related enzymes (acid, neutral, and alkaline phosphatases) were strongly stimulated by organic inputs, reflecting enhanced P mineralization potential. Functional gene analysis showed that N-fixation and assimilatory nitrate reduction genes increased under M and MNPK, while N assimilation, N mineralization, anammox, nitrification, denitrification, and dissimilatory nitrate reduction genes were enriched under N treatment. Phosphate uptake and transport genes were upregulated under NPK, M, and MNPK, whereas inorganic P solubilization genes were highest under N. Significant positive correlations were observed among soil enzyme activities, nutrient contents, and faba bean yield, whereas acid and alkaline protease activities showed opposite trends. The relative abundances of N- and P-cycling functional genes exhibited distinct yet coordinated relationships with soil fertility indicators and enzyme activities. These findings provide mechanistic insights into the long-term regulation of soil–microbe interactions and nutrient cycling, offering a scientific basis for sustainable fertilization strategies in agroecosystems. Full article
(This article belongs to the Special Issue Exploring the Diversity of Microbial Applications)
Show Figures

Figure 1

27 pages, 1886 KB  
Article
Unraveling Diversity in Physical and Mineral Traits of Faba Bean (Vicia faba L.) Landraces Harvested at Immature Stages
by Elisa Gorbe, Irene Moreno-Valle, Ángeles Calatayud and Consuelo Penella
Horticulturae 2025, 11(12), 1411; https://doi.org/10.3390/horticulturae11121411 - 21 Nov 2025
Viewed by 580
Abstract
Faba bean (Vicia faba L.) is a legume valued for its nutritional properties and adaptability, yet the effects of genotypic diversity among landraces and harvest stages on its physical and mineral traits remain insufficiently explored. This study evaluated 14 faba bean genotypes, [...] Read more.
Faba bean (Vicia faba L.) is a legume valued for its nutritional properties and adaptability, yet the effects of genotypic diversity among landraces and harvest stages on its physical and mineral traits remain insufficiently explored. This study evaluated 14 faba bean genotypes, (13 landraces and one commercial cultivar), harvested at two immature stages (baby and tender), to assess variation in seed volume, biomass-related parameters, and mineral composition, and to elucidate how developmental stage and genotype jointly shape nutritional profiles. Across genotypes, seed volume increased while the fresh-to-dry weight ratio (FW/DW) decreased from baby to tender stage, reflecting progressive tissue desiccation. Mineral concentrations, except for Mo and Na, generally declined during seed development, although several landraces (H9, H12, H20, H21, and H22) maintained stable values, indicating genotypic resilience to the dilution effect. Correlation analysis revealed high positive associations among mineral concentrations (e.g., Mg–Mn, K–S, P–S) and with FW/DW, suggesting that higher tissue hydration is associated with higher mineral accumulation. Principal Component Analysis (PCA) further distinguished three clusters per harvest stage, separating mineral-rich landraces (H21, H11, H9) from those with lower concentrations (H4, H7), thus highlighting developmental reorganization and genotype-dependent mineral retention. Overall, both genotype and harvest stage strongly determined the mineral profile of immature faba beans. Landraces emerged as valuable reservoirs of mineral-rich germplasm, while simple physical metrics such as FW/DW may serve as practical and economical proxies for mineral quality in breeding programs. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Graphical abstract

