Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = UPFC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2443 KiB  
Article
Research on Coordinated Planning and Operational Strategies for Novel FACTS Devices Based on Interline Power Flow Control
by Yangqing Dan, Hui Zhong, Chenxuan Wang, Jun Wang, Yanan Fei and Le Yu
Electronics 2025, 14(15), 3002; https://doi.org/10.3390/electronics14153002 - 28 Jul 2025
Viewed by 261
Abstract
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow [...] Read more.
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow control over multiple lines during N-1 faults, enhancing grid safety and economy. The paper establishes a steady-state mathematical model based on additional virtual nodes and provides power flow calculation methods to accurately reflect the device’s control characteristics. An entropy-weighted TOPSIS method was employed to establish a quantitative evaluation system for assessing the grid performance improvement after FACTS device integration. To address interaction issues among multiple flexible devices, an optimization planning model considering th3e coordinated effects of UPFC and VSC-HVDC was constructed. Multi-objective particle swarm optimization obtained Pareto solution sets, combined with the evaluation system, to determine the optimal configuration schemes. Considering wind power uncertainty and fault risks, we propose a system-level coordinated operation strategy. This strategy constructs probabilistic risk indicators and introduces topology switching control constraints. Using particle swarm optimization, it achieves a balance between safety and economic objectives. Simulation results in the Jiangsu power grid scenarios demonstrated significant advantages in enhancing the transmission capacity, optimizing the power flow distribution, and ensuring system security. Full article
Show Figures

Figure 1

22 pages, 4711 KiB  
Article
Research on Missing Data Estimation Method for UPFC Submodules Based on Bayesian Multiple Imputation and Support Vector Machines
by Xiaoming Yu, Jun Wang, Ke Zhang, Zhijun Chen, Ming Tong, Sibo Sun, Jiapeng Shen, Li Zhang and Chuyang Wang
Energies 2025, 18(10), 2535; https://doi.org/10.3390/en18102535 - 14 May 2025
Viewed by 400
Abstract
With the increasing complexity of power systems, the monitoring data of UPFC submodules suffers from high missing rates due to sensor failures and environmental interference, significantly limiting equipment condition assessment and fault warning capabilities. To overcome the computational complexity, poor real-time performance, and [...] Read more.
With the increasing complexity of power systems, the monitoring data of UPFC submodules suffers from high missing rates due to sensor failures and environmental interference, significantly limiting equipment condition assessment and fault warning capabilities. To overcome the computational complexity, poor real-time performance, and limited generalization of existing methods like GRU-GAN and SOM-LSTM, this study proposes a hybrid framework combining Bayesian multiple imputation with a Support Vector Machine (SVM) for data repair. The framework first employs an adaptive Kalman filter to denoise raw data and remove outliers, followed by Bayesian multiple imputation that constructs posterior distributions using normal linear correlations between historical and operational data, generating optimized imputed values through arithmetic averaging. A kernel-based SVM with RBF and soft margin optimization is then applied for nonlinear calibration to enhance robustness and consistency in high-dimensional scenarios. Experimental validation focusing on capacitor voltage, current, and temperature parameters of UPFC submodules under a 50% missing data scenario demonstrates that the proposed method achieves an 18.7% average error reduction and approximately 30% computational efficiency improvement compared to single imputation and traditional multiple imputation approaches, significantly outperforming neural network models. This study confirms the effectiveness of integrating Bayesian statistics with machine learning for power data restoration, providing a high-precision and low-complexity solution for equipment condition monitoring in complex operational environments. Future research will explore dynamic weight optimization and extend the framework to multi-source heterogeneous data applications. Full article
(This article belongs to the Special Issue Reliability of Power Electronics Devices and Converter Systems)
Show Figures

