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Abstract: Transmission line losses are a crucial and essential issue in stable power system operation.
Numerous methodologies and techniques prevail for minimizing losses. Subsequently, Flexible
Alternating Current Transmission Systems (FACTSs) efficiently reduce transmission losses, and the
Unified Power Flow Controller (UPFC) is a reactive power compensation controller. The parameter
strength of the proportional–integral (PI) controller was calibrated with the Marine Predator Algo-
rithm (MPA), a recent metaheuristic algorithm. An MPA-based optimum PI controller with a UPFC
evaluates the optimal location of the UPFC and PI controller parameters to accomplish the desired
research objective. The power rating of the UPFC was determined depending on the voltage collapse
rating and power loss and an evaluated performance analysis of the MPA–PI-controlled UPFC on
a modified IEEE-30 bus transmission network in MATLAB Simulink code. The Newton–Raphson
method was used to perform the load flow analysis. Hence, the proposed MPA–PI controller was
examined in contrast to preferred heuristic algorithms, the Artificial Bee Colony (ABC) and Moth
Flame Optimization algorithms (MFO); the results showed that the MPA–PI controller exhibited better
performance with an improved voltage profile and surpasses active power losses with the optimal
placement of the UPFC device under different loading conditions. The active power loss, considering
a UPFC with the proposed algorithm, reduced from 0.0622 p.u to 0.0301 p.u; consequently, the voltage
profile was improved in the respective buses, and the loss percentage reduction during a 100% base
load was 68.39%, which was comparatively better than the ABC and MFO algorithms.

Keywords: loss minimization; proportional–integral controller; FACTS; unified power flow controller;
marine predator algorithm

1. Introduction

Renewable energy sources rapidly evolve in power and energy production, and cur-
rent demand significantly focuses on enhancing the utilization of renewable energy. There
is a compulsion to supply the demand for global energy and to reduce global warming,
the consequence of climate conditions, which are affected by the usage of fossil fuels for
electrical power generation; hence, the power generation has to be constrained for sustain-
able and renewable energy generation. It has turned the worldwide researcher’s focus to
renewable energy conversion in designing and developing an alternative to conventional
fossil fuel energy. All over the world, advanced countries like India, China, Japan, North
America, and Europe have been investing money in expanding renewable energy sys-
tems [1]. Renewable energies like wind and solar energies are dominant sustainable energy
sources. The Global Wind Energy Council annual report of 2023 declared that 77.6 GW
of wind power capacity was established in 2022. With comprehensive energy, it reached
906 GW of wind energy, a 9% growth compared to 2021. This year, it may reach 100 GW
of new capacity installed globally with a growth of 15%. The intelligence market predicts
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680 GW of new capacity within the next 5 years. That represents 136 GW of power per year
from 2023 to 2027 [2].

The Marine Predator Algorithm (MPA) is a contemporary environment-energized
optimization algorithm derived from outspread foraging strategies in ocean predators
dependent on Levy and Brownian motions [3]. The MPA is a dynamic heuristic algorithm
with numerous benefits, like a gradient-free nature, flexibility, fewer parameters, and an
effortless mechanism. Predators must adopt a desirable strategy for maximizing their
action levy with prey depending on the “survival of the fittest” theory. The MPA is a
multi-objective optimization problem with a series of resolutions reproducing the finest
swapping among the multiple objectives, usually in striving. Anyhow, the existence of
multiple optimal solutions would assist the decision makers in determining the suitable
result for their difficulty. A proportional–integral (PI) controller is a feedback control
system type universally operated to standardize and strengthen systems in industrial
and engineering applications. A PI controller is an essential element in control theory;
moreover, it is employed for the systematic regulation of different equipment, systems, and
processes. PI controllers are comparatively flexible to execute with an efficient performance
in control theory. The proposed controller performance was analyzed considering different
load conditions. The main intention of this article’s MPA-based optimum PI controller
of a UPFC was to reduce the losses in wind–solar-integrated transmission systems. The
MPA-based PI controller regulates the parameter input to the UPFC, which mitigates the
voltage instability and reduces the active power losses; moreover, it enhances the system
performance. The proposed MPA optimization algorithm tunes the parameters of the PI
controller fed to the UPFC device. This article is about the analysis of the performance of a
modified IEEE 30 system integrated with wind–solar with different load variations.

