Comprehensive Quality Comparison of Camellia vietnamensis Seed Oil from Different Cultivars in Hainan Island
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Methods
2.2. Measurement of Economic Traits of the Fruits
2.3. Measurement of Physiological Indices
2.3.1. Fat Content
2.3.2. Acid Value
2.3.3. Peroxide Value
2.3.4. Iodine Value
2.3.5. Saponification Value
2.3.6. Carotenoids
2.3.7. Total Polyphenols
2.3.8. Total Flavonoid
2.3.9. Tea Saponins
2.3.10. Fatty Acid Composition
2.3.11. Total RNA Extraction and qRT-PCR Validation
2.4. Data Statistical Analysis
3. Results
3.1. Fruit Economic Characters of C. vietnamensis Cultivars
3.2. Seed Oil Content and Physicochemical Indices of C. vietnamensis Cultivars
3.3. Phytochemicals of Seed Oil
3.4. Fatty Acid Profiles of C. vietnamensis Seed Oils
3.5. Comprehensive Analysis of the Quality of Camellia Seed Oil of Different Cultivars
3.5.1. Correlation Between Indicators
3.5.2. Principal Component Analysis
3.6. qRT-PCR Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.P.; Yen, G.C. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. J. Agric. Food Chem. 2006, 54, 779–784. [Google Scholar] [CrossRef]
- Haiyan, Z.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Effect of added caffeic acid and tyrosol on the fatty acid and volatile profiles of camellia oil following heating. J. Agric. Food Chem. 2006, 54, 9551–9558. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Liu, X.; Chen, Z.; Lin, Y.; Wang, S. Comparison of oil content and fatty acid profile of ten new Camellia oleifera cultivars. J. Lipids. 2016, 2016, 3982486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.H.; Li, Z.; Zhou, J.Q.; Gu, Y.Y.; Tan, X.F. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. BMC Plant Biol. 2021, 21, 348. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.J.; Wang, C.Z.; Chen, H.X.; Zhou, H.; Ye, J.Z. Prediction of fatty acid composition in Camellia oleifera oil by near infrared transmittance spectroscopy (NITS). Food Chem. 2013, 138, 1657–1662. [Google Scholar] [CrossRef]
- Gong, H.; Chang, Y.; Xu, J.; Yu, X.; Gong, W. Unilateral cross-incompatibility between Camellia oleifera and C. yuhsienensis provides new insights for hybridization in Camellia spp. Front. Plant Sci. 2023, 14, 1182745. [Google Scholar]
- Hao, P.M.; Nguyen, L.T.; Anh, T.T.M.; Quoc, L.P.T. Evaluation of the physical, chemical, antioxidant, and antibacterial properties of Camellia oleifera Abel. seed oil. BioTechnologia 2025, 106, 5–12. [Google Scholar] [CrossRef]
- Peng, S.F.; Lu, J.; Zhang, Z.; Ma, L.; Liu, C.X.; Chen, Y.Z. Global transcriptome and correlation analysis reveal cultivar-specific molecular signatures associated with fruit development and fatty acid determination in Camellia oleifera Abel. Int. J. Genom. 2020, 2020, 6162802. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Lu, C.C.; Yen, G.C. Beneficial effects of camellia oil (Camellia oleifera Abel.) on hepatoprotective and gastroprotective activities. J. Nutrit. Sci. Vitaminol. 2015, 61, S100–S102. [Google Scholar] [CrossRef]
- Yue, W.; Shuchai, S.; Ma, L.; Shaoyan, Y.; Yuwei, W.; Wang, X.E. Effects of canopy microclimate on fruit yield and quality of Camellia oleifera. Sci. Hortic. 2018, 235, 132–141. [Google Scholar] [CrossRef]
- Li, Z.; Tan, X.; Liu, Z.; Lin, Q.; Zhang, L.; Yuan, J.; Zeng, Y.; Wu, L. In vitro propagation of Camellia oleifera Abel. using hypocotyl, cotyledonary node, and radicle explants. HortScience 2016, 51, 416–421. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, T.; Wang, Y.; Zhou, B.; Yan, L.; Teng, L.; Wang, F.; Chen, L.; He, Y.; Guo, K. New method for effective identification of adulterated camellia oil basing on Camellia oleifera-specific DNA. Arab. J. Chem. 2018, 11, 815–826. [Google Scholar] [CrossRef]
- Ding, Y.; Wu, Q.; Li, Z.; Zhong, Q.; Zhou, S.; Chen, F.; Zhang, M.; Li, Y.; Li, P.; Xie, C. Transcriptome and metabolome analysis reveals the mechanism of key nutrient formation in Hainan oil-camellia (Camellia hainanica) growth cycle. Ind. Crops Prod. 2025, 230, 121122. [Google Scholar] [CrossRef]
- Cayuela, J.A.; García, J.F. Nondestructive measurement of squalene in olive oil by near infrared spectroscopy. LWT 2018, 88, 103–108. [Google Scholar] [CrossRef]
