High-Performance Al2O3/Epoxy Resin Composites for Insulating Pull Rods of Direct Current High-Speed Switches
Abstract
1. Introduction
2. Material Preparation and Characterization
2.1. Raw Materials
2.2. Material Preparation
2.3. Testing and Characterization
3. Results and Discussion
3.1. Molecular Structure Modification of Epoxy Resin Materials
3.2. Preparation and Performances of Al2O3/Epoxy Nanocomposite
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumer, V. Assessment of impact of impurities in epoxy-anhydride vacuum impregnation (vi) resin system. IEEE Trans. 2011, 18, 1947–1954. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Xie, Q.; Xia, G.W.; Zhang, Y.P.; Gao, F. Constructing aramid nanofibers self-assembly structure on fiber surface with electric field-assisted enhances insulation performance of aramid fiber reinforced epoxy resin. Appl. Surf. Sci. 2025, 702, 163341. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, G.; Liu, Z.; Tao, Y.; Yang, B.; Wu, K.; Shi, J.; Fu, Y. High-performance epoxy thermosets with excellent low dielectric, flame-retardant and antibacterial properties based on bio-based derived active ester curing agents. Chem. Eng. J. 2025, 509, 161189. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Chen, J.; Shi, X.; Li, X. Surface flashover characteristics of epoxy resin composites in SF6/CF4 gas mixture with DC voltage. Energies 2022, 15, 4675. [Google Scholar] [CrossRef]
- Chen, C.; Sun, Q.; Wang, C.; Bue, Y.; Zhang, J.; Peng, Z. Dielectric relaxation characteristics of epoxy resin modified with hydroxyl-terminated nitrile rubber. Molecules 2020, 25, 4128. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Ran, Z.; Yao, H.; Du, B.; Takada, T. Molecular structure modulated trap distribution and carrier migration in fluorinated epoxy resin. Molecules 2020, 25, 3071. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.L.; Yang, Z.F.; Xia, G.W.; Zhang, J.T.; Zhan, Z.Y.; Xin, W.F.; Wang, Q.F.; Xu, B.B.; Zhang, Y.J.; Xie, J. Enhance the surface insulation properties of EP materials via plasma and fluorine-containing coupling agent co-fluorinated graphene. Nanomaterials 2024, 14, 2009. [Google Scholar] [CrossRef]
- Xia, G.W.; Duan, Q.J.; Yin, G.H.; Li, J.W.; Wan, Z.J.; Yan, J.Y.; Xie, Q. Enhancing surface insulation of epoxy composite by constructing nanofiller-skeleton charge channel. Polym. Compos. 2022, 43, 6234–6243. [Google Scholar] [CrossRef]
- Liu, Y.J.; Yao, L.X.F.; Bu, Y.; Sun, Q. Synergistical performance modification of epoxy resin by nanofillers and carboxyl-terminated liquid nitrile-butadiene rubber. Materials 2021, 14, 4601. [Google Scholar] [CrossRef]
- He, S.; Zheng, Y.; Lin, C.J.; Sun, Z.C.; Tu, Y.P.; He, J.L. Effect of alumina doping content on VFTO tolerance of epoxy resin cone-type insulators. High Volt. Eng. 2020, 46, 4006–4013. (In Chinese) [Google Scholar] [CrossRef]
- Du, B.X.; Li, A.; Li, J. Effects of AC and pulse voltage combination on surface charge accumulation and decay of epoxy resin. IEEE 2016, 23, 2368–2376. [Google Scholar] [CrossRef]
- Hussain, G.A.; Hassan, W.; Mahmood, F.; Shafiq, M.; Rehman, H.; Kay, J.A. Review on partial discharge diagnostic techniques for high voltage equipment in power systems. IEEE Access 2023, 11, 51382–51394. [Google Scholar] [CrossRef]
