Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,079)

Search Parameters:
Keywords = Unsaturation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 919 KiB  
Article
The Effect of Short-Term Healthy Ketogenic Diet Ready-To-Eat Meals Versus Healthy Ketogenic Diet Counselling on Weight Loss in Overweight Adults: A Pilot Randomized Controlled Trial
by Melissa Hui Juan Tay, Qai Ven Yap, Su Lin Lim, Yuki Wei Yi Ong, Victoria Chantel Hui Ting Wee and Chin Meng Khoo
Nutrients 2025, 17(15), 2541; https://doi.org/10.3390/nu17152541 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting [...] Read more.
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net carbohydrate intake to 50 g per day, prioritizing unsaturated fats, and reducing saturated fat intake. However, adherence to the HKD remains a challenge in urban, time-constrained environments. Therefore, this pilot randomized controlled trial aimed to investigate the effects of Healthy Ketogenic Diet Ready-To-Eat (HKD-RTE) meals (provided for the first month only) versus HKD alone on weight loss and metabolic parameters among overweight adults. Methods: Multi-ethnic Asian adults (n = 50) with a body mass index (BMI) ≥ 27.5 kg/m2 were randomized into the HKD-RTE group (n = 24) and the HKD group (n = 26). Both groups followed the HKD for six months, with the HKD-RTE group receiving HKD-RTE meals during the first month. Five in-person workshops and mobile health coaching through the Nutritionist Buddy Keto app helped to facilitate dietary adherence. The primary outcome was the change in body weight at 6 months. Linear regression was performed on the change from baseline for each continuous outcome, adjusting for demographics and relevant covariates. Logistic regression was performed on binary weight loss ≥5%, adjusting for demographics and relevant covariates. Results: In the HKD group, participants’ adherence to the 50 g net carbohydrate target was 15 days, while that in the HKD-RTE group was 19 days over a period of 30 days. Participants’ adherence to calorie targets was 21 days in the HKD group and 23 days in the HKD-RTE. The average compliance with the HKD-RTE meals provided in the HKD-RTE group was 55%. The HKD-RTE group experienced a greater percentage weight loss at 1 month (−4.8 ± 3.0% vs. −1.8 ± 6.2%), although this was not statistically significant. This trend continued up to 6 months, with the HKD-RTE group showing a greater percentage weight reduction (−8.6 ± 6.8% vs. −3.9 ± 8.6%; p = 0.092). At 6 months, the HKD-RTE group had a greater reduction in total cholesterol (−0.54 ± 0.76 mmol/L vs. −0.05 ± 0.56 mmol/L; p = 0.283) and LDL-C (−0.43 ± 0.67 mmol/L vs. −0.03 ± 0.52 mmol/L; p = 0.374) compared to the HKD group. Additionally, the HKD-RTE group exhibited greater reductions in systolic blood pressure (−8.3 ± 9.7 mmHg vs. −5.3 ± 11.0 mmHg), diastolic blood pressure (−7.7 ± 8.8 mmHg vs. −2.0 ± 7.0 mmHg), and HbA1c (−0.3 ± 0.5% vs. −0.1 ± 0.4%) than the HKD group (not statistically significant for any). Conclusions: Both HKD-RTE and HKD led to weight loss and improved metabolic profiles. The HKD-RTE group tended to show more favorable outcomes. Short-term HKD-RTE meal provision may enhance initial weight loss, with sustained long-term effects. Full article
16 pages, 3043 KiB  
Article
Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications
by Zhiwei Sun, Wei Wen, Jiayu Wu, Jingjing Shao, Wei Cai, Xiaodong Wen, Chaoen Li, Haijin Guo, Yin Tang, Meng Wang, Dongjing Liu and Yang He
Materials 2025, 18(15), 3632; https://doi.org/10.3390/ma18153632 (registering DOI) - 1 Aug 2025
Abstract
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste [...] Read more.
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste cooking fat and waste reed straw were, respectively, incorporated as the PCM substance and supporting material. The waste fat (lard) consisted of both saturated and unsaturated fatty acid glycerides, exhibiting a melting point about 21.2–41.1 °C and a melting enthalpy value of 40 J/g. Reed straw was carbonized to form a sustainable porous biochar supporting matrix, which was used for the vacuum adsorption of waste fat. The results demonstrate that the as-prepared dual-Bio-SSPCM exhibited excellent thermal performance, characterized by a latent heat capacity of 25.4 J/g. With the addition of 4 wt% of expanded graphite (EG), the thermal conductivity of the composite PCM reached 1.132 W/(m·K), which was 5.4 times higher than that of the primary lard. The thermal properties of the Bio-SSPCM were characterized using an analog T-history method. The results demonstrated that the dual-Bio-SSPCM exhibited exceptional and rapid heat storage and exothermic capabilities. The dual-Bio-SSPCM, prepared from waste cooking fat and reed straw, can be considered as environmentally friendly construction material for energy storage in line with the principles of the circular economy. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