Various authors have investigated the potentialities, capabilities, and challenges of
accomplishing 100% renewable energy generation. In [4], the authors insisted that 100%
renewable energy is not attainable. Their analysis considered suitable research, constituting
the distribution and transmission conditions and supplementary requirements to attain
100% renewable energy. Yet, certain defendants for 100% renewable energy have intensely
explained the probability of attaining 100% renewable energy. The authors of [5] demon-
strated in detail and with reliable reasoning against the data presented in [4] that 100%
renewable energy is technically attainable and economically possible. Some researchers
have highlighted that power quality and voltage stability issues are crucial for expanding
the transformation to renewable energy in the power system [6]. The active power flow
is intensified and transferred through the clogged transmission system by mitigating the
reactive power flow. Equivalently, the rise in reactive power generation at the specific
generator influences active power generation.

The Artificial Bee Colony (ABC) [7] and Moth Flame Optimization (MFO) algo-
rithms [8] are nature-inspired heuristic optimization algorithms. The ABC algorithm
is based on the foraging behavior of honeybees. This algorithm evolved from analyzing
the nature of honeybees searching for food sources; this process of searching for food is
called the nectar and is from the ideology of sharing the availability of food sources with
other honeybees. The MFO algorithm developed from moths drawing attention to a light
source. Moths are commonly attracted to light and adapt their flying directions depending
on light intensity. The model of the algorithm is based on the motion of moths and the
diminishment of light intensity to explore the optimal intensity of light repetitively. The
MFO solves complex optimization problems and holds the finest solution out of all possible
solutions.

Furthermore, reactive power is crucial (i) for active power flow in the power system
network and (ii) for sustaining the voltage delivering active power in the power system
network. For static and dynamic conditions of voltage control, the FACTS devices are
efficient in distribution and transmission systems. Their predominant operation is to inject
reactive power into the network, which improves the voltage profile of the system.
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FACTS devices govern the desired power flow in a system, determine the desirable
voltage profile, and reduce transmission losses. Generally, the FACTS devices perform
analyses to intensify the power system stability and quality enhancement. FACTS devices
perform separately or in collaboration with other FACTS devices, aiming to determine
the crucial transmission system parameter activities for favorable grid operation. FACTS
devices are classified depending on consequent characteristics, merits, and demerits [9].
FACTS devices, like the Static VAR Compensator (SVC), Thyristor-Controlled Series Capac-
itors (TCSCs), Static Synchronous Compensators (STATCOMs), Static Synchronous Series
Compensators (SSSCs), and Unified Power Flow Controllers (UPFCs), enhance the power
quality and voltage stability of the grid.

FACTS devices are peculiar and rapidly interface with power system networks. FACTS
devices enhance the power system network to the desired power needed; the UPFC
controller comprises two converters and transformers, which are in series with the system
and parallel to the system. The UPFC regulates the system’s active and reactive power flow
separately by injecting the voltage into the transmission line [10–12].

The fundamental intention of the FACTS device is to reduce the power losses in a
power grid; thus, most articles about these devices discuss these effects. Numerous re-
searchers have analyzed and proven the benefits of the performance of the UPFC. After
all, the optimal placement of the UPFC is essential because of its higher price. Various ap-
proaches comprising heuristic, classical, and mixed algorithms are feasible in the literature
for determining optimizing issues of FACTSs. Despite the advancements of these meth-
ods, there are disadvantages. Heuristic algorithms like Genetic Algorithms, Differential
Evolution, Particle Swarm Optimization, and Evolutionary Programming usually perform
optimization for problems. These algorithms evaluate the optimum outcome with minimal
complications [13].

The optimal power flow (OPF) was identified with a new hybrid decomposition-
based multi-objective evolutionary algorithm [14], considering solar and wind integration
uncertainties. In the OPF, renewable energy source costs are included to reduce the expenses
such that the stability effects of frequency and irregularities of sustainable energy evaluate
in the view of operation and cost. Monte Carlo Simulations determine an algorithm’s
efficiency for all feasible conditions of renewable energy. In [15], the authors suggested a
new approach for optimal scheduling problems, including the consequences of irregularities
in solar, wind, and loading conditions. The Two-Point Estimate optimization technique and
the Genetic Algorithm were employed and simulated on IEEE 30 and 300 bus systems. The
results illustrate that the proposed optimal scheduling strategy is effective while testing
with GA and TPEM algorithms. In [16], a simulation was performed for a wind–solar
Hybrid DC microgrid and the DC fault analysis and power flow was analyzed. The
stability of the DC microgrid was analyzed by connecting hybrid sources and performed
with distinct DC faults like DC line-to-ground and DC line-to-line faults. The results
showed that the system had better load distribution and was barely affected by faults.
The voltage did not reach the expected maximum voltage during the fault operation; the
maximum power point tracker boosted the hybrid system’s performance.