Figure 1

16 pages, 3056 KiB  
Article
Noise Effects on Detection and Localization of Faults for Unified Power Flow Controller-Compensated Transmission Lines Using Traveling Waves
by Javier Rodríguez-Herrejón, Enrique Reyes-Archundia, Jose A. Gutiérrez-Gnecchi, Marcos Gutiérrez-López and Juan C. Olivares-Rojas
Electricity 2025, 6(2), 25; https://doi.org/10.3390/electricity6020025 - 2 May 2025
Viewed by 691
Abstract
This paper presents a comprehensive analysis of the effects of noise on the detection and localization of faults in transmission lines compensated with a unified power flow controller using traveling wave-based methods. This study focuses on the impact of harmonic and transient noises, [...] Read more.
This paper presents a comprehensive analysis of the effects of noise on the detection and localization of faults in transmission lines compensated with a unified power flow controller using traveling wave-based methods. This study focuses on the impact of harmonic and transient noises, which are inherent to power generation, transmission, and UPFC operation. A novel algorithm is proposed combining the Discrete Wavelet Transform and Clarke Transform to detect and localize faults under various noise conditions. The algorithm is tested on a simulated transmission line model in MATLAB/Simulink (Version R2022b) with noise levels of 20 dB, 30 dB, and 40 dB and transient frequencies of 1 kHz, 5 kHz, and 10 kHz. The results demonstrate that the algorithm achieves an average fault localization error of 0.523% under harmonic noise and 0.777% under transient noise, with fault detection rates of 96.3% and 90.75%, respectively. This study highlights the robustness of the traveling wave method in noisy environments and provides insights into the challenges posed by UPFC-compensated lines. Full article
Show Figures

Figure 1

26 pages, 22416 KiB  
Article
Theoretical and Experimental Study on the Surface Microstructures of Polyimide in Ultra-Precision Fly-Cutting
by Jie Liu, Sheng Wang and Qingliang Zhao
Polymers 2025, 17(8), 1099; https://doi.org/10.3390/polym17081099 - 18 Apr 2025
Viewed by 484
Abstract
Polyimide (PI) with surface microstructures has broad application prospects in aerospace, integrated circuits, and optical engineering due to its excellent mechanical properties, high thermal stability, and chemical resistance. Ultra-precision fly-cutting (UPFC) is a promising advanced technique for machining PI microstructures. However, few studies [...] Read more.
Polyimide (PI) with surface microstructures has broad application prospects in aerospace, integrated circuits, and optical engineering due to its excellent mechanical properties, high thermal stability, and chemical resistance. Ultra-precision fly-cutting (UPFC) is a promising advanced technique for machining PI microstructures. However, few studies on the UPFC of PI materials are reported. In this study, the machining principle of UPFC is analyzed, and a comparative study of different processing strategies is conducted. The experimental results demonstrate that the climb cutting strategy is more suitable for PI microstructure machining, which can significantly reduce burr formation and achieve lower surface roughness. The theoretical models describing tool motion and predicting maximum chip thickness in UPFC are established, and the predicted chip thickness is consistent with the experimental results. Moreover, the influence of process parameters on the surface morphology and dimensional accuracy of microstructures is assessed through a series of experiments. The results indicate that cutting depth and step-over are the dominant factors influencing dimensional accuracy and surface roughness. Furthermore, the cutting force during UPFC is extremely small, only in the range of millinewtons (mN). In addition, the cutting force in the feed direction exhibits a high sensitivity to variations in process parameters compared to other directional components. This study provides theoretical guidance for the establishment of a theoretical model and the selection of UPFC process parameters for fabricating PI microstructures. Full article
(This article belongs to the Special Issue Polymer Manufacturing Processes)
Show Figures

