Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (498)

Search Parameters:
Keywords = V-bending

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 9075 KB  
Article
Behaviour Analysis of Timber–Concrete Composite Floor Structure with Granite Chip Connection
by Anna Haijima, Elza Briuka, Janis Sliseris, Dmitrijs Serdjuks, Arturs Ziverts and Vjaceslavs Lapkovskis
J. Compos. Sci. 2025, 9(10), 538; https://doi.org/10.3390/jcs9100538 - 2 Oct 2025
Viewed by 454
Abstract
This study investigates the mechanical behaviour of timber–concrete composite (TCC) floor members with an innovative adhesive connection reinforced by granite chips, glass fibre yarn net in the epoxy adhesive layer, and polypropylene (PP) fibres in the concrete layer. Laboratory tests involved three groups [...] Read more.
This study investigates the mechanical behaviour of timber–concrete composite (TCC) floor members with an innovative adhesive connection reinforced by granite chips, glass fibre yarn net in the epoxy adhesive layer, and polypropylene (PP) fibres in the concrete layer. Laboratory tests involved three groups of specimens subjected to three-point bending over a span of 500 mm with specimen lengths of 550 mm. Group A specimens exhibited crack initiation at approximately 8 kN and partial disintegration at an average load of 11.17 kN, with maximum vertical displacements ranging from 1.7 to 2.5 mm at 8 kN load, increasing rapidly to 4.3 to 5 mm post-cracking. The addition of reinforcing fibres decreased the brittleness of the adhesive connection and improved load-bearing capacity. Finite element modeling using the newly developed Verisim4D software (2025 v 0.6) and analytical micromechanics approaches demonstrated satisfactory accuracy in predicting the composite behavior. This research highlights the potential of reinforcing the adhesive layer and concrete with fibres to enhance the ductility and durability of TCC members under flexural loading. Full article
(This article belongs to the Special Issue Behaviour and Analysis of Timber–Concrete Composite Structures)
Show Figures

Figure 1

29 pages, 15083 KB  
Article
Pseudo-Static Design and Analysis of Seismic Earth Pressure for Cantilever Retaining Walls with Limitation Assessment
by Zhiliang Sun, Wei Wang and Hanghang Liu
Designs 2025, 9(5), 114; https://doi.org/10.3390/designs9050114 - 24 Sep 2025
Viewed by 347
Abstract
By critically reviewing pseudo-static methods, it is demonstrated that approximating the earth pressure on a short heel’s vertical face (V-plane) using the Rankine solution for long-heel walls induces a negligible error. A finite element analysis is deployed to validate the pseudo-static [...] Read more.
By critically reviewing pseudo-static methods, it is demonstrated that approximating the earth pressure on a short heel’s vertical face (V-plane) using the Rankine solution for long-heel walls induces a negligible error. A finite element analysis is deployed to validate the pseudo-static results, with dynamic simulations incorporating 1–5 Hz sinusoidal seismic excitations to probe the resonance effects. The key results show that disregarding the impact of layered backfill placement on the initial stress states leads to non-conservative estimates of active earth pressure. Furthermore, the point of application of earth pressure rises significantly during strong shaking, and although the transient safety factors against sliding and overturning may fall below 1.0 during seismic events, the residual deformation analysis suggests that this does not necessarily lead to collapse. A significant amplification of bending moments and greater reductions in post-earthquake safety factors occur when the input frequency approaches the natural frequency of a wall. Finally, the paper proposes resonance prevention strategies for the seismic design of cantilever retaining walls, a methodology incorporating construction effects into the initial stress field modeling, and recommendations for selecting effective safety factors. Full article
(This article belongs to the Section Civil Engineering Design)
Show Figures