33 pages, 3259 KiB  
Review
Recent Development on the Synthesis Strategies and Mechanisms of Co3O4-Based Electrocatalysts for Oxygen Evolution Reaction: A Review
by Liangjuan Gao, Yifan Jia and Hongxing Jia
Molecules 2025, 30(15), 3238; https://doi.org/10.3390/molecules30153238 (registering DOI) - 1 Aug 2025
Abstract
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. [...] Read more.
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. However, the oxygen evolution reaction (OER) remains a critical challenge due to its high overpotential and slow kinetics during water electrolysis for hydrogen production. Electrocatalysts play an important role in lowering the overpotential of OER and promoting the kinetics. Co3O4-based electrocatalysts have emerged as promising candidates for the oxygen evolution reaction (OER) due to their favorable catalytic activity and good compatibility compared with precious metal-based electrocatalysts. This review presents a summary of the recent developments in the synthesis strategies and mechanisms of Co3O4-based electrocatalysts for the OER. Various synthesis strategies have been explored to control the size, morphology, and composition of Co3O4 nanoparticles. These strategies enable the fabrication of well-defined nanostructures with enhanced catalytic performance. Additionally, the mechanisms of OER catalysis on Co3O4-based electrocatalysts have been elucidated. Coordinatively unsaturated sites, synergistic effects with other elements, surface restructuring, and pH dependency have been identified as crucial factors influencing the catalytic activity. The understanding of these mechanisms provides insights into the design and optimization of Co3O4-based electrocatalysts for efficient OER applications. The recent advancements discussed in this review offer valuable perspectives for researchers working on the development of electrocatalysts for the OER, with the goal of achieving sustainable and efficient energy conversion and storage systems. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
16 pages, 1212 KiB  
Article
Harnessing Mixed Fatty Acid Synergy for Selective Flotation of Apatite from Calcite and Quartz with Sodium Alginate
by Imane Aarab, Khalid El Amari, Abdelrani Yaacoubi, Abdelaziz Baçaoui and Abderahman Etahiri
Minerals 2025, 15(8), 822; https://doi.org/10.3390/min15080822 (registering DOI) - 1 Aug 2025
Abstract
Maximizing the efficient utilization of critical apatite resources through flotation necessitates the exploration of effective and innovative collectors. This study investigates the potential of a fatty acid mixture (FAM) synthesized from saturated palmitic and stearic acids, monounsaturated oleic and palmitoleic acids, and polyunsaturated [...] Read more.
Maximizing the efficient utilization of critical apatite resources through flotation necessitates the exploration of effective and innovative collectors. This study investigates the potential of a fatty acid mixture (FAM) synthesized from saturated palmitic and stearic acids, monounsaturated oleic and palmitoleic acids, and polyunsaturated linoleic acid. The saponified collector FAM and the depressant sodium alginate (NaAl) achieved a direct flotation of apatite from calcite and quartz (97% apatite, 10% calcite, and 7% quartz). The flotation performance with the tested combination exhibited a highly effective enrichment of apatite, mainly from calcite, which aligns with the surface chemistry assessments. Adsorption tests and zeta potential measurements confirmed the micro-flotation results. They provided compelling evidence of a chemisorption interaction between Ca2+ sites on calcite and the carboxyl and hydroxyl groups of NaAl. FTIR analyses suggested a reaction between the apatite surface and the carboxyl groups of saturated and unsaturated acid groups in FAM, even those conditioned with NaAl before, facilitating the complex formation. Remarkably, the synergistic effect of the functional groups demonstrates dual functionality, serving as both a hydrophilic entity for calcite and a hydrophobic entity for apatite flotation. The universal mechanism unveils substantial potential for the extensive application of FAM within apatite flotation. Full article
(This article belongs to the Special Issue Surface Chemistry and Reagents in Flotation)
Show Figures