Graphical abstract

14 pages, 3573 KiB  
Article
Advanced Capacity-Expansion-Type Unified Power Flow Controller Based on Single-Core Phase-Shifting Transformer
by Ningyu Zhang, Huarui Li, Jicheng Fang, Chongze Bi, Xiaokuan Jin and Jianhua Wang
Energies 2025, 18(4), 766; https://doi.org/10.3390/en18040766 - 7 Feb 2025
Cited by 1 | Viewed by 639
Abstract
In light of the growing complexity and demand in modern power systems, there is an increasing need for reliable, efficient, and flexible power flow control mechanisms. The Unified Power Flow Controller (UPFC), as a fundamental component of Flexible AC Transmission Systems (FACTSs), has [...] Read more.
In light of the growing complexity and demand in modern power systems, there is an increasing need for reliable, efficient, and flexible power flow control mechanisms. The Unified Power Flow Controller (UPFC), as a fundamental component of Flexible AC Transmission Systems (FACTSs), has garnered considerable attention due to its exceptional capabilities in regulating power flow and maintaining voltage stability. Nevertheless, the expense associated with high-capacity UPFCs is considerable, thereby rendering their practical implementation challenging. Phase-shifting transformers are less costly but require better power flow characteristics. Therefore, this paper puts forth the proposition of an Advanced Capacity-Expansion-Type Unified Power Flow Controller (ACET-UPFC) based on a single-core phase-shifting transformer (SCPST). This proposed topology is designed to enhance the capacity of the conventional UPFC, while maintaining similar power flow characteristics, and demonstrates strong voltage regulation capabilities, enabling connections across different voltage levels, thereby rendering it more economically feasible for large-scale deployment. This paper presents a detailed analysis of the power flow characteristics of the ACET-UPFC, including a theoretical foundation, mathematical modeling, and an investigation into the impact of various design parameters. Moreover, the ACET-UPFC’s capacity expansion capability and power flow characteristics are also examined. The ACET-UPFC is subjected to further investigation through the use of the PLECS simulation platform, thereby offering a more efficient and cost-effective solution for modern power grids. Full article
(This article belongs to the Special Issue Measurement Systems for Electric Machines and Motor Drives)
Show Figures

Figure 1

16 pages, 9366 KiB  
Article
Field Compaction Characteristics of Ultra-Thin Porous Friction Course Based on Laboratory Simulation
by Xiaobo Du, Hongwei Lin, Mutian Sun, Wenchang Liu and Hongchao Zhang
Appl. Sci. 2024, 14(13), 5489; https://doi.org/10.3390/app14135489 - 25 Jun 2024
Cited by 3 | Viewed by 896
Abstract
As a preventive maintenance treatment, the ultra-thin porous friction course (UPFC) has been widely recognized and used in road maintenance because of its excellent performance and cost effectiveness. The Marshall compaction method (MCM) has been adopted to design UPFC mixtures worldwide, particularly in [...] Read more.
As a preventive maintenance treatment, the ultra-thin porous friction course (UPFC) has been widely recognized and used in road maintenance because of its excellent performance and cost effectiveness. The Marshall compaction method (MCM) has been adopted to design UPFC mixtures worldwide, particularly in China. However, there are few studies concerning the field compaction properties of MCM-designed UPFCs. The laboratory test results of this study from simulating on-site compaction showed that all UPFC specimens with thicknesses of less than 20 mm barely achieved the target compaction thickness, and all UPFC specimens with different thicknesses failed to meet the air void (AV) requirements of UPFC mixes designed using the MCM. According to the results of a virtual compaction test, and using the discrete element method, the strong force chains were strengthened as the UPFC thickness decreased inside the specimen, making it difficult to evenly diffuse and transfer inside the specimen and resulting in insufficient compaction of the UPFC. Furthermore, it was demonstrated that the MCM-designed UPFC specimens showed significant differences in the AV distributions along the vertical and lateral directions from those of the UPFC specimens that simulated field compaction. The UPFCs designed using the MCM had a poor correlation with field compaction. Full article
Show Figures