Figure 1

11 pages, 1204 KB  
Article
Fracture Toughness, Work of Fracture and Hardness of 3D-Printed Denture Base Resins
by Sebastian Hetzler, Sebastian Rehm, Sven Räther, Stefan Rues, Andreas Zenthöfer, Peter Rammelsberg and Franz Sebastian Schwindling
Materials 2025, 18(18), 4338; https://doi.org/10.3390/ma18184338 - 16 Sep 2025
Viewed by 512
Abstract
Objectives: To compare fracture toughness (FT), work of fracture (WOF) and Vickers hardness (HV) of four 3D-printed denture base resins—including two novel formulations—and one conventional cold-cured polymethylmethacrylate (PMMA) resin. Methods: 3D-printed specimens (Freeprint denture (FD)/denture impact (FDI), DETAX GmbH and V-Print dentbase/dentbase 2.0, [...] Read more.
Objectives: To compare fracture toughness (FT), work of fracture (WOF) and Vickers hardness (HV) of four 3D-printed denture base resins—including two novel formulations—and one conventional cold-cured polymethylmethacrylate (PMMA) resin. Methods: 3D-printed specimens (Freeprint denture (FD)/denture impact (FDI), DETAX GmbH and V-Print dentbase/dentbase 2.0, VOCO GmbH) were fabricated at 90° layer orientation (n = 40/group) and notched according to ISO 20795-1. FT and WOF were measured via single-edge notched bend testing after seven-day water storage at 37 °C. HV was determined on fractured shards using 3 N load. Data were analyzed with Welch-ANOVA/Dunnett-T3 or ANOVA/Tukey (α = 0.05). Results: The conventional PMMA showed the highest FT and WOF, followed by the novel formulations of the 3D-printed groups VD2 and FDI. Lowest FT and WOF values were measured for VD and FD. HV was highest for the conventional PMMA, followed by the primary formulations FD and VD. Lowest hardness was measured for the novel formulations FDI and VD2. Conclusions: The formulations of the novel 3D-printed materials (FDI and VD2) exhibited markedly greater FT and WOF than their respective predecessors, although this improvement was accompanied by a decrease in hardness. Nevertheless, none of the 3D-printed materials fulfilled the ISO standard criteria for enhanced FT. Full article
(This article belongs to the Special Issue Novel Dental Materials Design and Application)
Show Figures

Figure 1

41 pages, 17064 KB  
Article
Fatigue Probabilistic Approach of Notch Sensitivity of 51CrV4 Leaf Spring Steel Based on the Theory of Critical Distances
by Vítor M. G. Gomes, Miguel A. V. de Figueiredo, José A. F. O. Correia and Abílio M. P. de Jesus
Appl. Sci. 2025, 15(17), 9739; https://doi.org/10.3390/app15179739 - 4 Sep 2025
Viewed by 662
Abstract
The mechanical and structural design of railway vehicles is heavily influenced by their lifetime. Because fatigue is a significant factor that impacts the longevity of railway components, it is imperative that the fatigue resistance properties of crucial components, like leaf springs, be thoroughly [...] Read more.
The mechanical and structural design of railway vehicles is heavily influenced by their lifetime. Because fatigue is a significant factor that impacts the longevity of railway components, it is imperative that the fatigue resistance properties of crucial components, like leaf springs, be thoroughly investigated. This research investigates the fatigue resistance of 51CrV4 steel under bending and axial tension, considering different stress ratios across low-cycle fatigue (LCF), high-cycle fatigue (HCF), and very-high-cycle fatigue (VHCF) regimes, using experimental data collected from this work and prior research. Data included fractographic analyses aiming to help in understanding some of failures for different loads. The presence of geometric discontinuities, such as notches, amplifies stress concentrations, requiring a probabilistic approach to fatigue assessment. To address notch effects, the theory of critical distances (TCD) was employed to evaluate fatigue strength. TCD model was integrated in fatigue statistical models, such as the Walker model (WSN) and the Castillo–Fernández-Cantelli model adapted for mean stress effects (ACFC). Extending the application of the TCD theory, this research provides an improved probabilistic fatigue model that integrates notch sensitivity, mean stress effects, and fatigue regimes, contributing to more reliable design approaches of railway leaf springs or other components produced in 51CrV4 steel. Full article
(This article belongs to the Special Issue Fracture and Fatigue Analysis of Metallic Materials)
Show Figures