- Tominaga, M.; Miyazaki, K.; Hataya, S.; Mitsui, Y.; Kuroda, S.; Kondo, A.; Ishii, J. Enhanced squalene production by modulation of pathways consuming squalene and its precursor. J. Biosci. Bioeng. 2022, 134, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.I.; Naina Mohamed, I. Interdependence of Anti-Inflammatory and Antioxidant Properties of Squalene–Implication for Cardiovascular Health. Life 2021, 11, 103. [Google Scholar] [CrossRef]
- Su, M.H.; Shih, M.C.; Lin, K.H. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 2014, 156, 369–373. [Google Scholar] [CrossRef]
- Yang, D.Y.; Wang, R.; Lai, H.G.; He, Y.M.; Chen, Y.Z.; Xun, C.F.; Zhang, Y.; He, Z.L. Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three Camellia oleifera Varieties During Seed Maturing. J. Agric. Food Chem. 2024, 72, 18257–18270. [Google Scholar] [CrossRef]
- Yang, L.; Gao, C.; Xie, J.; Qiu, J.; Deng, Q.; Zhou, Y.; Liao, D.; Deng, C. Fruit economic characteristics and yields of 40 superior Camellia Oleifera Abel. plants in the low-hot valley area of Guizhou Province, China. Sci. Rep. 2022, 12, 7068. [Google Scholar] [CrossRef]
- Di, T.M.; Yang, S.L.; Du, F.Y.; Zhao, L.; Li, X.H.; Xia, T.; Zhang, X.F. Oleiferasaponin A2, a novel saponin from Camellia oleifera Abel. Seeds, inhibits lipid accumulation of HepG2 cells through regulating fatty acid metabolism. Molecules 2018, 23, 3296. [Google Scholar] [CrossRef]
- Omidi, H.; Tahmasebi, Z.; Naghdi Badi, H.A.; Torabi, H.; Miransari, M. Fatty acid composition of canola (Brassica napus L.), as affected by agronomical, genotypic and environmental parameters. Comptes Rendus Biol. 2010, 333, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Cai, Y.; Chen, K.; You, R.; Lu, Y. Camellia oleifera oil: Unveiling health benefits and exploring novel applications. Crit. Rev. Food Sci. Nutr. 2025, 20, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhu, F.; Chen, B.; Su, E.; Chen, Y.; Cao, F. Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: A review. Food Res. Int. 2022, 156, 111159. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Zhong, S.; Huang, B.; Zha, K.; Li, J.; Wen, Q. Influence of Environmental Conditions Associated with Low and High Altitudes on Economic and Quality Characteristics of Fruit Ripening of Camellia chekiangoleosa Hu. Foods 2025, 14, 2266. [Google Scholar] [CrossRef]
- Chen, T.; Tang, M.; Zhao, X.R.; Feng, S.L.; Liu, L.; Zhou, L.J.; Cao, X.H.; Huang, Y.; Yang, H.Y.; Ding, C.B. Antioxidant potential evaluation of polysaccharides from Camellia oleifera Abel in vitro and in vivo. Int. J. Biol. Macromol. 2023, 248, 125726. [Google Scholar] [CrossRef]
- Chen, Y.H. Physiochemical Properties and Bioactivities of Tea Seed (Camellia oleifera) Oil. Master’s Thesis, Clemson University, Clemson, SC, USA, 2007. [Google Scholar]
- Xie, H.; Zeng, F.; Guo, Y.; Peng, L.; Luo, X.; Yang, C. Effect of tea seed oil on in vitro rumen fermentation, nutrient degradability, and microbial profile in water buffalo. Microorganisms 2023, 11, 1981. [Google Scholar] [CrossRef]
- Jung, E.; Lee, J.; Baek, J.; Jung, K.; Lee, J.; Huh, S.; Kim, S.; Koh, J.; Park, D. Effect of Camellia japonica oil on human type I procollagen production and skin barrier function. J. Ethnopharmacol. 2007, 112, 127–131. [Google Scholar] [CrossRef]
- Yu, J.; Yan, H.; Wu, Y.; Wang, Y.; Xia, P. Quality evaluation of the oil of camellia spp. Foods 2022, 11, 2221. [Google Scholar] [CrossRef]
- Chen, Y. Comparative Analysis on the Main Characters of 18 Excellent Individual Plants in F1 Generation of Interspecific Hybridization of Camellia oleifera. Dissertation. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2020. [Google Scholar]
- Lu, J.; Wu, J.L.; Liu, S.; Wu, W.G.; Liao, L.Y. Effect of alkaline microcrystalline cellulose deacidification on chemical composition, antioxidant activity and volatile compounds of camellia oil. LWT 2023, 18, 115214. [Google Scholar]
- Li, X.; Guo, M.; Xue, Y.; Duan, Z. Effect of Extraction Methods on the Physicochemical Properties, Chemical Composition, and Antioxidant Activities of Samara Oil. Foods 2023, 12, 3163. [Google Scholar] [CrossRef]
- Ye, Z.; Yu, J.; Yan, W.; Zhang, J.; Yang, D.; Yao, G.; Liu, Z.; Wu, Y.; Hou, X. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera. Hortic. Res. 2021, 8, 157. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data UsingReal-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- GB 5009.168-2016; National Food Safety Standard Determination of Fatty Acids in Food. The National Health and Family Planning Commission and the State Food and Drug Administration of the People’s Republic of China. China Standard Press: Beijing, China, 2017.