Figure 1

14 pages, 1862 KiB  
Review
Update of Natural Compounds in Transthyretin Amyloidosis, Years 2020–2025
by Carlo Marotta, Lidia Ciccone and Susanna Nencetti
Crystals 2025, 15(8), 696; https://doi.org/10.3390/cryst15080696 - 30 Jul 2025
Abstract
Transthyretin amyloidosis (ATTR) is a disease caused by the deposition of transthyretin-derived fibrils in the body. Despite extensive research conducted over the years, there are currently only four drugs available in clinical use to treat this condition, two of which are repurposed drugs [...] Read more.
Transthyretin amyloidosis (ATTR) is a disease caused by the deposition of transthyretin-derived fibrils in the body. Despite extensive research conducted over the years, there are currently only four drugs available in clinical use to treat this condition, two of which are repurposed drugs used off-label. However, these treatments present several limitations; therefore, there is an urgent need for new therapeutic options. In this context, dietary supplements containing natural compounds capable of stabilizing the transthyretin (TTR) protein could represent a promising approach to contrast the disease progression, potentially supporting the therapeutic effects of the aforementioned drugs. In light of this, the present review highlights and analyzes the natural compounds that have most recently been reported in the literature as TTR stabilizers. In particular, the studies elucidating the potential of these compounds in the treatment of ATTR, along with the available crystallographic data explaining their binding mode to TTR, are reported. Overall, although the use of natural compounds as supplements shows promise in managing ATTR, further research is still needed to explore its feasibility and confirm its effectiveness. Hopefully, this work will help shed light on these issues and serve as a useful starting point for the development of new strategies to treat this disease. Full article
(This article belongs to the Collection Feature Papers in Biomolecular Crystals)
Show Figures