Figure 1

16 pages, 3430 KB  
Article
Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation
by Minghao Wang, Chaojie Zhou, Siyan Shang, Hao Jiang, Wenhao Wang, Xinhua Zhou, Wenbin Zhang, Xinyi Wang, Minyi Jin, Tiling Hu, Longchun Wang and Bowen Ji
Micromachines 2025, 16(9), 983; https://doi.org/10.3390/mi16090983 - 27 Aug 2025
Viewed by 1987
Abstract
This study proposes a rigid-flexible neural optrode integrated with anti-bending SU-8 optical waveguides and locally soft peptide-functionalized microelectrodes to address the challenges of precise implantation and long-term biocompatibility in traditional neural interfaces. Fabricated via microelectromechanical systems (MEMS) technology, the optrode features a PBK/PPS/(PHE) [...] Read more.
This study proposes a rigid-flexible neural optrode integrated with anti-bending SU-8 optical waveguides and locally soft peptide-functionalized microelectrodes to address the challenges of precise implantation and long-term biocompatibility in traditional neural interfaces. Fabricated via microelectromechanical systems (MEMS) technology, the optrode features a PBK/PPS/(PHE)2 trilayer electrochemical modification that suppresses photoelectrochemical (PEC) noise by 63% and enhances charge storage capacity by 51 times. A polyethylene glycol (PEG)-enabled temporary rigid layer ensures precise implantation while allowing post-implantation restoration of flexibility and enabling positioning adjustment. In vitro tests demonstrate efficient light transmission through SU-8 waveguides in agar gel and a 63% reduction in PEC noise peaks. Biocompatibility analysis reveals that peptide-coated PI substrates improve cell viability by 32.5–37.1% compared to rigid silicon controls. In vivo validation in crucian carp midbrain successfully records local field potential (LFP) signals (60–80 μV), thereby confirming the optrode’s sensitivity and stability. This design provides a low-damage and high-resolution tool for neural circuit analysis. It also lays a technical foundation for future applications in monitoring neuronal activity and researching neurodegenerative diseases with high spatiotemporal resolution. Full article
Show Figures

Figure 1

12 pages, 5061 KB  
Article
A Programmable Soft Electrothermal Actuator Based on a Functionally Graded Structure for Multiple Deformations
by Fan Bu, Feng Zhu, Zhengyan Zhang and Hanbin Xiao
Polymers 2025, 17(17), 2288; https://doi.org/10.3390/polym17172288 - 24 Aug 2025
Viewed by 729
Abstract
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, [...] Read more.
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, restricting their long-term stability and actuation versatility. In this study, we present a programmable soft electrothermal actuator based on a functionally graded structure composed of polydimethylsiloxane (PDMS)/multiwalled carbon nanotube (MWCNTs) composite material and an embedded EGaIn conductive circuit. Rheological and mechanical characterization confirms the enhancement of viscosity, modulus, and tensile strength with increasing MWCNTs content, confirming that the gradient structure improves mechanical performance. The device shows excellent actuation performance (bending angle up to 117°), fast response (8 s), and durability (100 cycles). The actuator achieves L-shaped, U-shaped, and V-shaped bending deformations through circuit pattern design, demonstrating precise programmability and reconfigurability. This work provides a new strategy for realizing programmable, multimodal deformation in soft systems and offers promising applications in adaptive robotics, smart devices, and human–machine interfaces. Full article
Show Figures

Figure 1

29 pages, 2173 KB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Viewed by 672
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

15 pages, 1643 KB  
Article
Towards Building a Unified Adsorption Model for Goethite Based on Variable Crystal Face Contributions: III Carbonate Adsorption
by Mario Villalobos and América Xitlalli Cruz-Valladares
Colloids Interfaces 2025, 9(4), 51; https://doi.org/10.3390/colloids9040051 - 18 Aug 2025
Viewed by 461
Abstract
Goethite, a ubiquitous Fe(III) oxyhydroxide mineral, typically occurs in very small particle sizes whose interfacial properties critically influence the fate and transport of ionic species in natural systems. The surface site density of synthetic goethite increases with particle size, resulting in enhanced adsorption [...] Read more.
Goethite, a ubiquitous Fe(III) oxyhydroxide mineral, typically occurs in very small particle sizes whose interfacial properties critically influence the fate and transport of ionic species in natural systems. The surface site density of synthetic goethite increases with particle size, resulting in enhanced adsorption capacity per unit area. In the first two parts of this study, we modeled the adsorption of protons, nitrate, As(V), Pb(II), Zn(II), and phosphate on goethite as a function of particle size, adsorbate concentration, pH, and ionic strength, using unified parameters within the CD-MUSIC framework. Here, we extend this work to characterize the interfacial behavior of carbonate in goethite suspensions, using a comprehensive dataset generated previously under both closed and open CO2 system conditions. Carbonate oxyanions, prevalent in geochemical environments, exhibit competitive and complexation interactions with other ions and mineral surfaces. Although a bidentate bridging surface carbonate complex has been successful in previous modeling efforts on goethite, we found that the size of the carbonate moiety is too small and would require extreme octahedron bending of the goethite’s singly coordinated sites to accommodate this type of binding. Here, we propose a novel complex configuration that considers structural, physicochemical, and spectroscopic evidence. Optimal unified affinity constants and charge distribution parameters for this complex simulated all experimental data successfully, providing further validation of the CD-MUSIC model for describing relevant goethite/aqueous interfacial reactions. Full article
(This article belongs to the Special Issue Ten Years Without Nikola Kallay)
Show Figures