In [17], the authors presented the voltage stability issues of the wind and solar source
integrated with a standard IEEE 14 bus system. A modern analytical technique was illus-
trated to analyze voltage stability. Considering dynamic and PV analyses, a comparative
study for performing the system integrated with PV and wind to analyze the voltage
stability and determine the desired reactive power for stability enhancement. When PV
and wind are integrated with the power grid, the study is examined by the consequence of
static analysis with AC contingency and QV curves. The results showed that the PV system
infiltration was moderate compared to the wind generation. Thus, the bus voltage variation
restricts to a contingency period. The grid voltage stability with infiltration of wind energy
was analyzed in [18] with the effects of DFIG-based wind energy and performed under
normal and contingency conditions. The optimal location of the shunt FACTS device at
the most critical bus significantly enhanced the maximum loadability limit. The SVCs on
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bus 5 illustrate the considerable increase in maximum loading factor, λmax under different
cases. In [19], the authors proposed stochastic programming that efficiently integrates
renewable energy into the network and examines the optimal sizing, placement, and oper-
ating hours for renewable energy sources minimizing the losses. Predefined locations of
renewable energy sources are worthy of specifying that energy sources confine to the easy
mathematical calculation of planning. A sensitive analysis was executed to identify the
effects of planning parameters. Monte Carlo simulation governed the uncertainties, and
the modified PSO algorithm solved the proposed stochastic programming modeled as a
nonlinear mixed integer stochastic programming. The results showed the improvement in
network operation with a better bus voltage profile.

Transient stability enhancement in a hybrid solar–wind-integrated IEEE-14 bus system
consolidated with a STATCOM was analyzed in [20]. Under different operating condi-
tions, the respective steady-state analysis was performed to determine the apt sequence of
variable solar irradiation and wind speed for reliable operation. The unsymmetrical and
symmetrical faults at various locations were conducted with reactive and active power
at the point of common coupling (PCC) with and without a STATCOM for examining
the voltage analysis. Power fluctuations were smoothened by series compensation. The
results showed that the STATCOM can compensate the reactive power with better voltage
stability. A reliable evaluation of renewable energy integrating the distribution system
analyzed the Electrical Loss Minimization [21] for determining the optimal sizing of DG
and the ELM by a Constriction Factor Particle Swarm Optimization (CF-PSO). The RA of
EDS obtained the optimal location and sizing of renewable energy and further improved
the bus voltages. The results showed the enhanced performance of the integrated sys-
tem and loss minimization with a better voltage profile comparing the system without
distributed generators.

The standard IEEE-30 bus system is considered for integrating wind–solar energy
sources for the analysis. Buses 13 and 23 are replaced with a wind generator, and bus 22 is
replaced with solar source. The PI controller parameters were fine-tuned using the Marine
Predator Algorithm, a recent metaheuristic algorithm, and used with UPFC.

The definite improvement of this article outline is as follows:

• The MPA optimization algorithm optimizes the PI controller gain;
• The proposed MPA–PI-controlled UPFC performance is analyzed on a modified IEEE-

30 bus system;
• The MPA optimization algorithm is compared with ABC and MFO.

2. Problem Formulation

The significant motive of the proposed methodology was to reduce active power
loss with a sustainable bus voltage of wind-solar integrated power system. It aimed to,
moreover, identify the optimal location and size of the system’s control variables (UPFC).
Consequently, the system model is as follows.

2.1. Reducing Transmission Loss

The minimized transmission line loss of the system determined by Equation (1):

E1 = Ploss =
n

∑
i=1

Gij

[
V2

i + V2
j − 2ViVjcos

(
δi − δj

)]
(1)

Here, n: number of transmission lines; Gij: Conductance from ith to jth bus; Vi: ith bus
voltage; Vj: jth bus voltage; δi: Phase angle of the ith bus’s voltage; δj: Phase angle of the jth

bus’s voltage; Ploss: Transmission active power loss
Transmission loss can minimize using the optimal control variables defined by a vector

Y.
Y =

[
V1

g , ..., Vp
g , Q1

sh, ..., Qk
sh, tap1

n, ..., tapt
n

]
(2)
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Here, Vg
p: voltage of a control bus, i = 1, 2, . . ., p, Qsh

i: shunt capacitor, i is variable
value 1, 2,. . ., k and k: total number of shunt capacitors, tap is the total number of transformer
tap changer.

F =
[

P1
s , V1

l , ..., Vn
l , Q1

g, ..., Qm
g

]
(3)

Here, Ps
1: slack bus power, Vl

i: ith bus voltage of load, i is a variable 1, 2,· · · , n, Qg
i: ith

generator reactive power output, i is variable 1, 2,. . ., m, and m: total number of generator
bus. The primary motive is to reduce power loss and enhance the voltage across the buses
through the tolerable analysis of optimal control variables of the system, as in Equation (2).