Figure 1

26 pages, 10448 KiB  
Article
A Novel Techno-Economical Control of UPFC against Cyber-Physical Attacks Considering Power System Interarea Oscillations
by Muntasser Ahmed Mosleh Mosleh and Nurettin Umurkan
Appl. Sci. 2024, 14(12), 5254; https://doi.org/10.3390/app14125254 - 17 Jun 2024
Cited by 3 | Viewed by 1226
Abstract
In the field of electrical engineering, there is an increasing concern among managers and operators about the secure and cost-efficient operation of smart power systems in response to disturbances caused by physical cyber attacks and natural disasters. This paper introduces an innovative framework [...] Read more.
In the field of electrical engineering, there is an increasing concern among managers and operators about the secure and cost-efficient operation of smart power systems in response to disturbances caused by physical cyber attacks and natural disasters. This paper introduces an innovative framework for the hybrid, coordinated control of Unified Power Flow Controllers (UPFCs) and Power System Stabilizers (PSSs) within a power system. The primary objective of this framework is to enhance the system’s security metrics, including stability and resilience, while also considering the operational costs associated with defending against cyber-physical attacks. The main novelty of this paper lies in the introduction of a real-time online framework that optimally coordinates a power system stabilizer, power oscillation damper, and unified power flow controller to enhance the power system’s resilience against transient disturbances caused by cyber-physical attacks. The proposed approach considers technical performance indicators of power systems, such as voltage fluctuations and losses, in addition to economic objectives, when determining the optimal dynamic coordination of UPFCs and PSSs—aspects that have been neglected in previous modern research. To address the optimization problem, a novel multi-objective search algorithm inspired by Harris hawks, known as the Multi-Objective Harris Hawks (MOHH) algorithm, was developed. This algorithm is crucial in identifying the optimal controller coefficient settings. The proposed methodology was tested using standard IEEE9-bus and IEEE39-bus test systems. Simulation results demonstrate the effectiveness and efficiency of this approach in achieving optimal system recovery, both technically and economically, in the face of cyber-physical attacks. Full article
Show Figures

Figure 1

14 pages, 3894 KiB  
Article
Topological Structure and Control Strategy of E-UPFC
by Weiping Yang, Cong Liu and Limin Yin
Energies 2024, 17(6), 1411; https://doi.org/10.3390/en17061411 - 15 Mar 2024
Viewed by 1299
Abstract
This article proposes a unified power flow controller with energy (E-UPFC) installed at the renewable energy grid connection node of the transmission network. Compared with other unified power flow controllers (UPFCs), the proposed E-UPFC can not only regulate the power flow on its [...] Read more.
This article proposes a unified power flow controller with energy (E-UPFC) installed at the renewable energy grid connection node of the transmission network. Compared with other unified power flow controllers (UPFCs), the proposed E-UPFC can not only regulate the power flow on its connected transmission lines, but also suppress the power fluctuations of grid-connected nodes injected with large-scale renewable energy. At the same time, with the installation position of E-UPFC transferred from the transmission line to the node, the original stiff node can be transformed into a flexible node that can regulate the injected power flexibly. First, the PV grid-connected system with E-UPFC is introduced, and its principle of power flow regulation is detailed. In addition, the topology, mathematical modeling, and control strategies of E-UPFC are discussed. Finally, the E-UPFC is applied to the IEEE 3-generator 9-bus system with large-scale renewable energy integration in Matlab/Simulink in order to verify the correctness and feasibility of E-UPFC and its control strategies. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

22 pages, 7927 KiB  
Article
The Design and Dynamic Control of a Unified Power Flow Controller with a Novel Algorithm for Obtaining the Least Harmonic Distortion
by Armel Asongu Nkembi, Nicola Delmonte, Paolo Cova and Minh Long Hoang
Electronics 2024, 13(5), 877; https://doi.org/10.3390/electronics13050877 - 24 Feb 2024
Cited by 2 | Viewed by 1952
Abstract
This study investigates the control and dynamic operation of the Unified Power Flow Controller made of shunt and series converters, a Static Synchronous Compensator, and a Static Synchronous Series Compensator, respectively, connected back-to-back through a common DC-link capacitor. The model of a 48-pulse [...] Read more.
This study investigates the control and dynamic operation of the Unified Power Flow Controller made of shunt and series converters, a Static Synchronous Compensator, and a Static Synchronous Series Compensator, respectively, connected back-to-back through a common DC-link capacitor. The model of a 48-pulse Voltage Source Converter is constructed from a three-level Neutral Point Clamped converter, which allows the total harmonic distortion to be reduced. An optimal conduction angle tracking system of the three-level inverter is designed to minimize distortion by detecting proper harmonic component elimination. Starting from the six-step modulation strategy, the dq decoupled control schemes of both compensators in open and closed loops are presented. Finally, the MATLAB-Simulink model of the power flow controller is implemented and analyzed. The results show that the controller can track the power changes and apply a suitable voltage to the power system so that the power flow can be controlled. This way, the power flow controller dynamically improves the voltage and power quality across the power network while simultaneously improving the transient stability of the system. It can eliminate all system disturbances resulting from oscillations and harmonics in voltage and current within a very short time. The procedural approach used to model and simulate the Unified Power Flow Controller, as well as the new algorithm used to obtain the harmonic number that minimizes the total harmonic distortion, can be applied to any AC power system. Full article
Show Figures