Figure 1

20 pages, 2110 KiB  
Article
Comprehensive Quality Comparison of Camellia vietnamensis Seed Oil from Different Cultivars in Hainan Island
by Shuao Xie, Jin Zhao, Shuaishuai Shen, Yougen Wu, Huageng Yang, Jing Yu, Ya Liu and Dongmei Yang
Agronomy 2025, 15(8), 1845; https://doi.org/10.3390/agronomy15081845 - 30 Jul 2025
Abstract
Camellia vietnamensis grows in a unique tropical environment, and its seed oil has a rich aroma. The content of unsaturated fatty acids in C. vietnamensis oil is up to 90%, which can regulate human lipid metabolism and prevent cardiovascular and cerebrovascular diseases. Compared [...] Read more.
Camellia vietnamensis grows in a unique tropical environment, and its seed oil has a rich aroma. The content of unsaturated fatty acids in C. vietnamensis oil is up to 90%, which can regulate human lipid metabolism and prevent cardiovascular and cerebrovascular diseases. Compared with olive oil, C. vietnamensis oil has a higher content of unsaturated fatty acids. This study used eleven C. vietnamensis cultivars cultivated on Hainan Island. Among the 11 cultivars, “Boao 1” had fruits with the largest vertical diameter of 45.05 mm, while “Haida 1” had fruits with the largest horizontal diameter, single-fruit weight, and fresh 100-grain weight of 53.5 mm, 70.6 g, and 479.01 g, respectively. “Boao 3” had an acid value and peroxide value of 1.59 mg/g and 3.50 mmol/kg, respectively, and its saponification value content was 213.18 mg/g. “Boao 5” had the highest iodine value, 101.86 g/100 g, among the 11 cultivars. The content of unsaturated fatty acids in the seed oil of 11 cultivars ranged from 84.87% to 87.38%. The qRT-PCR results confirmed that “Boao 3” had a higher content of flavonoids and fatty acids than other cultivars. The comprehensive analysis of physiological and biochemical indices showed that the top five cultivars were “Haida 1”, “Boao 3”, “Haida 2”, “Boao 1”, and “Boao 5”. These five cultivars were suitable for large-scale cultivation in tropical regions, such as Hainan Island. This study provided a theoretical basis for the breeding of C. vietnamensis cultivars in tropical regions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 1463 KiB  
Article
Linseed, Walnut, and Algal Oil Emulsion Gels as Fat Replacers in Chicken Frankfurters: Effects on Composition, Lipid Profile and Sensory Quality
by Tamara Stamenić, Vanja Todorović, Maja Petričević, Tanja Keškić, Bogdan Cekić, Nenad Stojiljković and Nikola Stanišić
Foods 2025, 14(15), 2677; https://doi.org/10.3390/foods14152677 - 30 Jul 2025
Viewed by 81
Abstract
The replacement of animal fat with unsaturated lipid sources in processed meats enhances nutritional value but introduces challenges regarding oxidative stability and sensory acceptability. In this study, the effects of replacing pork back fat with pre-emulsified walnut, linseed, or algal oils on the [...] Read more.
The replacement of animal fat with unsaturated lipid sources in processed meats enhances nutritional value but introduces challenges regarding oxidative stability and sensory acceptability. In this study, the effects of replacing pork back fat with pre-emulsified walnut, linseed, or algal oils on the proximate composition, fatty acid profile, nutritional indices, lipid oxidation, and sensory properties of chicken frankfurters were investigated. Four formulations were prepared: a control group (25% pork fat) and three groups that were completely reformulated using oil emulsions (ratio inulin/water/oil 1:2:1). The fat substitute significantly reduced total fat, SFA, cholesterol (up to 30%), and calorie density, while Ʃn-3 fatty acids were enriched (p < 0.05). The linseed oil samples had the highest levels of α-linolenic acid (47.53%), while the algal oil had the highest levels of eicosapentaenoic acid (10.98%) and docosahexaenoic acid (64.73%) and the most favourable Ʃn-6/Ʃn-3 ratio (p < 0.05). All reformulated groups showed significantly improved atherogenic and thrombogenic indices and increased hypocholesterolaemic/hypercholesterolaemic ratios, which reached 17.43 in the algal oil samples (p < 0.05). Lipid oxidation was increased in the linseed and algal oil treatments, with the walnut oil group showing moderate TBARS levels and minimal accumulation of secondary oxidation products. Principal component analysis revealed that walnut oil offered the most balanced compromise between nutritional improvement, oxidative stability and sensory acceptability. These findings support a healthier reformulation of meat products by identifying oil-based fat substitutes that improve nutritional value without compromising sensory quality, which is beneficial for both research and industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

30 pages, 9797 KiB  
Article
Rate-Dependent Tensile Behavior of Glass Fiber Composites Reinforced with Quadriaxial Fabrics, with or Without Coremat Xi3 Interlayer, for Marine Applications
by Lorena Deleanu, George Pelin, Ioana Gabriela Chiracu, Iulian Păduraru, Mario Constandache, George Ghiocel Ojoc and Alexandru Viorel Vasiliu
Polymers 2025, 17(15), 2074; https://doi.org/10.3390/polym17152074 - 29 Jul 2025
Viewed by 210
Abstract
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the [...] Read more.
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the presence or absence of a Coremat Xi3 middle layer. Tensile tests were conducted at four test rates (10 mm/min, 200 mm/min, 500 mm/min, and 1000 mm/min), ranging from quasi-static to moderately dynamic conditions. Tests were conducted using the Instron 5982 universal testing machine (from Laboratory for Advanced Materials and Tribology, INCAS Bucharest, Romania). The specimens have a rectangular cross section, in agreement with SR EN ISO 527-4:2023. For strain measurements, an Instron advanced video extensometer (AVE) was used. Key mechanical parameters, such as maximum force, tensile strength, Young’s modulus, strain at break, and energy absorption, were extracted and analyzed. Results show that the polyester-based composite without a mat interlayer displayed the best overall performance, with the highest ultimate strength (~280 MPa), significant energy absorption (~106 J), and a consistent increase in ductility with increasing test rate. In contrast, the epoxy composite with Coremat Xi3 exhibited lower stiffness and strength, but higher strain and energy absorption at higher test rates, indicating a progressive failure behavior. These findings enhance the understanding of the tensile response of composites made of quadriaxial glass fiber fabric and provide valuable design data for structural components in marine environments, where both strength and energy absorption are essential. These insights support producers and end-users of non-crimp fabrics in making experimentally based selections of a composite, technological strategies, and design optimization. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