2.2. Enhancing Bus Voltages

It is a significant issue for maintaining the constant bus voltage during the different
loading conditions. The objective function of a healthy profile is defined as:

E2 =
n

∑
i=1

∣∣∣Vi −Vspeci f ied

∣∣∣ (4)

Here, Vspecified = bus voltage, n = number of buses.
The essential objective was modified by inequality and equality constraints.

2.2.1. Equality Constraints

Equality constraints for the ‘n’ bus system represent the power flow equation.

Pi
g − Pi

d −Vi

n

∑
j=1

Vj
[
gijcos

(
δi − δj

)
+ bijsin

(
δi − δj

)]
= 0 i = 1, 2, . . . , n (5)

Qi
g −Qi

d −Vi

n

∑
j=1

Vj
[
gijsin

(
δi − δj

)
+ bijcos

(
δi − δj

)]
= 0 i = 1, 2, . . . , n (6)

Here, n: number of buses; Pg
i: ith bus generated active power; Qg

i: ith bus generated
reactive power; Pd

i: ith bus demanded active power; Qd
i: ith bus demanded reactive power;

gij: Conductance from ith to jth bus; bij: Susceptance from ith to jth bus.

2.2.2. Inequality Constraints

Inequality constraints represent the voltage, active, and reactive power of generator
constraints and are defined as:

Vmin
gk ≤ Vgk ≤ Vmax

gk , k = 1, 2, 3, ..., n (7)

Pmin
gk ≤ Pgk ≤ Pmax

gk , k = 1, 2, 3, ..., n (8)

Qmin
gk ≤ Qgk ≤ Qmax

gk , k = 1, 2, 3, ..., n (9)

The constraints of transformer tap setting confine with limited limits.

tapmin
k ≤ tapk ≤ tapmax

k , k = 1, 2, 3, ..., n (10)

The reactive power constraints of UPFC confine with limited limits:

QUPFC
min ≤ QUPFC ≤ QUPFC

max (11)

3. Mathematical Modelling of System

The voltage stability of the system essentially relies on voltage magnitude, phase angle,
and active power, which are, moreover, sustained by regulating system parameters. Marine
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Predator Algorithm (MPA), a recent metaheuristic optimization algorithm, determines the
optimal placement of UPFC and PI controller optimal parameters.

3.1. Modeling of Unified Power Flow Controller

Unified Power Flow Controller proposed by L. Gyugyi [22]. The performance of
UPFC simultaneously regulates the active, reactive power flow, voltage magnitude, phase
angle, and transmission line impedance [23–26]. UPFC, illustrated in Figure 1, includes two
voltage-source converters; one is in series with the line, and another interface with a shunt
connection [27,28]. The series converter of UPFC achieves its primary function through
the series-connected coupling transformer, which supplies the regulated magnitude and
phase angle of AC voltage in series with the transmission line. Then, the shunt converter’s
primary function is to supply or consume the active power required by the series converter
at a common DC link [29]. The electrical model of UPFC is represented in Figure 2.
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Figure 2. The electrical model of UPFC.

The MPA optimization technique evaluates the optimal placement and PI controller
parameters for the performance of the UPFC controller. The inputs of UPFC are PI controller
parameters and the optimal location of UPFC power flow analysis on a modified IEEE-30
bus system. As a result, Equations (12)–(25) consider implementing the MPA algorithm.

EvR = VvR(cosδvR + jsinδvR) (12)

EcR = VcR(cosδcR + jsinδcR) (13)
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Re
{
−EvR I*

vR + EcR I*
m

}
= 0 (14)

[
Im
In

]
=

[
(YcR + YvR) −YcR −YcR
−YcR YcR YcR

−YvR
0

]
Vm
Vn

EcR
EvR

 (15)

Here: EvR, EcR: voltage sources of UPFC;
VvR: the shunt converter’s governable voltage magnitude ((VvR min) ≤ VvR ≤ (VvR

max)); δvR: the shunt converter’s phase angle (0 ≤ δvR ≤ 2π); VcR: the series converter’s
governable voltage magnitude ((VcR min) ≤ VcR ≤ (VcR max)); δcR: the series converter’s
phase angle (0 ≤ δcR ≤ 2π) [30].