- Li, S.T. The Antioxidant Interaction and Migration Characteristics into Oil Phase of Phenolic Compounds in Different Forms from Camellia Seed Oil. Master’s Thesis, Yangzhou University, Yangzhou, China, 2019. [Google Scholar]
- Sun, B. The Evaluation of the Fruit’s Economic Character of the Sapindus mukurossi and the Election of the Superior Tree. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2014. [Google Scholar]
- Hajduch, M.; Casteel, J.E.; Hurrelmeyer, K.E.; Song, Z.; Agrawal, G.K.; Thelen, J.J. Proteomic analysis of seed filling in Brassica napus developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol. 2006, 141, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Wu, L.L.; Sun, M.H.; Li, Z.; Tan, X.F.; Li, J.A. Transcriptomic and metabolomic insights on the molecular mechanisms of flower buds in responses to cold stress in two Camellia oleifera cultivars. Front. Plant Sci. 2023, 14, 1126660. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Chen, G.C.; Jiang, Z.P.; Hao, B.Q.; Xia, Y.Y. Dynamics and correlations of the nutritional components during fruit ripening period of new variety of Camelia semiserrata ‘Hongyu No. 1’. J. Northwest For. Univ. 2020, 35, 142–146. [Google Scholar]
- Chen, L.; Liu, Y.L.; Liu, Q.; Wang, W.; Zhang, W.F. Comparative study of economic characters and oil contents of oil tea. Guizhou Agric. Sci. 2012, 40, 162–165. [Google Scholar]
- Zhu, G.F.; Liu, H.; Xie, Y.C.; Liao, Q.; Lin, Y.W.; Liu, Y.H.; Xiao, H.W.; Gao, Z.J.; Hu, S.Z. Postharvest processing and storage methods for Camellia oleifera seeds. Food Rev. Int. 2020, 36, 319–339. [Google Scholar] [CrossRef]
- Xu, Z.G.; Yuan, D.Y.; Tang, Y.C.; Wu, L.; Zhao, Y. Camellia hainanica (Theaceae) a new species from Hainan, supported from morphological characters and phylogenetic analysis. Pak. J. Bot. 2020, 52, 3. [Google Scholar] [CrossRef]
- Costa, J.C.; Fracetto, G.G.M.; Fracetto, F.J.C.; Santos, M.V.F.; Lira Junior, M.A. Genetic diversity of desmanthus sp accessions using ISSR markers and morphological traits. Genet. Mol. Res. 2017, 16, gmr16029667. [Google Scholar] [CrossRef]
- Yao, X.H.; Wang, K.L.; Huang, Y.; Ren, H.D. Analysis and evaluation on variation characteristics of oil content and fatty acid composition of camellia meiocarpa populations. J. For. Res. 2013, 26, 533–541. [Google Scholar]
- Zhang, W.L.; Li, N.; Feng, Y.Y.; Su, S.J.; Li, T.; Liang, B. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry. Food Chem. 2015, 185, 326–332. [Google Scholar] [CrossRef]
- Yu, C. Analysis and Evaluation of the Quality of Oil in 11 Excellent Clones. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2020. [Google Scholar]
- Lan, N.N.; Liu, R.J.; Chang, M.; Jin, Q.Z.; Wang, X.G. Anti-inflammatory activity of oil-tea Camellia seed oil. China Oils Fats 2018, 43, 84–88. [Google Scholar]
- Zeng, Y.L.; Yan, Y.D.; Tan, X.F.; He, C.Y.; Yang, R. Effect of air-drying on seed oil yield and component of Camellia oleifera after harvest. J. Plant Physiol. 2019, 54, 316–324. [Google Scholar]
- Miao, S.H.; Ma, Z.; Su, S.C. Fruit Quality changes during ripening period of four varieties of oil tea. J. Northwest For. Univ. 2023, 51, 37–44. [Google Scholar]