Figure 1

44 pages, 17085 KiB  
Article
First-of-Its-Kind Frequency Enhancement Methodology Based on an Optimized Combination of FLC and TFOIDFF Controllers Evaluated on EVs, SMES, and UPFC-Integrated Smart Grid
by Sultan Alghamdi, Mohammed Alqarni, Muhammad R. Hammad and Kareem M. AboRas
Fractal Fract. 2023, 7(11), 807; https://doi.org/10.3390/fractalfract7110807 - 6 Nov 2023
Cited by 8 | Viewed by 2454
Abstract
The most recent advancements in renewable energy resources, as well as their broad acceptance in power sectors, have created substantial operational, security, and management concerns. As a result of the continual decrease in power system inertia, it is critical to maintain the normal [...] Read more.
The most recent advancements in renewable energy resources, as well as their broad acceptance in power sectors, have created substantial operational, security, and management concerns. As a result of the continual decrease in power system inertia, it is critical to maintain the normal operating frequency and reduce tie-line power changes. The preceding issues sparked this research, which proposes the Fuzzy Tilted Fractional Order Integral Derivative with Fractional Filter (FTFOIDFF), a unique load frequency controller. The FTFOIDFF controller described here combines the benefits of tilt, fuzzy logic, FOPID, and fractional filter controllers. Furthermore, the prairie dog optimizer (PDO), a newly developed metaheuristic optimization approach, is shown to efficiently tune the suggested controller settings as well as the forms of the fuzzy logic membership functions in the two-area hybrid power grid investigated in this paper. When the PDO results are compared to those of the Seagull Optimization Algorithm, the Runge Kutta optimizer, and the Chaos Game Optimizer for the same hybrid power system, PDO prevails. The system model incorporates physical constraints such as communication time delays and generation rate constraints. In addition, a unified power flow controller (UPFC) is put in the tie-line, and SMES units have been planned in both regions. Furthermore, the contribution of electric vehicles (EVs) is considered in both sections. The proposed PDO-based FTFOIDFF controller outperformed many PDO-based traditional (such as proportional integral derivative (PID), proportional integral derivative acceleration (PIDA), and TFOIDFF) and intelligent (such as Fuzzy PID and Fuzzy PIDA) controllers from the literature. The suggested PDO-based FTFOIDFF controller has excellent performance due to the usage of various load patterns such as step load perturbation, multi-step load perturbation, random load perturbation, random sinusoidal load perturbation, and pulse load perturbation. Furthermore, a variety of scenarios have been implemented to demonstrate the advantageous effects that SMES, UPFC, and EV units have on the overall performance of the system. The sensitivity of a system is ascertained by modifying its parameters from their standard configurations. According to the simulation results, the suggested PDO-based FTFOIDFF controller can improve system stability despite the multiple difficult conditions indicated previously. According to the MATLAB/Simulink data, the proposed method decreased the total fitness function to 0.0875, representing a 97.35% improvement over PID, 95.84% improvement over PIDA, 92.45% improvement over TFOIDFF, 83.43% improvement over Fuzzy PID, and 37.9% improvement over Fuzzy PIDA. Full article
Show Figures

Figure 1

6 pages, 1407 KiB  
Proceeding Paper
Multi-Objective ABC Algorithm to Optimally Place UPFC and Its Parameter Settings for Transmission Efficiency Enhancement
by Muzamil Rajper, Aneel Kumar, Amna Qaimuddin and Faraz Ullah
Eng. Proc. 2023, 46(1), 33; https://doi.org/10.3390/engproc2023046033 - 26 Sep 2023
Cited by 1 | Viewed by 793
Abstract
The increasing demand for electricity has put a strain on existing power transmission and distribution systems. As a result, utilities are often forced to overload their existing systems, which can lead to voltage instability, transmission line congestion, and even blackouts. To fix these [...] Read more.
The increasing demand for electricity has put a strain on existing power transmission and distribution systems. As a result, utilities are often forced to overload their existing systems, which can lead to voltage instability, transmission line congestion, and even blackouts. To fix these problems, flexible AC transmission system controllers (FACTs) can be used. This paper deals with two objectives: minimizing voltage deviation and real power losses, and the minimization has been performed using the multi-objective artificial bee colony algorithm (MOABC). UPFC has been optimally placed on the IEEE bus-39 system. The proposed work is implemented through MATLAB coding. Full article
(This article belongs to the Proceedings of The 8th International Electrical Engineering Conference)
Show Figures