Bus m:

Pm = V2
mGmm + VmVn[Gmncos(θm − θn) + Bmnsin(θm − θn)] + VmVcR[Gmncos(θm − δcR)

+Bmnsin (θm − δcR)] + VmVvR[GvRcos(θm − δvR) + BvRsin(θk − δvR)]
(16)

Qm = −V2
mBmm + VmVn[Gmnsin(θm − θn) + Bmnsin(θm − θn)] + VmVcR[Gmnsin(θm − δcR)

+Bmncos(θm − δcR)] + VmVvR[GvRsin(θm − δvR) + BvRcos(θk − δvR)]
(17)

Bus n:
Pn = V2

n Gnn + VnVm[Gnmcos(θn − θm) + Bnmsin(θn − θm)]

+VnVcR[Gnncos(θn − δcR) + Bnnsin(θn − δcR)]
(18)

Qn = −V2
nBnn + VnVm[Gnmsin(θn − θm) + Bnmcos(θn − θm)]

+VnVcR[Gnnsin(θn − δcR) + Bnncos(θn − δcR)]
(19)

Here, Pm, Pn: active power of bus m and bus n; Qm, Qn: reactive power of bus m and
bus n; Vm, Vn = Voltage magnitudes of bus m and bus n, respectively; Bmn, Bnm = substances
between connecting buses m & n; Gmn, Gnm = Conductance between buses m & n, respectively;
Bmm, Bnn = substance of bus m and bus n, respectively; Gmm, Gnn = Conductance at bus m
and n, respectively.

Series Converter

PcR = V2
cRGnn + VcRVm[Gmncos(δcR − θm) + Bmnsin(δcR − θm)]

+VcRVn[Gnncos(δcR − θn) + Bnnsin(δcR − θn)]
(20)

QcR = −V2
cRBnn + VcRVm[Gmnsin(δcR − θm)− Bmncos(δcR − θm)]

+VcRVn[Gnnsin(δcR − θnn)− Bnncos(δcR − θn)]
(21)

Shunt Converter

PvR = −V2
vRGvR + VvRVm[GvRcos(δvR − θm) + BvRsin(δvR − θm)] (22)

QvR = V2
vRBvR + VvRVm[GvRsin(δvR − θm)− BvRcos(δvR − θm)] (23)

∆Pbb = PvR + PcR = 0 (24)

PvR + PcR = Pm + Pn = 0 (25)

where PcR, PvR: Series, and shunt converter active power, respectively; QcR, QvR: Series and
Shunt converters reactive power, respectively; ∆Pbb: power mismatch.
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3.2. Proportional–Integral Controller

The advancement in evaluating the controller parameters of proportional and integral
gain for shunt and series converters must prefer to enhance the controlled stability [31]. To
attain the systems finest outputs, the parameters are adjusted by tuning the control loop.
The PI controller is represented in Figure 3. Here, Kp: proportional gain; Ki: integral gain;
Vse: series converter voltage magnitude; Vsh: shunt converter voltage magnitude.
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The MPA algorithm searches for five parameters for each particle, Kp and Ki controller
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Raphson method evaluates the total power losses of every grid molecule with UPFC.

3.3. Marine Predator Algorithm (MPA)

The Marine Predator Algorithm is an advanced optimization algorithm that draws
inspiration from ocean predator evolution when hunting for prey. The searching agents
in MPA are the predator and prey, as the predators hunt for prey, consequently searching
for its food [32]. Relying upon the possibilities of food while hunting for prey, the marine
predators swap between Levy and Brownian strategies. Meanwhile, the food for predators
is deficient, and then they approach Levy’s strategy. If the food for predatory is plenty,
they approach the Brownian strategy [33]. Levy’s strategy usually involves small steps
and exceptionally giant steps. This typical nature can utilize for upgrading searchability in
optimization techniques that present effective operation when examined in contrast to reli-
able random search. As Levy’s approach is efficient, they intensely search neighborhoods
because of the small step size; moreover, they search further areas of the domain because of
the long step size; they cannot search all areas of the domain alone. However, the Brownian
strategy with fixed steps can discover and accomplish the neighboring areas. Consequently,
the MPA optimization has a peculiar characteristic nature with these strategies, which is
more advantageous; moreover, by combining these strategies accordingly, the domain is
perhaps exploited and explored globally and locally.

The MPA optimization algorithm is scattered into three phases considering the ratio
of different velocities when reproducing the entire circle of the life of predator and prey.
For some iterations, MPA optimization utilizes a pair of Brownian strategies (phase 1 and a
half population of phase 2). For other iterations, MPA utilizes the Levy strategy (phase 3
and the remaining half population of phase 2) and, thus, includes both advantages.