- Yuan, J.; Han, Z.Q.; He, S.Y.; Huang, L.Y.; Zhou, N.F. Investigation and cluster analysis of main morphological and economical characters for oil tea resource in Hainan province. Plant Genet. Resour-C. 2014, 15, 1380–1384. [Google Scholar]
- Gharby, S.; Charrouf, Z. Argan oil: Chemical composition, extraction process, and quality control. Front. Nutr. 2022, 8, 804587. [Google Scholar] [CrossRef]
- Sabah El Khier, M.K.; Khogali Elnur, A.I.; Abu El Gasim, A.Y. Chemical composition and oil characteristics of sesame seed cultivars grown in Sudan. Res. J. Agric. Biol. Sci. 2008, 4, 761–766. [Google Scholar]
- De Figueiredo, A.K.; Fernandez, M.B.; Nolasco, S.M. Extraction of high stearic high oleic sunflower oil (HSHO): Effect of dehulling and hydrothermal pretreatment. J. Food Eng. 2018, 240, 49–55. [Google Scholar] [CrossRef]
- Barreiro, R.; Rodríguez-Solana, R.; Alonso, L.; Salinero, C.; López Sánchez, J.I.; Pérez-Santín, E. Fast 1H-NMR species differentiation method for camellia seed oils applied to Spanish ornamentals plants. Comparison with traditional gas chromatography. Plants 2021, 10, 1984. [Google Scholar] [CrossRef]
- Zhang, H.H.; Gao, P.; Mao, Y.N.; Dong, J.H.; Zhong, W.; Hu, C.R.; He, D.P.; Wang, X.G. Physicochemical study of Camellia oleifera Abel. seed oils produced using different pretreatment and processing methods. LWT 2023, 173, 114396. [Google Scholar] [CrossRef]
- Loukhmas, S.; Kerak, E.; Elgadi, S.; Ettalibi, F.; El Antari, A.; Harrak, H. Oil content, fatty acid composition, physicochemical properties, and antioxidant activity of seed oils of ten Moroccan Pomegranate Cultivars. J. Food Qual. 2021, 2021, 6617863. [Google Scholar] [CrossRef]
- Wang, S.P.; Xu, Y.G.; Huang, G.Y.; Cao, Y.Q.; Wu, J.S. Changlin series of Camellia oleifera Abel. introduction performance and evaluation. Chin. Agric. Sci. Bull. 2019, 35, 76–79. [Google Scholar]
- Zhong, S.; Huang, B.; Wei, T.; Deng, Z.; Li, J.; Wen, Q. Comprehensive evaluation of quality characteristics of four Oil-Tea camellia species with Red Flowers and Large Fruit. Foods 2023, 12, 374. [Google Scholar] [CrossRef]
- Alexandra Silva, M.; Gonçalves Albuquerque, T.; Carneiro Alves, R.; Oliveira, M.B.P.; Costa, H.S. Melon seeds oil, fruit seeds oil and vegetable oils: A comparison study. Ann. Med. 2019, 51, 166. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, X.; Chao, Y.; Wu, Y.; Qiu, S.; Lin, B.; Liu, R.; Tang, R.; Wu, S.; Xiao, Z.; et al. The effect of extraction methods on the components and quality of Camellia oleifera oil: Focusing on the flavor and lipidomics. Food Chem. 2024, 447, 139046. [Google Scholar] [CrossRef]
Cultivar Number | Cultivar Name | Altitude (m) | Longitude (E) | Latitude (N) | Plant Height (m) | Crown Diameter (m) | Trunk Circumference (cm) |
---|---|---|---|---|---|---|---|
BA-1 | Boao 1 | 16.30 | 110°24′28.80″ | 19°12′10.80″ | 2.65 | 2.53 × 2.42 | 27.50 |
BA-3 | Boao 3 | 16.50 | 110°24′28.80″ | 19°12′10.80″ | 2.43 | 2.04 × 2.62 | 22.50 |
BA-5 | Boao 5 | 16.20 | 110°24′32.40″ | 19°12′14.40″ | 2.12 | 3.32 × 1.67 | 34.10 |
WH-1 | Wanhai 1 | 61.80 | 110°15′0″ | 19°47′45.60″ | 3.70 | 4.53 × 4.72 | 42.70 |
WH-3 | Wanhai 3 | 63.20 | 110°15′0″ | 19°47′45.60″ | 4.07 | 3.17 × 3.58 | 52.70 |