- Huang, Y.W.; Huang, Z.X.; Li, X.; Ji, Y.Q.; Yang, Z.; Yin, T.; Long, J.Y. High-temperature electrical insulation degradation mechanism in TiN/Ti (C, N)/Al2O3 composite ceramic films. Ceram. Int. 2025, in press. [Google Scholar] [CrossRef]
- Sun, S.Y.; Fan, K.; Yang, J.; Liu, J.X.; Li, X.; Zhao, L.H.; He, X.; Liu, X.Y.; Jia, S.L.; Li, Q. Surface modification engineering on polymer materials toward multilevel insulation properties and subsequent dielectric energy storage. Mater. Today 2024, 80, 758–823. [Google Scholar] [CrossRef]
- Mohamed, H.; Lazaridis, P.; Mather, P.; Tachtatzis, C.; Judd, M.; Akinson, R.; Glover, I.A. Partial discharge detection and localization: Using software defined radio. IEEE Ind. Electron. Mag. 2019, 13, 77–85. [Google Scholar] [CrossRef]
- Bilal, I.A.; Zhang, L.; Wang, G.; Wang, Y.W.; Zhou, S.R. Molecular dynamics and finite element analysis of partial discharge mechanisms in polyimide under high-frequency electric stress. Polym. Degrad. Stabil. 2025, 234, 111252. [Google Scholar] [CrossRef]
- Chen, C.X.; Li, Y.F.; Hao, L.C. Simulation study on stress distribution of 1100 kV GIS insulator during curing. Proc. CSEE 2022, 42, 4992. (In Chinese) [Google Scholar] [CrossRef]
- El-Aouni, N.; Dagdag, O.; Amri, A.E.; Kim, H.; Haldhar, R.; Kim, S.; Dkhireche, N.; Bachiri, A.E.; Berisha, A.; Rafik, M. Synthesis, structural characterization and anticorrosion properties of a new hexafunctional epoxy prepolymer based on urea and phosphorus trichloride for E24 carbon steel in 1.0 M HCl. Colloids Surf. A 2024, 682, 132963. [Google Scholar] [CrossRef]
- Xing, A.; Gao, C.; Yuan, P.; Qiao, Y.; Guo, L.; Li, X.; Yang, W. A novel glycidyl ether type tetrafunctional epoxy resin: Synthesis, cure kinetic and properties. Pure Appl. Chem. 2024, 61, 117–130. [Google Scholar] [CrossRef]
- Swan, S.R.; Creighton, C.; Griffin, J.M.; Gashi, B.V.; Varley, R.J. Aromatic tetra-glycidyl ether versus tetra-glycidyl amine epoxy networks: Influence of monomer structure and epoxide conversion. Polymer 2022, 239, 124401. [Google Scholar] [CrossRef]
- Xie, J.; Hu, Y.; Gao, Y.; Sun, F. Synthesis and properties of trifluoromethyl organosilicon cycloaliphatic epoxy monomers for cationic photopolymerization. J. Appl. Polym. Sci. 2023, 140, e53987. [Google Scholar] [CrossRef]
- Wei, M.; Wang, B.; Zhang, X.; Wei, W.; Li, X. Cycloaliphatic epoxy-functionalized polydimethylsiloxanes for comprehensive modifications of epoxy thermosets. Eur. Polym. J. 2024, 202, 112656. [Google Scholar] [CrossRef]
- Zhao, X.M.; Babu, H.V.; Llorca, J.; Wang, D.Y. Impact of halogen-free flame retardant with varied phosphorus’s chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: Synthesis, fire behaviour, flame-retardant mechanism and mechanical properties. RSC Adv. 2016, 6, 59226–59236. [Google Scholar] [CrossRef]
- Hatano, R.; Tominaga, Y.; Imai, Y.; Nakano, K. Preparation process for biomass nanofiber/bisphenol A-type epoxy resin composites with superior mechanical and thermal properties. Cellulose 2025, 32, 3189–3206. [Google Scholar] [CrossRef]
- Isik, M.; Ahmetli, G. Nanocomposites based on MWCNT and nano clay: Effect of acrylated epoxidized soybean oil on curing and composite properties. Ind. Crop. Prod. 2024, 221, 119421. [Google Scholar] [CrossRef]