Energies 2023, 16, 6157 9 of 20

However, combining and accurately using individual strategies can specify an orga-
nized explorer–exploiter structure that can perform more effectively than the individual
strategy. The principal phases of MPA optimization perhaps specified as shown:

A. Initialization

During the initialization process, the variable random positions in the prey and elite
matrix include the location vector along the finest adequacy function induced recurring.

B. Phase 1

This phase occurs in the first third of iterations that is defined by v ≥ 10 (higher-
velocity ratio) for excellent investigation capability as the action of prey is quicker than
predator [29]. At this instant, the suitable predators reside in stagnation, while the motion of
prey is rapid for protecting their food. This stage is expressed mathematically by Equations
(26) and (27).

While Iter < 1
3 Itermax

→
S i =

→
RB ⊗

( →
Elitei −

(→
RB ⊗

→
Preyi

))
i = 1, 2, ..., n (26)

→
Preyi =

→
Preyi +

(
0.5
→
R ⊗

→
S i

)
(27)

Here,
→
S i: the size of the predator step,

→
RB: a random number vector depending on a

standard distribution of Brownian motions,
→
R: a uniform random variable [0, 1], and n is

the number of searching agents per population.

C. Phase 2

This phase course arises at the second-third of iterations, while the exploration tries to
transform transiently to exploitation. This phase expresses as v ≈ 1(unity velocity ratio);
hence, the motion of predator and prey is in the same step.

While 1
3 Itermax < Iter < 2

3 Itermax. Depending on Levy’s strategy, Equations (28) and
(29) determine the first half of the population.

→
S i =

→
RL ⊗

( →
Elitei −

(→
RL ⊗

→
Preyi

))
i = 1, 2, ..., n/2 (28)

→
Preyi =

→
Preyi +

(
0.5
→
R ⊗

→
S i

)
(29)

Random number vector (RL) that depends on a standard distribution of the Levy
motions. Furthermore, the Brownian approach upgrades the second half of the population
by Equations (30) and (31).

→
S i =

→
RB ⊗

((→
RB ⊗

→
Preyi

)
−

→
Preyi

)
i = n/2, ..., n (30)

→
Preyi =

→
Elitei +

(
0.5X f ⊗

→
S i

)
(31)

Here, variable Xf governs the predator’s step size and is mathematically expressed as
Equation (32).

X f = [1− (Iter/Itermax)]
(2×Iter/Itermax) (32)

D. Phase 3

This phase is dedicated to the last third of iterations, which is mainly related to higher
exploitation ability. This phase expresses a lower velocity ratio (v = 0.1); hence, the motion of
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the predator is quicker than the prey. Depending on the Levy movement, the mathematical
representation of this phase is as Equations (33) and (34).

While Iter > 2
3 Itermax,

→
S i =

→
RL ⊗

((→
RL ⊗

→
Elitei

)
−

→
Preyi

)
i = 1, 2, ..., n (33)

→
Preyi =

→
Elitei +

(
0.5X f ⊗

→
S i

)
(34)

E. Finishing

After each iteration, the elite matrix updates the best feasible solution; the last iteration is
the final solution. Figure 4 illustrates the significant steps of the MPA-optimization algorithm.
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Furthermore, the MPA optimization algorithm robustness and effectiveness analysis on
23 classical test functions was compared with two potent optimization algorithms: Artificial
Bee Colony and Moth-Flame Optimization. For balance testing, three algorithms were
performed with a uniform parameter set-up: the population size was 30, and maximum
iterations were 100. These 23 classical test functions were considered for the analysis of the
MPA and determined the efficacy of optimization algorithms. From classical test functions,
the first seven test functions (TF1-TF7) were categorized as unimodal, whereas the test
functions (TF8-TF23) were multimodal. Categorically, the unimodal test function analyzed
the exploitation response, whereas the multimodal test function analyzed the exploration
response of the optimization algorithm.

3.4. Modeling of Wind and Solar Power

Wind and solar power sources integrate with the transmission network, and detailed
modeling of the wind farm and the solar farms are as follows.

A. Wind Power Model

Various investigations focused on obtaining desirable data on wind speed consid-
ering the special distributions. Amongst those, the efficiently authenticated model was
the Weibull probability density function [34,35], which is capable of actual wind speed
distribution because its adaptability is feasible and soothes operation. DFIG-WECS [36]
could generate and absorb the reactive power and coordinate the terminal voltage of the
bus—accordingly, the DFIG-WECS stator integrated into the transmission system, as the
rotor connected to the transmission system through a variable converter. The wind speed
distribution represented by the Weibull probability density function as:

Fv(v) =
k
λ

(
k
λ

)(k−1)
e−(

v
λ )

k
, v > 0 (35)

Here, v: wind speed; λ and k: scale and shape parameters, respectively. The values of
these parameters were considered from [33]. At bus 13, the wind generator parameters k
and λ values are 2 and 9, respectively. At bus 23, the wind generator parameters k and λ
values are 2 and 10, respectively.