WH-4 | Wanhai 4 | 61.80 | 110°15′0″ | 19°47′45.60″ | 4.90 | 4.92 × 5.14 | 104.30 |
HD-1 | Haida 1 | 34.30 | 110°21′14.40″ | 19°4′30″ | 2.64 | 3.26 × 3.32 | 37.50 |
HD-2 | Haida 2 | 37.20 | 110°21′14.40″ | 19°4′33.6″ | 3.23 | 4.16 × 3.54 | 47.10 |
DS-5 | Dongsheng 5 | 16.77 | 110°24′28.80″ | 19°12′10.80″ | 2.39 | 2.19 × 1.96 | 22.97 |
DS-10 | Dongsheng 10 | 16.45 | 110°24′28.80″ | 19°12′14.40″ | 3.46 | 2.85 × 2.88 | 33.20 |
DS-12 | Dongsheng 12 | 16.67 | 110°24′28.80″ | 19°12′10.80″ | 3.45 | 3.37 × 3.17 | 34.37 |
Name | Fruit Weight (g) | Fruit Length (mm) | Fruit Diameter (mm) | Fruit Shape Index | Pericarp Thickness (cm) | Single-Fruit Grain Weight (%) | Fresh Seed Yield (%) | Fresh Kernel Yield (%) | Fresh 100-Grain Weight (g) | Dry 100-Grain Weight (g) |
---|---|---|---|---|---|---|---|---|---|---|
BA-1 | 58.18 ± 8.09 bc | 45.05 ± 1.41 b | 50.00 ± 2.87 b | 1.11 ± 0.03 de | 0.50 ± 0.03 bc | 21.14 ± 3.62 bc | 46.18 ± 4.07 ef | 59.42 ± 6.47 b | 300.60 ± 32.36 c | 177.27 ± 26.48 cd |
BA-3 | 41.47 ± 9.33 def | 36.15 ± 1.39 f | 46.38 ± 3.61 f | 1.28 ± 0.05 bc | 0.44 ± 0.02 cd | 13.81 ± 3.68 de | 54.04 ± 2.29 bcd | 63.18 ± 0.61 b | 396.79 ± 35.18 b | 263.32 ± 16.04 a |
BA-5 | 39.12 ± 2.85 def | 39.55 ± 0.78 de | 42.42 ± 1.24 de | 1.08 ± 0.03 e | 0.29 ± 0.02 f | 19.36 ± 1.23 c | 48.38 ± 4.93 def | 61.01 ± 2.62 b | 285.16 ± 35.01 cd | 175.03 ± 19.60 cd |
WH-1 | 32.79 ± 3.20 f | 32.98 ± 1.62 g | 42.36 ± 1.36 g | 1.30 ± 0.05 abc | 0.39 ± 0.04 de | 11.49 ± 1.82 de | 48.40 ± 4.80 def | 61.15 ± 2.20 b | 263.47 ± 23.96 cde | 153.03 ± 16.83 d |
WH-3 | 34.18 ± 3.34 f | 31.98 ± 0.60 g | 43.62 ± 1.73 g | 1.37 ± 0.04 a | 0.49 ± 0.04 bc | 10.44 ± 1.32e | 43.63 ± 0.98 f | 58.41 ± 2.92 b | 216.43 ± 10.74 f | 97.07 ± 7.24 e |
WH-4 | 70.60 ± 8.68 a | 46.15 ± 2.08 a | 50.30 ± 2.52 ab | 1.09 ± 0.01 e | 0.37 ± 0.03 e | 25.25 ± 2.24 a | 61.09 ± 3.19 a | 35.87 ± 1.14 c | 301.33 ± 30.02 c | 156.68 ± 23.04 d |
HD-1 | 67.91 ± 4.68 ab | 42.80 ± 0.92 c | 53.50 ± 0.82 c | 1.28 ± 0.08 bc | 0.51 ± 0.08 b | 24.40 ± 0.79 ab | 56.84 ± 3.17 abc | 62.10 ± 4.55 b | 479.01 ± 13.48 a | 290.97 ± 2.60 a |
HD-2 | 61.20 ± 7.95 ab | 41.13 ± 1.36 cd | 51.15 ± 2.45 cd | 1.25 ± 0.03 c | 0.58 ± 0.03 a | 18.58 ± 2.84 c | 50.55 ± 2.08 cde | 61.21 ± 4.48 b | 370.01 ± 31.77 b | 226.91 ± 30.84 b |
DS-5 | 46.20 ± 3.00 de | 35.35 ± 0.65 f | 47.55 ± 1.45 f | 1.35 ± 0.02 ab | 0.41 ± 0.01 de | 20.29 ± 0.98 c | 58.56 ± 2.60 ab | 71.34 ± 5.66 a | 365.68 ± 16.65 b | 191.35 ± 21.23 c |
DS-10 | 49.49 ± 4.55 cd | 37.67 ± 0.72 ef | 47.77 ± 1.34 ef | 1.27 ± 0.01 bc | 0.54 ± 0.04 ab | 14.59 ± 1.35 d | 53.84 ± 6.64 bcd | 60.42 ± 4.73 b | 252.75 ± 9.59 def | 181.35 ± 7.73 cd |
DS-12 | 36.56 ± 2.42 ef | 36.62 ± 1.11 f | 43.02 ± 1.14 f | 1.18 ± 0.06 d | 0.39 ± 0.01 de | 14.43 ± 1.21 d | 57.19 ± 1.53 abc | 63.77 ± 5.39 b | 222.92 ± 9.88 ef | 151.83 ± 7.30 d |
Max. | 70.5 | 50.3 | 53.5 | 1.37 | 0.58 | 25.25 | 61.09 | 71.34 | 479.01 | 290.97 |
Min. | 32.79 | 31.98 | 42.36 | 1.08 | 0.29 | 10.44 | 43.63 | 35.87 | 216.43 | 97.07 |
Mean | 48.87 | 39.05 | 46.72 | 1.22 | 0.45 | 17.62 | 36.14 | 59.81 | 300.59 | 187.71 |
CV/% | 26.55 | 13.33 | 7.62 | 10.52 | 18.43 | 27.09 | 16.23 | 13.77 | 29.88 | 27.78 |
Cultivar | Dry Kernel Oil Content (%) | Acid Value (mg·g−1) | Peroxide Value (mmol·kg−1) | Iodine Value (g/100·g) | Saponification Value (mg·g−1) |