Figure 1

24 pages, 7766 KiB  
Article
Profit Extension of a Wind-Integrated Competitive Power System by Vehicle-to-Grid Integration and UPFC Placement
by Subhojit Dawn, Gummadi Srinivasa Rao, M. L. N. Vital, K. Dhananjay Rao, Faisal Alsaif and Mohammed H. Alsharif
Energies 2023, 16(18), 6730; https://doi.org/10.3390/en16186730 - 20 Sep 2023
Cited by 5 | Viewed by 1831
Abstract
Profit maximization is critical in the control of power system networks for both power providers and users. Electrical energy is freely accessible in the electrical grid during off-peak hours, with storage units helping to store excess energy and assist the electrical grid during [...] Read more.
Profit maximization is critical in the control of power system networks for both power providers and users. Electrical energy is freely accessible in the electrical grid during off-peak hours, with storage units helping to store excess energy and assist the electrical grid during high-demand situations. Such techniques promote grid stability and ensure safe operation. Because renewable resources are intermittent, energy storage technologies are especially significant in renewable-associated power systems. Vehicle-to-grid (V2G) technology has recently acquired popularity in preserving power grid stability in the presence of renewable resources.V2G technology employs automobiles as mobile storage devices and focuses on the efficient utilization of extra power available during off-peak hours. The goal of this work is to improve the functioning of a V2G system in a power network to reduce energy production costs while increasing system profitability. This study for deregulated power environments also depicts the influence of V2G mixing on system voltage profile and locational marginal pricing (LMP), as well as the performance of the Unified Power Flow Controller (UPFC) on system economics. The MiPower simulation program is used in the study to find the best placement of the power storage unit for the modified IEEE 14-bus system. Full article
(This article belongs to the Topic Distributed Generation and Storage in Power Systems)
Show Figures

Figure 1

20 pages, 4283 KiB  
Article
Performance Analysis of Marine-Predator-Algorithm-Based Optimum PI Controller with Unified Power Flow Controller for Loss Reduction in Wind–Solar Integrated System
by Chandu Valuva and Subramani Chinnamuthu
Energies 2023, 16(17), 6157; https://doi.org/10.3390/en16176157 - 24 Aug 2023
Cited by 2 | Viewed by 1453
Abstract
Transmission line losses are a crucial and essential issue in stable power system operation. Numerous methodologies and techniques prevail for minimizing losses. Subsequently, Flexible Alternating Current Transmission Systems (FACTSs) efficiently reduce transmission losses, and the Unified Power Flow Controller (UPFC) is a reactive [...] Read more.
Transmission line losses are a crucial and essential issue in stable power system operation. Numerous methodologies and techniques prevail for minimizing losses. Subsequently, Flexible Alternating Current Transmission Systems (FACTSs) efficiently reduce transmission losses, and the Unified Power Flow Controller (UPFC) is a reactive power compensation controller. The parameter strength of the proportional–integral (PI) controller was calibrated with the Marine Predator Algorithm (MPA), a recent metaheuristic algorithm. An MPA-based optimum PI controller with a UPFC evaluates the optimal location of the UPFC and PI controller parameters to accomplish the desired research objective. The power rating of the UPFC was determined depending on the voltage collapse rating and power loss and an evaluated performance analysis of the MPA–PI-controlled UPFC on a modified IEEE-30 bus transmission network in MATLAB Simulink code. The Newton–Raphson method was used to perform the load flow analysis. Hence, the proposed MPA–PI controller was examined in contrast to preferred heuristic algorithms, the Artificial Bee Colony (ABC) and Moth Flame Optimization algorithms (MFO); the results showed that the MPA–PI controller exhibited better performance with an improved voltage profile and surpasses active power losses with the optimal placement of the UPFC device under different loading conditions. The active power loss, considering a UPFC with the proposed algorithm, reduced from 0.0622 p.u to 0.0301 p.u; consequently, the voltage profile was improved in the respective buses, and the loss percentage reduction during a 100% base load was 68.39%, which was comparatively better than the ABC and MFO algorithms. Full article
Show Figures