16 pages, 1374 KB  
Article
Impacts of Olive Pomace Stress on Vicia faba L.’s Growth, Secondary Metabolism, and Nutrient Uptake
by Mohammed Bouhadi, Qaiser Javed, Dominik Anđelini, Danko Cvitan, Tvrtko Karlo Kovačević, Igor Palčić, Nikola Major, Smiljana Goreta Ban, Igor Pasković, Dean Ban, David Heath and Marko Černe
Horticulturae 2025, 11(11), 1350; https://doi.org/10.3390/horticulturae11111350 - 9 Nov 2025
Viewed by 567
Abstract
Olive pomace (OP), an olive mill byproduct, poses environmental risks if mismanaged due to its high phenolic content, acidic pH, organic load, and electrical conductivity. This study evaluated the impact of olive pomace filtrate (OPF) at varying doses (OP-5, OP-10, OP-15) on broad [...] Read more.
Olive pomace (OP), an olive mill byproduct, poses environmental risks if mismanaged due to its high phenolic content, acidic pH, organic load, and electrical conductivity. This study evaluated the impact of olive pomace filtrate (OPF) at varying doses (OP-5, OP-10, OP-15) on broad bean (Vicia faba L.) growth, secondary metabolites, and nutrient accumulation. The highest OPF dose (OP-15) exhibited a clear negative, dose-dependent phytotoxic effect, causing stem discoloration, reduced root growth, necrosis, and chlorosis, while untreated controls showed vigorous growth. This significantly (p < 0.05) reduced leaf development, average number of leaves, and total leaf area, even at the lowest concentration (5%). Consequently, OP-15 reduced dry and fresh biomass by over 50% and shoot/root lengths by up to 61.55% compared to the control. Liquid chromatography mass spectrometry (LC-MS/MS) analysis revealed a positive dose-dependent effect of OPF on beneficial phenol and flavonoid accumulation, with significantly higher amounts of ferulic, isoferulic, caffeic, chlorogenic, and 4-hydroxybenzoic acids, as well as luteolin-4′-rutinoside and 4,7-dihydroxyflavone. OP application significantly (p < 0.05) decreased relative water content and increased electrolyte leakage and malondialdehyde, indicating stress. Furthermore, OP decreased the uptake of K, P, Fe, S, Zn, and Cu. Therefore, the intrinsic phytotoxicity of OPF suggests that mitigation measures are essential before considering environmental application to prevent potential adverse effects on sensitive crops and the wider ecosystem. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

14 pages, 692 KB  
Article
From Feedstock to Function: How Pyrolysis and Oxidation Shape Biochar Performance in Soil–Plant Interactions
by Mohammad Ghorbani, Elnaz Amirahmadi, Jaroslav Bernas and Jan Bárta
Plants 2025, 14(21), 3278; https://doi.org/10.3390/plants14213278 - 27 Oct 2025
Viewed by 507
Abstract
Nutrient losses through leaching and low nutrient use efficiency are major challenges limiting crop productivity and causing environmental pollution. Biochar has been widely studied as a soil amendment to improve nutrient retention; however, the combined effects of pyrolysis temperature and post-production oxidation on [...] Read more.
Nutrient losses through leaching and low nutrient use efficiency are major challenges limiting crop productivity and causing environmental pollution. Biochar has been widely studied as a soil amendment to improve nutrient retention; however, the combined effects of pyrolysis temperature and post-production oxidation on soil nutrient dynamics and plant performance remain unclear. In this study, wheat straw and wood residue biochars were produced at two pyrolysis temperatures (350 and 450 °C) and subsequently modified by hydrogen peroxide (H2O2) oxidation to enhance surface functionality. A pot experiment with fava bean (Vicia faba L.) was conducted to evaluate the effects of pristine and oxidized biochars on soil chemical properties, nutrient leaching, and plant nutrient uptake. Results showed that pristine biochars increased soil pH from 6.82 (control) to 8.73–9.12 and EC from 2.15 to 3.06–4.71 dS m−1, with wheat straw biochars having stronger alkalizing effects. In contrast, oxidized biochars decreased soil pH to 5.62–5.93 due to the introduction of oxygen-containing functional groups. All biochars reduced NO3-N, NH4+-N, and PO43−-P leaching, with the most pronounced reductions observed in oxidized wheat straw biochar produced at 450 °C (O-BWS450). Improved nutrient retention translated into higher plant nutrient uptake: fava bean plants grown in O-BWS450-amended soil achieved the greatest N (6.71%) and P (3.89%) uptake, significantly higher than the control. These findings highlight the potential of oxidation-modified biochars, particularly wheat straw biochar produced at moderate pyrolysis temperature, to improve soil nutrient conservation and enhance crop nutrition simultaneously. Such modifications represent a promising approach for developing biochar-based soil amendments that promote sustainable nutrient management. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

