Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Flexible Probes Fabrication
2.3. Electrochemical Modification
2.4. Electrochemical Performance Characterization
2.5. Bench Photoelectrical Noise Test
2.6. Biocompatibility Test Procedure
2.7. In Vivo Animal Experiment
3. Results
3.1. Electrochemical Characterization
3.2. Mechanical Properties Characterization
3.3. Optical Stimulation Properties Characterization
3.4. Biocompatibility Test
3.5. Optical Stimulation-Induced Noise Test
3.6. In Vivo Neural Signal Recording Test
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahnood, A.; Chambers, A.; Gelmi, A.; Yong, K.-T.; Kavehei, O. Semiconducting electrodes for neural interfacing: A review. Chem. Soc. Rev. 2023, 52, 1491–1518. [Google Scholar] [CrossRef]
- Paltrinieri, T.; Bondi, L.; Đerek, V.; Fraboni, B.; Głowacki, E.D.; Cramer, T. Understanding Photocapacitive and Photofaradaic Processes in Organic Semiconductor Photoelectrodes for Optobioelectronics. Adv. Funct. Mater. 2021, 31, 2010116. [Google Scholar] [CrossRef]
- Pimenta, S.; Ribeiro, J.F.; Goncalves, S.B.; Maciel, M.J.; Dias, R.A.; Gaspar, J.; Wolffenbuttel, R.F.; Correia, J.H. SU-8 Based Waveguide for Optrodes. Proceedings 2018, 2, 814. [Google Scholar] [CrossRef]
- Rubehn, B.; Wolff, S.B.E.; Tovote, P.; Lüthi, A.; Stieglitz, T. A polymer-based neural microimplant for optogenetic applications: Design and first in vivo study. Lab A Chip 2013, 13, 579–588. [Google Scholar] [CrossRef]
- Shi, J.; Li, P.; Kim, S.; Tian, B. Implantable bioelectronic devices for photoelectrochemical and electrochemical modulation of cells and tissues. Nat. Rev. Bioeng. 2025, 3, 485–504. [Google Scholar] [CrossRef]
- Shin, H.; Son, Y.; Chae, U.; Kim, J.; Choi, N.; Lee, H.J.; Woo, J.; Cho, Y.; Yang, S.H.; Lee, C.J.; et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nat. Commun. 2019, 10, 3777. [Google Scholar] [CrossRef] [PubMed]
- Silverå Ejneby, M.; Jakešová, M.; Ferrero, J.J.; Migliaccio, L.; Sahalianov, I.; Zhao, Z.; Berggren, M.; Khodagholy, D.; Đerek, V.; Gelinas, J.N.; et al. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nat. Biomed. Eng. 2022, 6, 741–753. [Google Scholar] [CrossRef]
- Tao, L.; Kong, Y.; Xiang, Y.; Cao, Y.; Ye, X.; Liu, Z. Implantable optical fiber microelectrode with anti-biofouling ability for in vivo photoelectrochemical analysis. Chin. Chem. Lett. 2023, 34, 107481. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, X.; Liang, Z.; Lin, L.; Zhao, W.; Wang, L.; Xia, Y.; Lin, X.; Vai, M.I.; Pun, S.H.; et al. An Integrated Neural Optrode with Modification of Polymer-Carbon Composite Films for Suppression of the Photoelectric Artifacts. ACS Omega 2024, 9, 33119–33129. [Google Scholar] [CrossRef]
- Ahmed, Z.; Reddy, J.W.; Malekoshoaraie, M.H.; Hassanzade, V.; Kimukin, I.; Jain, V.; Chamanzar, M. Flexible optoelectric neural interfaces. Curr. Opin. Biotechnol. 2021, 72, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Boros, Ö.C.; Horváth, Á.C.; Beleznai, S.; Sepsi, Ö.; Csősz, D.; Fekete, Z.; Koppa, P. Optimization of an optrode microdevice for infrared neural stimulation. Appl. Opt. 2019, 58, 3870–3876. [Google Scholar] [CrossRef]