Figure 1

19 pages, 2671 KiB  
Article
Optimized Power Flow Control to Minimize Congestion in a Modern Power System
by Max Bodenstein, Ingo Liere-Netheler, Frank Schuldt, Karsten von Maydell, Alexander K. Hartmann and Carsten Agert
Energies 2023, 16(12), 4594; https://doi.org/10.3390/en16124594 - 8 Jun 2023
Cited by 1 | Viewed by 1725
Abstract
The growing integration of renewable energy sources (RES) into the power system causes congestion to occur more frequently. In order to reduce congestion in the short term and to make the utilization of the power system more efficient in the long term, power [...] Read more.
The growing integration of renewable energy sources (RES) into the power system causes congestion to occur more frequently. In order to reduce congestion in the short term and to make the utilization of the power system more efficient in the long term, power flow control (PFC) in the transmission system has been proposed. However, exemplary studies show that congestion will increase also in the distribution system if the transmission system is expanded. For this reason, the potential of PFC to reduce congestion in a model of a real 110 kV distribution system is investigated. Several Unified Power Flow Controller (UPFC) devices are optimized in terms of their number and placement in the power system, their size, control parameters, and costs, by using a Parallel Tempering approach as well as a greedy algorithm. Two optimization variants are considered, one reducing the number of degrees of freedom by integrating system knowledge while the other does not. It is found that near a critical grid state and disregarding costs, PFC can reduce congestion significantly (99.13%). When costs of the UPFCs are taken into account, PFC can reduce congestion by 73.2%. A basic economic analysis of the costs reveals that the usage of UPFCs is profitable. Furthermore, it is found that the reduction in the solution space of the optimization problem leads to better results faster and that, contrary to expectations, the optimization problem is simple to solve. The developed methods allow not only for the determination of the optimal use of UPFCs to minimize congestion, but also to estimate their profitability. Full article
(This article belongs to the Topic Power System Modeling and Control, 2nd Edition)
Show Figures

Figure 1

22 pages, 7990 KiB  
Article
Performance Enhancement of Grid-Connected Renewable Energy Systems Using UPFC
by M. Osama abed el-Raouf, Soad A. A. Mageed, M. M. Salama, Mohamed I. Mosaad and H. A. AbdelHadi
Energies 2023, 16(11), 4362; https://doi.org/10.3390/en16114362 - 27 May 2023
Cited by 15 | Viewed by 2668
Abstract
No one denies the importance of renewable energy sources in modern power systems in terms of sustainability and environmental conservation. However, due to their reliance on environmental change, they are unreliable systems. This paper uses a Unified Power Flow Controller (UPFC) to enhance [...] Read more.
No one denies the importance of renewable energy sources in modern power systems in terms of sustainability and environmental conservation. However, due to their reliance on environmental change, they are unreliable systems. This paper uses a Unified Power Flow Controller (UPFC) to enhance the reliability and performance of grid-tied renewable energy systems. This system consists of two renewable sources, namely photovoltaic cells (PV) and wind turbines (WTs). The UPFC was selected for its unique advantage in both active and reactive power control. The UPFC is controlled with an optimized Fractional Order Proportional–Integral–Derivative (FOPID) controller. The parameters of this controller were tuned using an Atomic Search Optimization (ASO) algorithm. Simulation results confirm the efficiency of the suggested controller in supporting the reliability and performance of the hybrid power system during some disturbance events including voltage sag, swell, and unbalanced loading. In addition, power quality can be improved through reducing the total harmonic distortion. It is worth mentioning that two maximum point tracking techniques had been included for the PV and WT systems separately. MATLAB/SIMULINK 2021a software was used to model the system. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

Back to TopTop