Graphical abstract

16 pages, 4517 KB  
Article
High-Performance Al2O3/Epoxy Resin Composites for Insulating Pull Rods of Direct Current High-Speed Switches
by Youpeng Zhang, Jianying Zhong, Liucheng Hao, Yue Zhai, Duanpeng Yuan, Yaxiang Wang, Ye Zhao, Yuanyuan Zhang, Mengjie Sun and Xin Lin
Energies 2025, 18(16), 4256; https://doi.org/10.3390/en18164256 - 11 Aug 2025
Viewed by 568
Abstract
Benefiting from their good mechanical and electrical properties, epoxy resin materials are widely utilized in the field of high-voltage electrical insulation devices. However, with the increase in voltage levels of equipment, the epoxy resin materials used for insulating pull rods in high-voltage electrical [...] Read more.
Benefiting from their good mechanical and electrical properties, epoxy resin materials are widely utilized in the field of high-voltage electrical insulation devices. However, with the increase in voltage levels of equipment, the epoxy resin materials used for insulating pull rods in high-voltage electrical equipment are facing increasingly severe challenges. This study enhanced the mechanical and insulating properties of epoxy resin materials by molecular structure regulation, composite incorporation and formula optimization. The tensile strength, bending strength and impact strength of the epoxy resin materials with molecular structure regulation increased by 20.6%, 8.5% and 42.1%. The breakdown strength successfully increased from 27.6 kV/mm to 29.9 kV/mm. After combining with the modified Al2O3 nanofillers, the breakdown strength, surface resistivity and volumetric resistivity of the composite further improved to 35.8 kV/mm, 2.7 × 1016 Ω and 5.8 × 1017 Ω·cm. The insulating pull rod prepared by this method achieved a flashover voltage of 18.5 kV, meeting the requirements for both insulating and mechanical performance of a prototype of 200 kV high-voltage direct current floor tank-type high-speed mechanical switch. This study can provide important support for the optimization of epoxy resin material formulation design and the development of epoxy-resin-insulating pull rods. Full article
Show Figures

Figure 1

11 pages, 7691 KB  
Article
Buried-Gate Flexible CNT FET with HZO Dielectric on Mica Substrate
by Haiou Li, Jiamin Shen, Zhihao Zhuo, Fabi Zhang, Xingpeng Liu and Qing Liao
Nanomaterials 2025, 15(16), 1218; https://doi.org/10.3390/nano15161218 - 9 Aug 2025
Viewed by 534
Abstract
Carbon nanotube field-effect transistors (CNT FETs) are considered strong candidates for next-generation flexible electronics due to their excellent carrier mobility and mechanical flexibility. However, the fabrication of CNT FETs on conventional flexible substrates such as PI or PET is often limited by surface [...] Read more.
Carbon nanotube field-effect transistors (CNT FETs) are considered strong candidates for next-generation flexible electronics due to their excellent carrier mobility and mechanical flexibility. However, the fabrication of CNT FETs on conventional flexible substrates such as PI or PET is often limited by surface roughness, chemical incompatibility, and poor mechanical robustness, resulting in degraded device performance. In this study, we report the fabrication of buried-gate CNT FETs incorporating Hf0.5Zr0.5O2 as the gate dielectric on mica substrates, which offer high surface flatness, low defect density, and superior mechanical durability. The fabricated devices exhibit outstanding electrical characteristics, including a field-effect mobility of 38.4 cm2/V·s, a subthreshold swing of 93 mV/dec, and a transconductance of 14.2 μS. These results demonstrate the excellent mechanical stability and reliable electrical performance of the proposed devices under bending stress, highlighting their suitability for mechanically demanding flexible electronics applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 1725 KB  
Article
Ring Opening upon Valence Shell Excitation in β-Butyrolactone: Experimental and Theoretical Methods
by Pedro A. S. Randi, Márcio H. F. Bettega, Nykola C. Jones, Søren V. Hoffmann, Małgorzata A. Śmiałek and Paulo Limão-Vieira
Molecules 2025, 30(15), 3137; https://doi.org/10.3390/molecules30153137 - 26 Jul 2025
Cited by 1 | Viewed by 459
Abstract
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 [...] Read more.
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 eV), together with ab initio quantum chemical calculations at the time-dependent density functional (TD-DFT) level of theory. The dominant electronic excitations are assigned to mixed valence-Rydberg and Rydberg transitions. The fine structure in the CH3CHCH2CO2 photoabsorption spectrum has been assigned to C=O stretching, v7a, CH2 wagging, v14a, C–O stretching, v22a, and C=O bending, v26a modes. Photolysis lifetimes in the Earth’s atmosphere from 0 km up to 50 km altitude have been estimated, showing to be a non-relevant sink mechanism compared to reactions with the OH radical. The nuclear dynamics along the C=O and C–C–C coordinates have been investigated at the TD-DFT level of theory, where, upon electronic excitation, the potential energy curves show important carbonyl bond breaking and ring opening, respectively. Within such an intricate molecular landscape, the higher-lying excited electronic states may keep their original Rydberg character or may undergo Rydberg-to-valence conversion, with vibronic coupling as an important mechanism contributing to the spectrum. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Calculation)
Show Figures