21 pages, 570 KiB  
Article
The Impact of Cereal-Based Plant Beverages on Wheat Bread Quality: A Study of Oat, Millet, and Spelt Beverages
by Anna Wirkijowska, Piotr Zarzycki, Dorota Teterycz and Danuta Leszczyńska
Appl. Sci. 2025, 15(15), 8428; https://doi.org/10.3390/app15158428 - 29 Jul 2025
Viewed by 162
Abstract
Cereal-based plant beverages have gained attention as functional ingredients in bakery formulations, offering both nutritional and technological benefits. Replacing water with these beverages may improve the nutritional value of bread by increasing its fiber and unsaturated fatty acid content, while also introducing functional [...] Read more.
Cereal-based plant beverages have gained attention as functional ingredients in bakery formulations, offering both nutritional and technological benefits. Replacing water with these beverages may improve the nutritional value of bread by increasing its fiber and unsaturated fatty acid content, while also introducing functional components that affect dough rheology and bread texture. This study examined the effects of substituting water with oat (BO), millet (BM), and spelt (BS) beverages in wheat bread formulations at 25%, 50%, 75%, and 100% levels. Thirteen bread variants were prepared: one control and four substitution levels for each of the three cereal-based beverages, using the straight dough method, with hydration adjusted according to farinograph results. Farinograph tests showed increased water absorption (up to 64.5% in BO100 vs. 56.9% in control) and improved dough stability (10.6 min in BS100). Specific bread volume increased, with BS75 reaching 3.52 cm3/g compared to 3.09 cm3/g in control. Moisture content remained stable during storage, and crumb hardness after 72 h was lowest in BO100 (9.5 N) and BS75 (11.5 N), indicating delayed staling. All bread variants received favorable sensory ratings, with average scores above 3.75 on a 5-point scale. The highest bread yield (149.8%) and lowest baking loss (10.9%) were noted for BS100. Although BO breads had slightly higher fat and energy content, their nutritional profile remained favorable due to unsaturated fatty acids. Overall, oat and spelt beverages demonstrated the greatest potential as functional water substitutes, improving dough handling, shelf-life, and sensory quality while maintaining consumer appeal. Full article
Show Figures

Graphical abstract

28 pages, 5986 KiB  
Review
Natural Neuroinflammatory Modulators: Therapeutic Potential of Fungi-Derived Compounds in Selected Neurodegenerative Diseases
by Agnieszka Godela, Diana Rogacz, Barbara Pawłowska and Robert Biczak
Molecules 2025, 30(15), 3158; https://doi.org/10.3390/molecules30153158 - 28 Jul 2025
Viewed by 115
Abstract
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis remain incurable. Current therapeutic strategies primarily focus on slowing disease progression, alleviating symptoms, and improving patients’ quality of life, including the management of comorbid conditions. Over the past few [...] Read more.
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis remain incurable. Current therapeutic strategies primarily focus on slowing disease progression, alleviating symptoms, and improving patients’ quality of life, including the management of comorbid conditions. Over the past few decades, the incidence of diagnosed neurodegenerative disorders has risen significantly. As the number of affected individuals continues to grow, so does the urgent need for effective treatments that can halt or mitigate the progression of these diseases. Among the most promising therapeutic resources are bioactive compounds derived from fungi. The high quality of proteins, polysaccharides, unsaturated fatty acids, triterpenoids, sterols, and secondary metabolites found in fungi have attracted growing interest from researchers across multiple disciplines. One intensively studied direction involves the use of naturally occurring fungi-derived nutraceuticals in the treatment of various diseases, including neurodegenerative conditions. This article provides an overview of recent findings on fungal compounds—such as phenolic compounds, carbohydrates, peptides and proteins, and lipids—that may have potential applications in the treatment of neurodegenerative diseases and the alleviation of their symptoms. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammation)
Show Figures