---|---|---|---|---|---|
BA-1 | 46.30 ± 0.94 cd | 2.53 ± 0.28 ab | 5.25 ± 0.90 a | 67.41 ± 3.94 e | 187.00 ± 12.96 bc |
BA-3 | 45.99 ± 4.73 cd | 1.59 ± 0.32 e | 3.50 ± 0.43 c | 84.64 ± 1.95 c | 213.18 ± 14.71 a |
BA-5 | 39.04 ± 0.84 e | 1.78 ± 0.16 de | 4.00 ± 0.50 bc | 101.86 ± 4.49 a | 203.46 ± 9.07 ab |
WH-1 | 45.76 ± 0.67 cd | 2.71 ± 0.16 a | 2.17 ± 0.52 ef | 84.44 ± 4.30 c | 177.28 ± 2.24 c |
WH-3 | 44.46 ± 3.84 cd | 2.24 ± 0.17 bc | 1.75 ± 0.25 fg | 76.03 ± 0.36 d | 201.21 ± 3.43 ab |
WH-4 | 45.15 ± 0.82 cd | 2.15 ± 0.16 bcd | 3.25 ± 0.90 cd | 85.70 ± 4.13 c | 189.99 ± 15.27 bc |
HD-1 | 44.74 ± 1.08 cd | 2.81 ± 0.28 a | 3.04 ± 0.89 cde | 87.90 ± 6.49 bc | 202.71 ± 3.43 ab |
HD-2 | 46.48 ± 0.70 bc | 1.68 ± 0.28 de | 4.58 ± 0.58 ab | 89.20 ± 4.41 bc | 198.22 ± 10.12 ab |
DS-5 | 43.69 ± 1.03 d | 1.96 ± 0.28 cde | 1.08 ± 0.19 gh | 90.63 ± 2.01 bc | 196.72 ± 5.65 ab |
DS-10 | 48.82 ± 1.35 ab | 1.68 ± 0.28 de | 0.58 ± 0.14 h | 86.08 ± 3.71 c | 200.46 ± 1.30 ab |
DS-12 | 50.18 ± 1.38 a | 1.96 ± 0.28 cde | 2.42 ± 0.38 def | 94.05 ± 1.41 b | 198.97 ± 1.30 ab |
Cultivar | Polyphenols (mg·kg−1) | Flavonoids (mg·kg−1) | Tea Saponin (%) | Carotenoids (mg·kg−1) |
---|---|---|---|---|
BA-1 | 71.86 ± 0.94 c | 9.97 ± 0.26 b | 9.20 ± 0.51 cde | 2.31 ± 0.10 e |
BA-3 | 79.19 ± 0.03 b | 10.09 ± 0.09 b | 15.88 ± 2.53 b | 5.53 ± 0.72 b |
BA-5 | 69.15 ± 0.38 d | 9.01 ± 0.04 c | 10.23 ± 1.76 a | 10.18 ± 0.51 de |
WH-1 | 79.49 ± 0.41 b | 10.11 ± 0.21 b | 10.21 ± 1.10 def | 1.54 ± 0.81 de |
WH-3 | 31.61 ± 0.59 i | 6.22 ± 0.05 i | 8.46 ± 0.31 f | 0.85 ± 0.16 e |
WH-4 | 44.19 ± 0.46 g | 7.47 ± 0.06 f | 9.56 ± 0.31 cdef | 1.96 ± 0.55 de |
HD-1 | 49.65 ± 0.32 f | 7.92 ± 0.13 e | 11.05 ± 2.35 cd | 2.53 ± 0.85 cde |
HD-2 | 52.26 ± 0.78 e | 8.32 ± 0.43 d | 12.97 ± 1.40 c | 2.82 ± 0.47 c |
DS-5 | 34.77 ± 0.12 h | 6.56 ± 0.01 h | 12.15 ± 0.11 a | 11.10 ± 1.06 cd |
DS-10 | 34.83 ± 0.21 h | 7.00 ± 0.05 g | 8.54 ± 0.54 ef | 1.17 ± 0.28 e |
DS-12 | 84.29 ± 0.16 a | 11.33 ± 0.26 a | 18.74 ± 1.69 cde | 2.21 ± 0.48 a |
Fatty Acids | BA-1 | BA-3 | BA-5 | WH-1 | WH-3 | WH-4 | HD-1 | HD-2 | DS-5 | DS-10 | DS-12 |
---|---|---|---|---|---|---|---|---|---|---|---|
C14:0 | 0.04 ± 0.001 f | 0.07 ± 0.001 a | 0.06 ± 0.000 c | 0.03 ± 0.001 g | 0.02 ± 0.001 h | 0.05 ± 0.001 e | 0.06 ± 0.000 b | 0.06 ± 0.000 c | 0.05 ± 0.000 e | 0.05 ± 0.000 d | 0.04 ± 0.001 f |
C16:0 | 9.44 ± 0.006 g | 10.29 ± 0.030 d | 11.35 ± 0.011 b | 8.50 ± 0.013 i | 8.45 ± 0.010 j | 9.42 ± 0.009 g | 9.35 ± 0.006 h | 9.92 ± 0.006 f | 11.39 ± 0.004 a | 10.67 ± 0.009 c | 9.98 ± 0.008 e |
C16:1 | 0.06 ± 0.001 c | 0.07 ± 0.001 ab | 0.08 ± 0.006 a | 0.05 ± 0.001 de | 0.05 ± 0.004 e | 0.07 ± 0.000 b | 0.06 ± 0.001 c | 0.06 ± 0.001 c | 0.07 ± 0.000 ab | 0.07 ± 0.002 b | 0.05 ± 0.001 d |
C17:0 | 0.07 ± 0.000 c | 0.08 ± 0.001 b | 0.06 ± 0.001 h | 0.06 ± 0.001 g | 0.06 ± 0.000 fg | 0.07 ± 0.000 e | 0.06 ± 0.000 f | 0.06 ± 0.000 fg | 0.05 ± 0.001 i | 0.07 ± 0.000 d | 0.08 ± 0.000 a |
C17:1 | 0.04 ± 0.001 cd | 0.05 ± 0.001 b | 0.04 ± 0.001 f | 0.05 ± 0.001 bc | 0.05 ± 0.000 b | 0.06 ± 0.001 a | 0.05 ± 0.000 bc | 0.04 ± 0.001 d | 0.04 ± 0.001 e | 0.05 ± 0.001 bcd | 0.04 ± 0.002 e |