Figure 1

21 pages, 7007 KB  
Article
Analysis of Woven Fabric Mechanical Properties in the Context of Sustainable Clothing Development Process
by Maja Mahnić Naglić, Slavenka Petrak and Antoneta Tomljenović
Polymers 2025, 17(15), 2013; https://doi.org/10.3390/polym17152013 - 23 Jul 2025
Viewed by 609
Abstract
This paper presents research in the field of computer-aided 3D clothing design, focusing on an investigation of three methods for determining the mechanical properties of woven fabrics and their impact on 3D clothing simulations in the context of sustainable apparel development. Five mechanical [...] Read more.
This paper presents research in the field of computer-aided 3D clothing design, focusing on an investigation of three methods for determining the mechanical properties of woven fabrics and their impact on 3D clothing simulations in the context of sustainable apparel development. Five mechanical parameters were analyzed: tensile elongation in the warp and weft directions, shear stiffness, bending stiffness, specific weight, and fabric thickness. These parameters were integrated into the CLO3D CAD software v.2025.0.408, using data obtained via the KES-FB system, the Fabric Kit protocol, and the AI-based tool, SEDDI Textura 2024. Simulations of women’s blouse and trousers were evaluated using dynamic tests and validated by real prototypes measured with the ARAMIS optical 3D system. Results show average differences between digital and real prototype deformation data up to 6% with an 8% standard deviation, confirming the high accuracy of 3D simulations based on the determined mechanical parameters of the real fabric sample. Notably, the AI-based method demonstrated excellent simulation results compared with real garments, highlighting its potential for accessible, sustainable, and scalable fabric digitization. Presented research is entirely in line with the current trends of digitization and sustainability in the textile industry. It contributes to the advancement of efficient digital prototyping workflows and emphasizes the importance of reliable mechanical characterization for predictive garment modeling. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

13 pages, 5281 KB  
Article
Flexible Receiver Antenna Prepared Based on Conformal Printing and Its Wearable System
by Qian Zhu, Wenjie Zhang, Wencheng Zhu, Chao Wu and Jianping Shi
Sensors 2025, 25(14), 4488; https://doi.org/10.3390/s25144488 - 18 Jul 2025
Viewed by 875
Abstract
Microwave energy is ideal for wearable devices due to its stable wireless power transfer capabilities. However, rigid receiving antennas in conventional RF energy harvesters compromise wearability. This study presents a wearable system using a flexible dual-band antenna (915 MHz/2.45 GHz) fabricated via conformal [...] Read more.
Microwave energy is ideal for wearable devices due to its stable wireless power transfer capabilities. However, rigid receiving antennas in conventional RF energy harvesters compromise wearability. This study presents a wearable system using a flexible dual-band antenna (915 MHz/2.45 GHz) fabricated via conformal 3D printing on arm-mimicking curvatures, minimizing bending-induced performance loss. A hybrid microstrip–lumped element rectifier circuit enhances energy conversion efficiency. Tested with commercial 915 MHz transmitters and Wi-Fi routers, the system consistently delivers 3.27–3.31 V within an operational range, enabling continuous power supply for real-time physiological monitoring (e.g., pulse detection) and data transmission. This work demonstrates a practical solution for sustainable energy harvesting in flexible wearables. Full article
(This article belongs to the Special Issue Wearable Sensors in Medical Diagnostics and Rehabilitation)
Show Figures