12 pages, 1787 KB  
Article
Forage Potential of Faba Bean By-Products: A Comprehensive Analysis of Proximate Nutrients, Mineral Content, Bioactive Components, and Antioxidant Activities
by Shucheng Duan, Soon-Jae Kwon, Ji Won Kim, Ji Hye Kim, Jeong Woo Lee, Min-Seok Kim, Moo-Yeol Baik and Seok Hyun Eom
Agronomy 2025, 15(11), 2473; https://doi.org/10.3390/agronomy15112473 - 24 Oct 2025
Viewed by 558
Abstract
The global feed gap, driven by seasonal shortages and climate change, highlights the need for novel forage resources. Vicia faba (Faba bean) produces substantial above-ground biomass as residue after fresh pod harvest, which remains underutilized. This study comprehensively evaluated the forage potential of [...] Read more.
The global feed gap, driven by seasonal shortages and climate change, highlights the need for novel forage resources. Vicia faba (Faba bean) produces substantial above-ground biomass as residue after fresh pod harvest, which remains underutilized. This study comprehensively evaluated the forage potential of faba bean leaves and stems across three growth stages: flowering (S1), pod development (S2), and ripening (S3). Dry matter content peaked at S2 in both tissues, while crude protein and fat content were highest at S1; carbohydrate levels increased progressively with maturation. Significant mineral concentrations, particularly K, Ca, and Mg, were detected, with leaves at S2 showing higher ash (i.e., mineral) content. Bioactive compounds (L-dopa, flavonols, total phenolics, and flavonoids) and antioxidant activities were most abundant at S1, with strong positive correlations between phenolics and antioxidant activities. Overall, faba bean residues offer proximate nutritional profiles comparable to traditional forages such as alfalfa and clover, while providing superior antioxidant potential. Their incorporation into animal feed systems before S3 could help mitigate seasonal forage shortages and enhance the nutritional quality of livestock diets. Full article
Show Figures

Figure 1

23 pages, 2734 KB  
Article
Epigenetic Modulation and Neuroprotective Effects of Neurofabine-C in a Transgenic Model of Alzheimer’s Disease
by Ivan Carrera, Vinogran Naidoo, Lola Corzo, Olaia Martínez-Iglesias and Ramón Cacabelos
Genes 2025, 16(10), 1214; https://doi.org/10.3390/genes16101214 - 15 Oct 2025
Viewed by 3180
Abstract
Background: Currently, there are limited therapeutic or preventative strategies for neurodegenerative disorders due to the challenges in alleviating the progressive neuronal loss and neuroinflammation which are the primary characteristics of these diseases, ultimately leading to cell death and functional impairment. Cocoa-derived flavanols [...] Read more.
Background: Currently, there are limited therapeutic or preventative strategies for neurodegenerative disorders due to the challenges in alleviating the progressive neuronal loss and neuroinflammation which are the primary characteristics of these diseases, ultimately leading to cell death and functional impairment. Cocoa-derived flavanols (Theobroma cacao) have been studied as potential bioactive compounds to modify and reverse various inflammation-associated diseases because of their remarkable antioxidant properties and capacity to modulate metabolic imbalance and reactive inflammatory responses. The faba bean (Vicia faba) extract obtained through nondenaturing biotechnological processes is a potent dopamine (DA) enhancer that has shown promising results as a neuroprotective agent against degeneration. Objective: This study will examine the synergistic effects of Neurofabine-C, a hybrid compound derived from cocoa and faba bean extracts, on various brain biomarkers in mice related to inflammatory, metabolic, and neurodegenerative processes. Methods: A triple-transgenic mouse model of neurodegeneration was treated with Neurofabine-C, and biomolecular data were obtained by performing biochemical and immunohistochemical analysis. Results: Neurofabine-C prevented neuronal degeneration (NeuN), mitigated the neuro-inflammatory processes triggered (decreased expression of reactive astrocytes (GFAP)), and induced an increase in neurogenesis in the treated cortical mice brain (PAX6). Epigenetic analysis revealed significant chromatin remodeling in the hippocampus. Neuroprotective genes, including FOXO3, ATM, and TRP73, were upregulated, whereas the expression of HIF1α and APOE decreased. In parallel, DNMT3A expression increased 20-fold, HDAC3 decreased by 60%, and global 5-methylcytosine levels increased four-fold. These coordinated changes suggest that Neurofabine-C promotes neuroprotective programs through enhanced DNA methylation and reduced histone deacetylation. Conclusions: The findings indicate that Neurofabine-C exhibits multiple neuroprotective mechanisms, making it a potent bioproduct for mitigating neuroinflammatory processes associated with neurodegenerative disorders. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