C18:0 | 4.09 ± 0.001 b | 3.40 ± 0.016 e | 3.05 ± 0.001 h | 3.47 ± 0.001 d | 3.74 ± 0.001 c | 2.47 ± 0.000 k | 3.07 ± 0.001 g | 2.83 ± 0.001 i | 2.52 ± 0.00 1j | 3.28 ± 0.001 f | 4.46 ± 0.000 a |
C18:1 | 79.82 ± 0.012 e | 77.06 ± 0.079 i | 73.63 ± 0.008 k | 84.09 ± 0.014 a | 83.98 ± 0.007 b | 82.43 ± 0.014 c | 80.71 ± 0.001 d | 79.44 ± 0.001 f | 76.86 ± 0.013 j | 78.06 ± 0.006 h | 79.08 ± 0.008 g |
C18:2 | 5.69 ± 0.001 f | 8.24 ± 0.040 b | 10.95 ± 0.005 a | 3.02 ± 0.005 i | 2.95 ± 0.001 j | 4.67 ± 0.000 h | 5.87 ± 0.008 e | 6.81 ± 0.006 d | 8.24 ± 0.012 b | 6.96 ± 0.006 c | 5.60 ± 0.006 g |
C18:3n3 | 0.20 ± 0.001de | 0.22 ± 0.002 b | 0.21 ± 0.001 c | 0.20 ± 0.003 e | 0.18 ± 0.001 f | 0.21 ± 0.001 c | 0.18 ± 0.001 f | 0.20 ± 0.000 d | 0.25 ± 0.001 a | 0.22 ± 0.001 b | 0.17 ± 0.000 g |
C20:0 | 0.06 ± 0.000 b | 0.05 ± 0.001 e | 0.05 ± 0.001 e | 0.06 ± 0.001 c | 0.06 ± 0.001 c | 0.04 ± 0.003 g | 0.05 ± 0.000 d | 0.04 ± 0.001 f | 0.04 ± 0.001 fg | 0.06 ± 0.000 c | 0.07 ± 0.001 a |
C20:1 | 0.48 ± 0.002 f | 0.48 ± 0.001 g | 0.54 ± 0.000 ab | 0.49 ± 0.001 e | 0.46 ± 0.002 h | 0.52 ± 0.000 c | 0.53 ± 0.001 b | 0.54 ± 0.001 a | 0.49 ± 0.001 e | 0.51 ± 0.004 d | 0.43 ± 0.004 i |
UFA | 85.77 ± 0.010 e | 85.59 ± 0.042 f | 84.87 ± 0.011 i | 87.35 ± 0.015 a | 87.16 ± 0.009 b | 87.38 ± 0.013 a | 86.83 ± 0.006 c | 86.51 ± 0.005 d | 85.42 ± 0.000 g | 85.31 ± 0.004 h | 84.89 ± 0.013 i |
SFA | 13.63 ± 0.006 f | 13.81 ± 0.044 e | 14.50 ± 0.011 b | 12.06 ± 0.015 j | 12.27 ± 0.011 i | 11.98 ± 0.013 k | 12.53 ± 0.004 h | 12.85 ± 0.005 g | 14.00 ± 0.004 d | 14.06 ± 0.008 c | 14.56 ± 0.008 a |
Sample Name | BA-1 | BA-3 | BA-5 | WH-1 | WH-3 | WH-4 | HD-1 | HD-2 | DS-5 | DS-10 | DS-12 |
---|---|---|---|---|---|---|---|---|---|---|---|
Single-fruit weight | 0.587 | 0.233 | 0.183 | 0.049 | 0.079 | 0.850 | 0.793 | 0.651 | 0.333 | 0.403 | 0.129 |
Fruit height | 0.818 | 0.289 | 0.491 | 0.100 | 0.041 | 0.884 | 0.685 | 0.585 | 0.241 | 0.379 | 0.316 |
Fruit diameter | 0.688 | 0.405 | 0.095 | 0.090 | 0.189 | 0.711 | 0.961 | 0.777 | 0.496 | 0.513 | 0.142 |
Fruit shape index | 0.185 | 0.665 | 0.079 | 0.711 | 0.888 | 0.133 | 0.641 | 0.576 | 0.833 | 0.620 | 0.364 |
Kernel weight | 0.659 | 0.256 | 0.561 | 0.129 | 0.071 | 0.883 | 0.837 | 0.518 | 0.611 | 0.299 | 0.291 |
Fresh seed yield | 0.337 | 0.194 | 0.972 | 0.276 | 0.053 | 0.388 | 0.372 | 0.041 | 0.699 | 0.011 | 0.488 |
Pericarp thickness | 0.672 | 0.515 | 0.064 | 0.356 | 0.667 | 0.317 | 0.711 | 0.931 | 0.412 | 0.799 | 0.368 |
Yield of dried seeds | 0.215 | 0.582 | 0.318 | 0.319 | 0.097 | 0.910 | 0.712 | 0.419 | 0.792 | 0.572 | 0.729 |
The yield of fresh seeds | 0.581 | 0.669 | 0.618 | 0.622 | 0.557 | 0.031 | 0.644 | 0.623 | 0.860 | 0.605 | 0.683 |
Fresh 100-grain weight | 0.321 | 0.661 | 0.267 | 0.190 | 0.025 | 0.324 | 0.951 | 0.566 | 0.551 | 0.153 | 0.047 |
Dry 100-grain weight | 0.432 | 0.852 | 0.421 | 0.313 | 0.040 | 0.331 | 0.987 | 0.674 | 0.501 | 0.452 | 0.308 |
Seed oil content | 0.622 | 0.603 | 0.166 | 0.589 | 0.507 | 0.550 | 0.525 | 0.634 | 0.459 | 0.781 | 0.866 |
Acid value | 0.667 | 0.111 | 0.222 | 0.778 | 0.500 | 0.444 | 0.833 | 0.167 | 0.333 | 0.167 | 0.333 |
Peroxide value | 0.864 | 0.545 | 0.636 | 0.303 | 0.227 | 0.500 | 0.462 | 0.742 | 0.106 | 0.015 | 0.348 |