Graphical abstract

12 pages, 7936 KB  
Article
Synergistic Effects of SiCw and Ni Addition on the Densification and Mechanical Properties of (M0.2Ti0.2Ta0.2V0.2Nb0.2)B2 (M=Hf, Zr, or Cr) High-Entropy Ceramics
by Hongya Wu, Jianxin Sun, Jiaqi Zhang, Junshuai Chen, Zhigang Yang, Yubo Gong, Guoqiang Qin, Gang Yu and Shengya He
Ceramics 2025, 8(3), 89; https://doi.org/10.3390/ceramics8030089 - 18 Jul 2025
Viewed by 439
Abstract
The improvement of densification and fracture toughness in high-entropy ceramics is important to realizing their practical applications. In this study, SiC whiskers and metal Ni additions were incorporated to solve these problems of high-entropy boride ceramics. The influence of sintering temperatures (1450–1650 °C) [...] Read more.
The improvement of densification and fracture toughness in high-entropy ceramics is important to realizing their practical applications. In this study, SiC whiskers and metal Ni additions were incorporated to solve these problems of high-entropy boride ceramics. The influence of sintering temperatures (1450–1650 °C) on the densification, microstructure, hardness, fracture toughness, and bending strength of (M0.2Ti0.2Ta0.2V0.2Nb0.2)B2-SiCw-Ni (M=Hf, Zr, or Cr) composites prepared by hot-pressing technology were studied. Results showed that when SiC whiskers and metal Ni additions were used as additives, increasing sintering temperatures from 1450 to 1600 °C promoted the densification of high-entropy boride ceramics. This was mainly attributed to the high sintering driving force. However, when the temperature further increased to 1650 °C, their densification behavior decreased. At a sintering temperature of 1600 °C, these high-entropy borides ceramics all had the highest densification behavior, leading to their high hardness and fracture toughness. The highest relative density was 96.3%, the highest hardness was 22.02 GPa, and the highest fracture toughness was 13.25 MPa·m1/2, which was improved by the co-function of SiC whiskers and plastic metal Ni. Meanwhile, in the adopted sintering temperature range of 1450 to 1650 °C, the highest bending strength at room temperature of these high-entropy boride ceramics could reach 320.8 MPa. Therefore, this research offers an effective densification, strengthening, and toughening method for high-entropy boride composites at a low sintering temperature. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

18 pages, 1996 KB  
Article
Lifetime Behavior of Turn Insulation in Rotating Machines Under Repetitive Pulsed Stress
by Ousama Zidane, Rainer Haller, Pavel Trnka and Hans Bärnklau
Energies 2025, 18(14), 3826; https://doi.org/10.3390/en18143826 - 18 Jul 2025
Viewed by 525
Abstract
Insulation materials are critical for the reliability and performance of electrical power systems, particularly in high-voltage rotating machines. While failures can arise from thermal, mechanical, or electrical stress, they predominantly manifest as electrical breakdowns. Prior research has primarily concentrated on aging in straight [...] Read more.
Insulation materials are critical for the reliability and performance of electrical power systems, particularly in high-voltage rotating machines. While failures can arise from thermal, mechanical, or electrical stress, they predominantly manifest as electrical breakdowns. Prior research has primarily concentrated on aging in straight winding sections, despite evidence indicating that failures frequently occur in the bending regions of turn insulation. This study explores the influence of high-frequency pulsed electrical stress on the lifetime behavior of Type II insulation systems used in high-voltage rotating machines. Practical samples, designed with geometric configurations and technology akin to that in rotating machines, were tested under conditions characterized by voltage slew rates (dv/dt) exceeding 10 kV/μs, with variations in frequency and waveform shape. The findings reveal that the rate of electrical aging remains consistent across differing pulse widths, risetimes, and polarities, displaying a similar lifetime exponent. Nonetheless, insulation durability is markedly more compromised under pulsed conditions. At the identical times-to-failure, the sinusoidal waveform necessitated nearly twice the applied peak voltage as the bipolar pulse waveform. This finding clearly suggests that pulsed excitation exacerbates insulation degradation more effectively due to the sharp rise times and high (dv/dt) rates imposing substantial electrical stress on dielectric materials. Full article
Show Figures

Figure 1

Back to TopTop