The results in [37] state that the load demand was achieved by two wind and one solar
power source. Accordingly, we considered two wind power sources. One wind source at
bus 13 is the combined power of 25 turbines, and another at bus 23 is the combined power
of 20 turbines.

The overall wind source-rated output power is 3 MW and the mathematical derivation
of the actual output power associated with wind speed defines this as:

Pw(v) =


0, v < vin or v > vout

Pwr

(
v−vin
vr−vin

)
, vin ≤ v ≤ vr

Pwr, vr < v ≤ vout

(36)

Here, Pwr: wind turbines rated output power; cut in and cut out wind speeds
vin = 3 m/s, vout = 25 m/s; rated wind speed vr = 16 m/s.

B. Solar Power Model

A solar PV generator replaced the thermal generator at bus 22. Solar irradiance is
the only primary source for solar power generation. The irradiance data were excluded
because of the unavailability of solar irradiance data and the varying seasons. From [37,38],
the solar irradiance is expressed by the Lognormal probability density function as:

FG(G) =
1

Gσ

√
2π

e
−(lnG−µ)2

2σ2 , G > 0 (37)
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Here, G is solar irradiance. µ = 6 and σ = 0.6 are the mean and standard deviation.
Solar PV depending on solar irradiance is expressed as:

PS(G) =

Psr

(
G2

GsGc

)
, 0 < G < Gc

Psr

(
G
Gs

)
, G ≥ Gc

(38)

Here, Psr: Solar output power of 50 MW; the solar irradiance at the conventional
environment and a particular irradiance point is Gs = 800 W/m2 and Gc = 120 W/m2,
respectively.

4. Results and Discussion

The performance analysis of the proposed MPA-PI optimization for reducing active
power loss and improving the voltage profile under varying load conditions was simulated
on a modified IEEE 30 bus transmission system by MATLAB coding. The transmission
system comprised six generators at buses 1, 2, 13, 22, 23, and 27. Out of six generators,
two were wind farm generators, one was a solar PV generator, and the remaining three
were thermal generators. The total active power demand was 238.40 MW, and the reactive
power demand was 126.20 MVAR. The optimal location of UPFC was connected to buses
12–15. Figure 5 shows a modified IEEE-30 bus system and the MPA optimization algorithm
with UPFC performed on it. The MPA optimization algorithm was executed in MATLAB
programming language. The actual power losses evaluated considering the UPFC device
for different loading conditions like 100%, 110%, and 120% of base loading.
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The minimum power loss and optimal voltage was evaluated with and without UPFC.
The MPA optimization evaluated the system performance in four cases to determine the
system’s active power loss and voltage magnitude. The first case was without the UPFC
device, and the remaining three cases were with the UPFC device and varying base load
conditions by 10%. The bus voltage magnitudes of 30 buses were determined and tabulated
in Table 1. The minimized loss was evaluated after connecting the UPFC device; the voltage
values were determined from the N-R method, and evaluated voltage with the proposed
method with 100% base load condition without UPFC and with UPFC device are compared
and plotted in Figure 6. For 110% base load, the voltage profile without and with UPFC is
represented in Figure 7. For 120% base load, the voltage profile without and with UPFC
represent in Figure 8.

Table 1. Voltage profile (p.u.) without and with UPFC under different base load conditions.

Bus Number
100% of Base Load 110% of Base Load 120% of Base Load

Without UPFC With UPFC Without UPFC With UPFC Without UPFC With UPFC

1 1.04 1.04 1.04 1.04 1.04 1.04
2 1.023 1.023 1.003 1.003 0.993 0.994
3 0.9748 0.97 0.9666 0.9673 0.9626 0.9628
4 0.977 0.9821 0.9675 0.9698 0.9659 0.9732
5 0.9702 0.9702 0.9622 0.9622 0.9667 0.9669
6 0.9824 0.9973 0.9733 0.9745 0.9627 0.9638
7 0.973 0.9783 0.9691 0.971 0.9613 0.9646
8 1.002 1.002 0.9803 0.9803 0.9803 0.9803
9 1.0013 1.0098 1.0223 1.0239 1.0169 1.0194