- Lee, R.S.; Kim, H.J.; Fischer, J.E.; Thess, A.; Smalley, R.E. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 1997, 388, 255–257. [Google Scholar] [CrossRef]
- Parker, K.E.; Lee, J.; Kim, J.R.; Kawakami, C.; Kim, C.Y.; Qazi, R.; Jang, K.-I.; Jeong, J.-W.; McCall, J.G. Customizable, wireless and implantable neural probe design and fabrication via 3D printing. Nat. Protoc. 2023, 18, 3–21. [Google Scholar] [CrossRef]
- English, D.F.; McKenzie, S.; Evans, T.; Kim, K.; Yoon, E.; Buzsáki, G. Pyramidal Cell-Interneuron Circuit Architecture and Dynamics in Hippocampal Networks. Neuron 2017, 96, 505–520.e507. [Google Scholar] [CrossRef]
- Guo, Z.; Ji, B.; Wang, M.; Ge, C.; Wang, L.; Gu, X.; Yang, B.; Wang, X.; Li, C.; Liu, J. A Polyimide-Based Flexible Optoelectrodes for Low-Noise Neural Recording. IEEE Electron Device Lett. 2019, 40, 1190–1193. [Google Scholar] [CrossRef]
- Ji, B.; Ge, C.; Guo, Z.; Wang, L.; Wang, M.; Xie, Z.; Xu, Y.; Li, H.; Yang, B.; Wang, X.; et al. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo. Biosens. Bioelectron. 2020, 153, 112009. [Google Scholar] [CrossRef]
- Wang, L.; Ge, C.; Wang, M.; Ji, B.; Guo, Z.; Wang, X.; Yang, B.; Li, C.; Liu, J. An artefact-resist optrode with internal shielding structure for low-noise neural modulation. J. Neural Eng. 2020, 17, 46024. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Fan, Y.; Li, L.; Wen, F.; Guo, B.; Jin, M.; Xu, J.; Zhou, Y.; Kang, X.; Ji, B.; et al. Flexible Neural Probes with Optical Artifact-Suppressing Modification and Biofriendly Polypeptide Coating. Micromachines 2022, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, W.; Yang, H.; Ye, Y.; Zhou, Z.; Sun, L.; Nie, Y.; Tao, T.H.; Wei, X. Ultraflexible PEDOT:PSS/IrOx-Modified Electrodes: Applications in Behavioral Modulation and Neural Signal Recording in Mice. Micromachines 2024, 15, 447. [Google Scholar] [CrossRef]
- Wu, F.; Stark, E.; Ku, P.-C.; Wise, K.D.; Buzsáki, G.; Yoon, E. Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals. Neuron 2015, 88, 1136–1148. [Google Scholar] [CrossRef]
- Owen, S.F.; Liu, M.H.; Kreitzer, A.C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 2019, 22, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Yamagiwa, S.; Ishida, M.; Kawano, T. Flexible optrode array: Parylene-film waveguide arrays with microelectrodes for optogenetics. In Proceedings of the 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 277–280. [Google Scholar]
- Cao, J.; Wang, L.; Tu, K.; Xu, Q.; Xu, M.; Chen, H.; Wang, X.; Yang, B.; Liu, J. Multifunctional neural probe for synchronized monitoring multiple brain signals. Sens. Actuators A Phys. 2025, 390, 116572. [Google Scholar] [CrossRef]
- Driscoll, N.; Antonini, M.-J.; Cannon, T.M.; Maretich, P.; Olaitan, G.; Van, V.D.P.; Nagao, K.; Sahasrabudhe, A.; Paniagua, E.V.; Frey, E.J.; et al. Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo. Adv. Mater. 2024, 2408154. [Google Scholar] [CrossRef]