- Li, D.; Gui, Y.W.; Chun, P.H.; Shu, S.W. Preparation and characterization of polysiloxane-modified epoxy resin aqueous dispersions and their films. J. Appl. Polym. Sci. 2005, 98, 880–885. [Google Scholar] [CrossRef]
- Kocaman, S.; Ahmetl, G.; Temiz, M. Newly epoxy resin synthesis from citric acid and the effects of modified almond shell waste with different natural acids on the creation of bio-based composites. Ind. Crop. Prod. 2024, 220, 119106. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, C.S.; Cao, J.T.; He, S.; Huang, Z.F.; Shen, N.L.; Zhu, Z.M.; Zhao, H.B.; Rao, W.H. Efficient hyperbranched flame retardant derived from quercetin for use in epoxy resin with well-balanced comprehensive performance. ACS Sustain. Chem. Eng. 2025, 13, 661. [Google Scholar] [CrossRef]
- Shih, W.C.; MA, C.M. Synthesis and characterization of phenoxy resins prepared from diglycidyl ether of bisphenol A and various aromatic dihydroxyl monomers. J. Appl. Polym. Sci. 1999, 73, 2369–2376. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, X.C.; Men, W.W. The effect of toughening agents on heat-resistance mechanical and dielectric properties of resins used in radome materials. In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Zhao, Y.S.; He, Y.H.; Yang, K.R.; Wang, X.P.; Zhang, S. Insulation performance of Me-THPA chain-extended epoxy Resin cured products. Mater. Rep. 2020, 35, 311. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, Y.H.; Tian, X.Y.; Cao, X.L.; Wang, Q.; Wang, J.K.; Xu, Y.G.; Luo, M.; Wang, Z.D. Enhanced thermal conductivity and electrical insulation properties of liquid crystalline epoxy composites by using optimized alumina hybrid fillers. Mater. Today Phys. 2025, 54, 101719. [Google Scholar] [CrossRef]
- Ali, A.A.; Ahmad, H.; Yap, H.; Ismail, H.A. Investigation of electrical properties of TiO2 nanocomposite based polymer. J. Phys. Conf. Ser. 2021, 15, 2–15. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Tian, X.Y.; Cao, X.L.; Wang, Q.; Wang, J.K.; Xu, Y.G.; Luo, M.; Wang, Z.D. Effects of methyl and carbon-carbon double bond in anhydride molecule on dielectric properties of epoxy/Al2O3 composite. IEEE Xplore 2021, 28, 1531–1538. [Google Scholar] [CrossRef]
- Lv, G.; Li, K.; Shi, Y.; Zhang, R.; Tang, H.; Tang, C. Effect of aminosilane coupling agent-modified nano-SiO2 particles on thermodynamic properties of epoxy resin composites. Process 2021, 9, 771. [Google Scholar] [CrossRef]
- Castellon, J.; Nguyen, H.N.; Agnel, S.; Toureille, A. Electrical properties analysis of micro and nano composite epoxy resin materials. IEEE Trans. 2011, 18, 651–658. [Google Scholar] [CrossRef]
- Yang, S.; Huang, Z.; Zhang, Y.F.; Li, J.; Shang, K.; Wang, H.H. Thermal conductivity of nano-boron nitride composite Film/Liquid crystalline epoxy fiber. High Volt. Eng. 2022, 48, 3551. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, X.; Li, W.B.; Chen, S.; Yang, Z.; Han, S.; Ge, G.W. Effect of Nano-SiO2/Al2O3 on the insulation properties of epoxy resin. Polym. Mater. Sci. Eng. 2020, 36, 86. (In Chinese) [Google Scholar] [CrossRef]
- GB/T 40396-2021; Test Method for Glass Transition Temperature of Polymer Matrix Composites-Dynamic Mechanical Analysis (DMA). Standardization Administration of China (SAC): Beijing, China, 2021.