10 0.9624 0.9791 0.9963 0.9985 0.9855 0.9876
11 1.053 1.053 1.041 1.042 1.041 1.041
12 0.9489 0.9565 0.9787 0.9904 0.9871 0.9903
13 1.052 1.052 1.052 1.054 1.042 1.042
14 0.954 0.9681 0.9832 0.9958 0.9874 0.9893
15 0.9441 0.9523 0.9761 0.9789 0.9832 0.9914
16 0.9533 0.9687 0.9859 0.9887 0.9842 0.9891
17 0.9602 0.9753 0.9987 1.0043 0.997 1.0004
18 0.9391 0.9501 0.9619 0.9659 0.9655 0.9745
19 0.9465 0.9523 0.9712 0.9795 0.9989 1.0012
20 0.9562 0.9613 0.9788 0.9811 0.9885 0.9921
21 0.9561 0.9644 0.9738 0.9812 0.9645 0.9781
22 0.9629 0.9712 0.9833 0.9912 0.9752 0.9825
23 0.9523 0.9632 0.9938 1.005 0.9765 0.9858
24 0.9647 0.9754 0.9719 0.9845 0.9665 0.9736
25 0.9683 0.9821 0.9723 1.0012 0.967 0.9807
26 0.9597 0.9623 0.9623 1.0056 0.9687 0.9749
27 0.9629 0.9687 0.982 0.9928 0.9749 0.9823
28 0.982 0.9954 0.984 0.9945 0.9774 0.9827
29 0.9667 0.9743 0.9825 0.9964 0.9691 0.9729
30 0.9503 0.9612 0.9678 0.9723 0.9745 0.9859
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The gains of a proportional integral controller for UPFC fine-tuned with the MPA
optimization algorithm. The power losses are input variables for the MPA optimization,
and the PI controller values tabulate in Table 2.

Table 2. Analysis of proportional–integral parameters with proposed optimization.

Proportional–Integral Parameters

Kps Kis Kpsh Kpsh

0.018 7.34 × 10−4 0.0956 0.0323

Significantly, the MPA possessed quick convergence compared to variant optimization
algorithms, whereas the MPA effectively converged, favoring optimal value in concise
searching operations. Thus, it validates the firmness of MPA by accomplishing the precise
equity among exploitation and exploration intelligence. Bonferroni–Dunns test were chosen
as the statistical analysis of MPA, which a post hoc statistical analysis. This test illustrates a
substantially different performance among the algorithms, whenever dissimilarities in the
average ranking were higher than the critical difference. The convergence characteristics of
power loss (MW) using MPA at various loads are plotted in Figures 9–11.

Compared with the heuristic algorithms like ABC and MFO optimization algorithms,
the active power losses obtained from the MPA optimization algorithm exhibited com-
petitive performance. The comparison results showed a significant improvement in the
performance of the system. The active power loss was evaluated based on loss with the
UPFC device at different base loadings like 100%, 110%, and 120% of base load. Therefore,
it is evident from Table 3 that the optimal position of FACTS devices effectively reduced the
system’s active power loss. Moreover, the MPA–PI-optimization algorithm was efficient,
when compared to other optimization algorithms, in reducing the active power loss in all
congested lines.
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The graph for the percentage of loss reduction for different base loads is plotted in
Figure 12. At 100% base load, the loss reduction with MPA was 68.39%, which was better
than the ABC and MFO optimization techniques. At 110% base load, the loss reduction of
MPA was 74.33%, and at 120% of base load, the loss reduction was 69.89%.
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Table 3. Analysis of active power loss with and without UPFC.

Loading Pd and
Qd (%)

Active Power Loss
without UPFC (p.u)

Active Power Loss
with UPFC (p.u)

Evolutionary Algorithm
with UPFC

100 0.0622 0.0328 ABC
0.0320 MFO
0.0301 MPA

110 0.0865 0.0479 ABC
0.0473 MFO
0.0470 MPA

120 0.1185 0.0742 ABC
0.0738 MFO
0.0733 MPA

5. Conclusions

The performance of a new metaheuristic optimization algorithm-based optimum
PI controller for UPFC was discussed in this paper. The proposed MPA optimization
algorithm determined the optimal values of PI gain and the optimal placement of UPFC—
the proposed algorithm performed on a modified IEEE-30 bus system. The performance
efficiently reduced losses—the optimal placement of UPFC connected to bus 12 and bus
15. The analysis used a modified wind–solar-integrated IEEE-30 bus system, considering
the corresponding probability density functions for simulating irregularities in renewable
energy sources under increasing power system loadability. The results show that the
proposed MPA algorithm effectively reduced the active power losses, improved the voltage
profile, and satisfied all constraints.

The MPA optimization algorithm may be applicable for the problem of integration of
wind and solar system in electric grid and it is possible for expansion for real power and
reactive power management in larger power system networks.
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