Figure 1

14 pages, 1948 KiB  
Article
Molecular Responses of Saccharomyces cerevisiae to Growth Under Conditions of Increasing Corn Syrup and Decreasing Molasses
by Binbin Chen, Yu Chyuan Heng, Sharifah Nora Ahmad Almunawar, Elvy Riani Wanjaya, Untzizu Elejalde and Sandra Kittelmann
Fermentation 2025, 11(8), 432; https://doi.org/10.3390/fermentation11080432 - 28 Jul 2025
Viewed by 163
Abstract
Molasses, a by-product of raw sugar production, is widely used as a cost-effective carbon and nutrient source for industrial fermentations, including the production of baker’s yeast (Saccharomyces cerevisiae). Due to the cost and limited availability of molasses, efforts have been made [...] Read more.
Molasses, a by-product of raw sugar production, is widely used as a cost-effective carbon and nutrient source for industrial fermentations, including the production of baker’s yeast (Saccharomyces cerevisiae). Due to the cost and limited availability of molasses, efforts have been made to replace molasses with cheaper and more readily available substrates such as corn syrup. However, the quality of dry yeast drops following the replacement of molasses with corn syrup, despite the same amount of total sugar being provided. Our understanding of how molasses replacement affects yeast physiology, especially during the dehydration step, is limited. Here, we examined changes in gene expression of a strain of baker’s yeast during fermentation with increasing corn syrup to molasses ratios at the transcriptomic level. Our findings revealed that the limited availability of the key metal ions copper, iron, and zinc, as well as sulfur from corn syrup (i) reduced their intracellular storage, (ii) impaired the synthesis of unsaturated fatty acids and ergosterol, as evidenced by the decreasing proportions of these important membrane components with higher proportions of corn syrup, and (iii) inactivated oxidative stress response enzymes. Taken together, the molecular and metabolic changes observed suggest a potential reduction in nutrient reserves for fermentation and a possible compromise in cell viability during the drying process, which may ultimately impact the quality of the final dry yeast product. These findings emphasize the importance of precise nutrient supplementation when substituting molasses with cheaper substrates. Full article
(This article belongs to the Section Yeast)
Show Figures

Figure 1

31 pages, 7303 KiB  
Review
Membrane-Targeting Antivirals
by Maxim S. Krasilnikov, Vladislav S. Denisov, Vladimir A. Korshun, Alexey V. Ustinov and Vera A. Alferova
Int. J. Mol. Sci. 2025, 26(15), 7276; https://doi.org/10.3390/ijms26157276 - 28 Jul 2025
Viewed by 177
Abstract
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical [...] Read more.
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical nature and mechanisms of action of membrane-targeting antivirals. They can affect virions by (1) physically modulating membrane properties to inhibit fusion of the viral envelope with the cell membrane, (2) physically affecting envelope lipids and proteins leading to membrane damage, pore formation and lysis, (3) causing photochemical damage of unsaturated membrane lipids resulting in integrity loss and fusion arrest. Other membrane-active compounds can target host cell membranes involved in virion’s maturation, coating, and egress (endoplasmic reticulum, Golgi apparatus, and outer membrane) affecting these last stages of viral reproduction. Both virion- and host-targeting membrane-active molecules are promising concepts for broad-spectrum antivirals. A panel of approved antivirals would be a superior weapon to respond to and control emerging disease outbreaks caused by new viral strains and variants. Full article
Show Figures

Figure 1

19 pages, 1537 KiB  
Review
Milk Fatty Acids as Potential Biomarkers of Enteric Methane Emissions in Dairy Cattle: A Review
by Emily C. Youngmark and Jana Kraft
Animals 2025, 15(15), 2212; https://doi.org/10.3390/ani15152212 - 28 Jul 2025
Viewed by 290
Abstract
Measuring methane (CH4) emissions from dairy systems is crucial for advancing sustainable agricultural practices aimed at mitigating climate change. However, current CH4 measurement techniques are primarily designed for controlled research settings and are not readily scalable to diverse production environments. [...] Read more.
Measuring methane (CH4) emissions from dairy systems is crucial for advancing sustainable agricultural practices aimed at mitigating climate change. However, current CH4 measurement techniques are primarily designed for controlled research settings and are not readily scalable to diverse production environments. Thus, there is a need to develop accessible, production-level methods for estimating CH4 emissions. This review examines the relationship between enteric CH4 emissions and milk fatty acid (FA) composition, highlights key FA groups with potential as biomarkers for indirect CH4 estimation, and outlines critical factors of predictive model development. Several milk FAs exhibit strong and consistent correlations to CH4 emissions, supporting their utility as predictive biomarkers. Saturated and branched-chain FAs are generally positively associated with CH4 emissions, while unsaturated FAs, including linolenic acid, conjugated linoleic acids, and odd-chain FAs, are typically negatively associated. Variability in the strength and direction of correlations across studies is often attributable to differences in diet or lactation stage. Similarly, differences in experimental design, data processing, and model development contribute to much of the variation observed in predictive equations across studies. Future research should aim to (1) identify milk FAs that consistently correlate with CH4 emissions regardless of diet, (2) develop robust and standardized prediction models, and (3) prioritize the external validation of prediction models across herds and production systems. Full article
Show Figures