- GB/T 6040-2019; General Rules for Infrared Analysis. Standardization Administration of China (SAC): Beijing, China, 2019.
- GB/T 1040.1-2018; Plastics-Determination of Tensile Properties-Part 1: General Principles. Standardization Administration of China (SAC): Beijing, China, 2018.
- GB/T 9341-2008; Plastics-Determination of Flexural Properties. Standardization Administration of China (SAC): Beijing, China, 2008.
- GB/T 1843-2008; Plastics-Determination of Izod Impact Strength. Standardization Administration of China (SAC): Beijing, China, 2008.
- GB/T 11408.1-2016; Insulating Materials-Test Methods for Electric Strength-Part 1: Test at Power Frequencies. Standardization Administration of China (SAC): Beijing, China, 2016.
- GB/T 41949-2022; Particle-Laser particle size analyser-Technical requirements. Standardization Administration of China (SAC): Beijing, China, 2022.
- GB/T 31838.3-2019; Solid insulating materials-Dielectric and resistive properties-Part 3: Resistive properties (DC methods)-Surface resistance and surface resistivity. Standardization Administration of China (SAC): Beijing, China, 2019.
- Lau, K.Y.; Vaughan, A.S.; Chen, G. Nanodielectrics: Opportunities and challenges. IEEE Electrical Insulation Magazine. 17 June 2015, pp. 45–54. Available online: https://ieeexplore.ieee.org/document/7126073 (accessed on 17 June 2015).
- Štefan, H.; Jozef, K.; Anton, B.; Pavel, T.; Ondrej, M.; Adam, T.; Tomasz, K.; Alena, K.; Tomáš, D.; Jaroslav, H. Fabrication and Broadband Dielectric Study of Properties of Nanocomposites Materials Based on Polyurethane. IEEE Access 2024, 12, 114227–114241. [Google Scholar]
- Khan, M.Z.; Wang, F.; He, L.; Shen, Z.; Huang, Z.; Mehmood, M. Influence of treated nano-alumina and gas-phase fluorination on the dielectric properties of epoxy resin/alumina nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 410–417. [Google Scholar] [CrossRef]
- Li, Z.L.; Du, B.X.; Yang, Z.R.; Li, J. Effects of crystal morphology on Space charge transportation and dissipation of SiC/Silicone rubber composites. IEEE Trans. 2017, 24, 2616. [Google Scholar] [CrossRef]
- Rui, G.; Jerzy, B.; Zhang, S.; Zhang, Q. Dilute nanocomposites: Tuning polymer chain local nanostructures to enhance dielectric responses. Adv. Mater. 2024, 36, 2311739. [Google Scholar] [CrossRef]
- Fan, X.; Ding, X.; Wang, P.; Li, Z.; Cheng, Y.; Liu, J.; Yu, J.; Zhai, J.; Pan, Z.; Li, W. Ultra-low loading fillers induced excellent capacitive performance in polymer-based multilayer nanocomposites under harsh environments. Small 2024, 20, 2405786. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhou, W.; Sui, X.; Wang, Z.; Cai, H.; Wu, P.; Zhang, Y.; Zhou, A. Mechanical and electrical properties of aluminum/epoxy nanocomposites. J. Electron. Mater. 2016, 45, 5885–5894. [Google Scholar] [CrossRef]
- Park, J. Electrical insulation and mechanical properties of epoxy/micro-silica (MS)/micro-alumina (MA) composites. Trans. Electr. Electron. Mater. 2019, 20, 46–51. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, H.; Yoon, S.; Choi, Y.; Shim, J.; Zha, J.; Wie, J.; Kim, J.; Jung, Y. Eco-friendly hybrid composite fillers for high-performance epoxy insulators: Advancing thermal and electrical durability. ACS Appl. Eng. Mater. 2025, 3, 938. [Google Scholar] [CrossRef]