Iodine value | 0.094 | 0.498 | 0.901 | 0.493 | 0.296 | 0.523 | 0.574 | 0.605 | 0.638 | 0.531 | 0.718 |
Saponification value | 0.253 | 0.720 | 0.547 | 0.080 | 0.507 | 0.307 | 0.533 | 0.453 | 0.427 | 0.493 | 0.467 |
Polyphenol | 0.764 | 0.901 | 0.713 | 0.907 | 0.010 | 0.246 | 0.348 | 0.397 | 0.069 | 0.070 | 0.997 |
Flavone | 0.700 | 0.722 | 0.522 | 0.725 | 0.008 | 0.238 | 0.322 | 0.395 | 0.071 | 0.152 | 0.951 |
Saponin | 0.096 | 0.621 | 0.178 | 0.176 | 0.038 | 0.124 | 0.242 | 0.393 | 0.328 | 0.044 | 0.846 |
Carotenoid | 0.148 | 0.429 | 0.837 | 0.080 | 0.020 | 0.117 | 0.167 | 0.192 | 0.917 | 0.048 | 0.139 |
Myristic acid | 0.384 | 0.988 | 0.837 | 0.105 | 0.023 | 0.640 | 0.907 | 0.814 | 0.628 | 0.721 | 0.419 |
Palmitic acid | 0.337 | 0.626 | 0.984 | 0.020 | 0.002 | 0.332 | 0.308 | 0.501 | 0.999 | 0.754 | 0.522 |
Palmitoleic acid | 0.413 | 0.763 | 0.888 | 0.150 | 0.075 | 0.675 | 0.488 | 0.463 | 0.800 | 0.663 | 0.225 |
Daturic acid | 0.676 | 0.809 | 0.250 | 0.353 | 0.382 | 0.529 | 0.412 | 0.382 | 0.015 | 0.618 | 1.000 |
Heptadecenoic acid | 0.405 | 0.571 | 0.024 | 0.524 | 0.571 | 0.976 | 0.524 | 0.381 | 0.167 | 0.452 | 0.262 |
Stearic acid | 0.810 | 0.469 | 0.290 | 0.502 | 0.637 | 0.000 | 0.301 | 0.180 | 0.026 | 0.409 | 1.000 |
Oleic acid | 0.592 | 0.328 | 0.001 | 0.999 | 0.989 | 0.840 | 0.676 | 0.555 | 0.309 | 0.424 | 0.521 |
Linoleic acid | 0.343 | 0.661 | 1.000 | 0.008 | 0.000 | 0.214 | 0.365 | 0.482 | 0.661 | 0.501 | 0.330 |
Linolenic acid | 0.404 | 0.645 | 0.566 | 0.373 | 0.199 | 0.596 | 0.181 | 0.422 | 0.988 | 0.681 | 0.000 |
Arachidic acid | 0.839 | 0.387 | 0.306 | 0.661 | 0.581 | 0.065 | 0.484 | 0.161 | 0.081 | 0.613 | 0.968 |
Arachidonic acid | 0.518 | 0.478 | 0.982 | 0.562 | 0.296 | 0.858 | 0.947 | 0.991 | 0.575 | 0.774 | 0.022 |
UFA | 0.361 | 0.287 | 0.003 | 0.986 | 0.912 | 0.996 | 0.778 | 0.654 | 0.221 | 0.178 | 0.012 |
SFA | 0.640 | 0.710 | 0.976 | 0.033 | 0.116 | 0.003 | 0.217 | 0.338 | 0.784 | 0.807 | 0.998 |
Subordinate function | 0.500 | 0.530 | 0.500 | 0.390 | 0.310 | 0.470 | 0.550 | 0.510 | 0.480 | 0.440 | 0.460 |
Mean value | |||||||||||
Rank | 4 | 2 | 5 | 10 | 11 | 7 | 1 | 3 | 6 | 9 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Zhao, J.; Shen, S.; Wu, Y.; Yang, H.; Yu, J.; Liu, Y.; Yang, D. Comprehensive Quality Comparison of Camellia vietnamensis Seed Oil from Different Cultivars in Hainan Island. Agronomy 2025, 15, 1845. https://doi.org/10.3390/agronomy15081845
Xie S, Zhao J, Shen S, Wu Y, Yang H, Yu J, Liu Y, Yang D. Comprehensive Quality Comparison of Camellia vietnamensis Seed Oil from Different Cultivars in Hainan Island. Agronomy. 2025; 15(8):1845. https://doi.org/10.3390/agronomy15081845
Chicago/Turabian StyleXie, Shuao, Jin Zhao, Shuaishuai Shen, Yougen Wu, Huageng Yang, Jing Yu, Ya Liu, and Dongmei Yang. 2025. "Comprehensive Quality Comparison of Camellia vietnamensis Seed Oil from Different Cultivars in Hainan Island" Agronomy 15, no. 8: 1845. https://doi.org/10.3390/agronomy15081845
APA StyleXie, S., Zhao, J., Shen, S., Wu, Y., Yang, H., Yu, J., Liu, Y., & Yang, D. (2025). Comprehensive Quality Comparison of Camellia vietnamensis Seed Oil from Different Cultivars in Hainan Island. Agronomy, 15(8), 1845. https://doi.org/10.3390/agronomy15081845