- Cho, S.H.; Lu, H.M.; Cauller, L.; Romero-Ortega, M.I.; Lee, J.-B.; Hughes, G.A. Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers. IEEE Sens. J. 2008, 8, 1830–1836. [Google Scholar] [CrossRef]
- Reddy, J.W.; Lassiter, M.; Chamanzar, M. Parylene photonics: A flexible, broadband optical waveguide platform with integrated micromirrors for biointerfaces. Microsyst. Nanoeng. 2020, 6, 85. [Google Scholar] [CrossRef]
- Lee, S.H.; Thunemann, M.; Lee, K.; Cleary, D.R.; Tonsfeldt, K.J.; Oh, H.; Azzazy, F.; Tchoe, Y.; Bourhis, A.M.; Hossain, L.; et al. Scalable Thousand Channel Penetrating Microneedle Arrays on Flex for Multimodal and Large Area Coverage BrainMachine Interfaces. Adv. Funct. Mater. 2022, 32, 2112045. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.W.; Chamanzar, M. Low-loss flexible Parylene photonic waveguides for optical implants. Opt. Lett. 2018, 43, 4112–4115. [Google Scholar] [CrossRef]
- Reddy, J.; Chamanzar, M. Parylene Photonic Waveguide Arrays: A Platform for Implantable Optical Neural Implants. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13 May 2018; p. 3. [Google Scholar]
- Cointe, C.; Laborde, A.; Nowak, L.G.; Arvanitis, D.N.; Bourrier, D.; Bergaud, C.; Maziz, A. Scalable batch fabrication of ultrathin flexible neural probes using a bioresorbable silk layer. Microsyst. Nanoeng. 2022, 8, 21. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Xue, Y.; Lei, I.M.; Chen, X.; Zhang, P.; Cai, C.; Liang, X.; Lu, Y.; Liu, J. Engineering Electrodes with Robust Conducting Hydrogel Coating for Neural Recording and Modulation. Adv. Mater. 2023, 35, 2209324. [Google Scholar] [CrossRef]
- Castagnola, E.; Robbins, E.M.; Krahe, D.D.; Wu, B.; Pwint, M.Y.; Cao, Q.; Cui, X.T. Stable in-vivo electrochemical sensing of tonic serotonin levels using PEDOT/CNT-coated glassy carbon flexible microelectrode arrays. Biosens. Bioelectron. 2023, 230, 115242. [Google Scholar] [CrossRef]
- Wang, Y.; Han, M.; Xu, Z.; Lv, S.; Yang, G.; Mo, F.; Jing, L.; Jia, Q.; Duan, Y.; Xu, W.; et al. Chronic implantable flexible serpentine probe reveals impaired spatial coding of place cells in epilepsy. Natl. Sci. Rev. 2025, 12, nwae402. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhou, C.; Shang, S.; Jiang, H.; Wang, W.; Zhou, X.; Zhang, W.; Wang, X.; Jin, M.; Hu, T.; et al. Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation. Micromachines 2025, 16, 983. https://doi.org/10.3390/mi16090983
Wang M, Zhou C, Shang S, Jiang H, Wang W, Zhou X, Zhang W, Wang X, Jin M, Hu T, et al. Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation. Micromachines. 2025; 16(9):983. https://doi.org/10.3390/mi16090983
Chicago/Turabian StyleWang, Minghao, Chaojie Zhou, Siyan Shang, Hao Jiang, Wenhao Wang, Xinhua Zhou, Wenbin Zhang, Xinyi Wang, Minyi Jin, Tiling Hu, and et al. 2025. "Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation" Micromachines 16, no. 9: 983. https://doi.org/10.3390/mi16090983
APA StyleWang, M., Zhou, C., Shang, S., Jiang, H., Wang, W., Zhou, X., Zhang, W., Wang, X., Jin, M., Hu, T., Wang, L., & Ji, B. (2025). Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation. Micromachines, 16(9), 983. https://doi.org/10.3390/mi16090983