15 pages, 1103 KB  
Article
Water Footprint and Evapotranspiration Partitioning in Drip-Irrigated Faba Bean: Effects of Irrigation Regime and Planting Pattern
by Saad E. Aldulaimy, Huthaifa J. Mohammed, Basem Aljoumani and Adil K. Salman
Agronomy 2025, 15(10), 2282; https://doi.org/10.3390/agronomy15102282 - 26 Sep 2025
Viewed by 830
Abstract
Efficient water management is critical for sustainable crop production in arid and semi-arid regions. This study investigated the effects of two irrigation regimes—25% and 50% Management Allowable Depletion (MAD) and two planting patterns (single-row and double-row) on evapotranspiration (ET) partitioning, water use efficiency [...] Read more.
Efficient water management is critical for sustainable crop production in arid and semi-arid regions. This study investigated the effects of two irrigation regimes—25% and 50% Management Allowable Depletion (MAD) and two planting patterns (single-row and double-row) on evapotranspiration (ET) partitioning, water use efficiency (WUE), and water footprint (WF) in drip-irrigated faba bean (Vicia faba L.). Field data were combined with a leaf area index (LAI)-based model to estimate the relative contributions of transpiration (T) and evaporation (E) to total ET. The highest grain yield (6171 kg ha−1) and the lowest blue (570 m3 ton−1) and green (68 m3 ton−1) water footprints were recorded under the 25% MAD with double-row planting. This treatment also achieved the highest proportion of transpiration in ET (70%), indicating a shift toward productive water use. In contrast, the lowest-performing treatment (50% MAD, single-row) had the highest total water footprint (792 m3 ton−1) and the lowest transpiration share (44%). Although high-density planting slightly reduced WUE based on transpiration, it improved overall water efficiency when total input (ETc) was considered (1.57 kg m−3 for total input WUE, 4.17 kg/m−3 for T-based WUE). These findings highlight the importance of integrating irrigation scheduling and planting pattern to improve both physiological and agronomic water productivity. The approach offers a practical strategy for sustainable faba bean production in water-scarce environments and supports climate-resilient irrigation planning aligned with Iraq’s National Water Strategy. Full article
Show Figures

Figure 1

17 pages, 2447 KB  
Article
Faba Bean–Oat Mixtures Modify Rhizosphere Microbiota and Nutrient–Biomass Regulation on the Qinghai–Tibetan Plateau
by Huilin Yan, Xin Jin, Panda Ye, Changcai Teng and Yujiao Liu
Agronomy 2025, 15(9), 2236; https://doi.org/10.3390/agronomy15092236 - 22 Sep 2025
Viewed by 693
Abstract
Grass–legume mixtures are increasingly recognized for their potential to enhance soil health and forage productivity through belowground biotic interactions. In this study, we evaluated the effects of Vicia faba L. (faba bean 4060)–Avena sativa L. (oat ‘Baylor II’) mixtures on biomass, soil [...] Read more.
Grass–legume mixtures are increasingly recognized for their potential to enhance soil health and forage productivity through belowground biotic interactions. In this study, we evaluated the effects of Vicia faba L. (faba bean 4060)–Avena sativa L. (oat ‘Baylor II’) mixtures on biomass, soil properties, and bacterial community dynamics. Results showed that mixtures significantly reduced the fresh weight of faba bean (6.2 kg/m2) compared to monoculture (8.8 kg/m2, p < 0.001), while oat biomass increased under mixtures (3.2 kg m−2 vs. 2.8 kg m−2, p < 0.01). Available phosphorus (AP) and available potassium (AK) significantly decreased in the rhizosphere of both mixtures, whereas alkali-hydrolyzable nitrogen (AN) significantly increased, particularly in oat. Mixtures significantly enhanced bacterial richness, evenness, and Shannon diversity in faba bean (p < 0.01) but had no significant effect on oat diversity metrics. NMDS indicated distinct shifts in bacterial community structures under mixtures. Acidobacteriota and Vicinamibacteraceae were enriched in faba bean mixtures, whereas Actinobacteriota decreased in both forages under mixtures. Source Tracker analysis suggested substantial microbial exchange between species, with over 40% of the bacterial community in mixed roots originating from the partner monoculture. Although microbial community stability tended to decline under mixtures, differences were not significant. Niche breadth was significantly expanded in faba bean mixtures. Community assembly processes remained predominantly stochastic; however, mixtures slightly shifted the balance toward deterministic processes. Structural equation model revealed that soil physicochemical properties had a significant negative effect on diversity (β = −0.371, p = 0.007), and diversity had a significant negative effect on freshweight (β = −0.770, p < 0.001), suggesting that bacterial diversity may play a mediating role in the relationship between soil properties and plant fresh weight (β = 0.285, p = 0.011). These findings demonstrate that mixture-induced changes in soil nutrient status and microbial community characteristics collaboratively mediate plant performance through altered community assembly and diversity–function relationships. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

Back to TopTop