- Wang, H.; Gong, W.; Yuan, Y.; Wu, J.; Wen, S.; Liu, X. Design of hBN/nano Al2O3 epoxy composites with enhanced thermally conductive and dielectric properties. J. Mater. Sci. Mater. Electron. 2024, 35, 1775. [Google Scholar] [CrossRef]
Materials | Model/Grade | Parameters | Manufacturers |
---|---|---|---|
Solid epoxy resin | Araldite®CT5531 | Bisphenol A based epoxy resin, epoxy value 0.25~0.27 mg/100 g | Huntsman (Shanghai, China) |
Liquid epoxy resin | HE-179 | Aliphatic epoxy resin, epoxy value 0.69~0.77 mg/100 g | Loho High-Tech Materials Co., Ltd. (Shanghai, China) |
Curing agent | Aradur®HT903 | Phthalic anhydride, anhydride content 44.72% | Huntsman (Shanghai, China) |
Aluminum oxide | AF-02 | Size 10~20 nm | Aluminum Corporation of China (Beijing, China) |
Silane coupling agent | KH550 | γ-aminopropyltriethoxysilane, purity 97% | Shandong Pinshang New Materials Co., Ltd. (Linyi, China) |
Chain extender | / | Bisphenol A, molecular weight 228.29 | Nantong Xingchen Synthetic Material Co., Ltd. (Nantong, China) |
Capping agent | P018 | p-Cumylphenol, purity of 98% | Wuhan Xinweiye Chemical Co., Ltd. (Wuhan, China) |
Sample | Chain Extender/% | Capping Agent/% | Curing Condition |
---|---|---|---|
EP-0 | 0 | 0 | 130 °C/40 h |
EP-1 | 0 | 6 | 130 °C/40 h |
EP-2 | 18 | 6 | 130 °C/40 h |
EP-3 | 25 | 6 | 130 °C/40 h |
EP-4 | 30 | 6 | 130 °C/40 h |
Sample | Tg/°C | Tensile Strength/MPa | Bending Strength/MPa | Impact Strength/kJ m−2 | Breakdown Strength/kV m−1 |
---|---|---|---|---|---|
EP-0 | 136 | 68 | 129 | 7.6 | 27.2 |
EP-1 | 136 | 70 | 130 | 7.9 | 27.6 |
EP-2 | 132 | 77 | 139 | 9.4 | 28.3 |
EP-3 | 135 | 82 | 140 | 10.8 | 29.9 |
EP-4 | 132 | 85 | 141 | 11.5 | 29.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhong, J.; Hao, L.; Zhai, Y.; Yuan, D.; Wang, Y.; Zhao, Y.; Zhang, Y.; Sun, M.; Lin, X. High-Performance Al2O3/Epoxy Resin Composites for Insulating Pull Rods of Direct Current High-Speed Switches. Energies 2025, 18, 4256. https://doi.org/10.3390/en18164256
Zhang Y, Zhong J, Hao L, Zhai Y, Yuan D, Wang Y, Zhao Y, Zhang Y, Sun M, Lin X. High-Performance Al2O3/Epoxy Resin Composites for Insulating Pull Rods of Direct Current High-Speed Switches. Energies. 2025; 18(16):4256. https://doi.org/10.3390/en18164256
Chicago/Turabian StyleZhang, Youpeng, Jianying Zhong, Liucheng Hao, Yue Zhai, Duanpeng Yuan, Yaxiang Wang, Ye Zhao, Yuanyuan Zhang, Mengjie Sun, and Xin Lin. 2025. "High-Performance Al2O3/Epoxy Resin Composites for Insulating Pull Rods of Direct Current High-Speed Switches" Energies 18, no. 16: 4256. https://doi.org/10.3390/en18164256
APA StyleZhang, Y., Zhong, J., Hao, L., Zhai, Y., Yuan, D., Wang, Y., Zhao, Y., Zhang, Y., Sun, M., & Lin, X. (2025). High-Performance Al2O3/Epoxy Resin Composites for Insulating Pull Rods of Direct Current High-Speed Switches. Energies, 18(16), 4256. https://doi.org/10.3390/en18164256