Figure 1

30 pages, 7897 KiB  
Review
Recent Progress of 2D Pt-Group Metallic Electrocatalysts for Energy-Conversion Applications
by Ziyue Chen, Yuerong Wang, Haiyan He and Huajie Huang
Catalysts 2025, 15(8), 716; https://doi.org/10.3390/catal15080716 - 27 Jul 2025
Viewed by 389
Abstract
With the rapid growth of energy demand, the development of efficient energy-conversion technologies (e.g., water splitting, fuel cells, metal-air batteries, etc.) becomes an important way to circumvent the problems of fossil fuel depletion and environmental pollution, which motivates the pursuit of high-performance electrocatalysts [...] Read more.
With the rapid growth of energy demand, the development of efficient energy-conversion technologies (e.g., water splitting, fuel cells, metal-air batteries, etc.) becomes an important way to circumvent the problems of fossil fuel depletion and environmental pollution, which motivates the pursuit of high-performance electrocatalysts with controllable compositions and morphologies. Among them, two-dimensional (2D) Pt-group metallic electrocatalysts show a series of distinctive architectural merits, including a high surface-to-volume ratio, numerous unsaturated metal atoms, an ameliorative electronic structure, and abundant electron/ion transfers channels, thus holding great potential in realizing good selectivity, rapid kinetics, and high efficiency for various energy-conversion devices. Considering that great progress on this topic has been made in recent years, here we present a panoramic review of recent advancements in 2D Pt-group metallic nanocrystals, which covers diverse synthetic methods, structural analysis, and their applications as electrode catalysts for various energy-conversion technologies. At the end, the paper also outlines the research challenges and future opportunities in this emerging area. Full article
Show Figures

Graphical abstract

14 pages, 1849 KiB  
Article
Climate-Driven Microbial Communities Regulate Soil Organic Carbon Stocks Along the Elevational Gradient on Alpine Grassland over the Qinghai–Tibet Plateau
by Xiaomei Mo, Jinhong He, Guo Zheng, Xiangping Tan and Shuyan Cui
Agronomy 2025, 15(8), 1810; https://doi.org/10.3390/agronomy15081810 - 26 Jul 2025
Viewed by 212
Abstract
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and [...] Read more.
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and mean annual precipitation (MAP). This study integrates phospholipid fatty acid (PLFA) analysis to simultaneously resolve microbial biomass, community composition, and membrane lipid adaptations along an elevational gradient (2861–5090 m) on the Qinghai–Tibet Plateau. This study found that microbial PLFAs increased significantly with rising MAP, while the relationship with MAT was nonlinear. PLFAs of different microbial groups all had a positive effect on SOC storage. At higher altitudes (characterized by lower MAP and lower MAT), Gram-positive bacteria dominated bacterial communities, and fungi dominated the overall microbial community, highlighting microbial structural adaptations as key regulators of carbon storage. Saturated fatty acids with branches of soil microbial membrane dominated across sites, but their prevalence over unsaturated fatty acids decreased at high elevations. These findings establish a mechanistic link between climate-driven microbial community restructuring and SOC vulnerability on the QTP, providing a predictive framework for carbon–climate feedbacks in alpine systems under global warming. Full article
(This article belongs to the Special Issue Soil Carbon Sequestration for Mitigating Climate Change in Grasslands)
Show Figures

Figure 1

Back to TopTop