Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (212)

Search Parameters:
Keywords = UGT2B7

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 67029 KB  
Article
An Integrated Analysis of WRKY Genes in Autotetraploid Bupleurum chinense: Evolution, Stress Response, and Impact on Saikosaponin Biosynthesis
by Chuanxin Mo, Wenshuai Chen, Zhen Wei, Yuchan Li, Xueling Wang, Mingyue Yan, Jun Zhao, Zeru Yu, Chao Xin, Ma Yu and Hua Chen
Horticulturae 2026, 12(1), 102; https://doi.org/10.3390/horticulturae12010102 - 18 Jan 2026
Viewed by 158
Abstract
WRKY transcription factors play critical roles in plant growth, development, metabolism, and stress responses. In this study, we performed the first genome-wide characterization of the WRKY gene family in Bupleurum chinense, using a T2T-level assembly of the autotetraploid genome. A total of [...] Read more.
WRKY transcription factors play critical roles in plant growth, development, metabolism, and stress responses. In this study, we performed the first genome-wide characterization of the WRKY gene family in Bupleurum chinense, using a T2T-level assembly of the autotetraploid genome. A total of 303 BcWRKY genes were identified and found to be unevenly distributed across four subgenomes. Phylogenetic and structural analyses revealed that segmental duplications after polyploidization drove lineage-specific expansion of the family. Meta-transcriptome analysis demonstrated that BcWRKY genes exhibited tissue-specific expression patterns and dynamic responses to stress, suggesting functional diversification. Under drought, waterlogging, methyl jasmonate, and ABA treatments, the contents of saikosaponins A and D significantly increased. This increase was accompanied by transcriptional activation of multiple BcWRKY genes. Correlation analysis between ten BcWRKYs and ten saikosaponins biosynthetic associated genes (BcBASs, BcCYPs, and BcUGTs) identified BcWRKY22, BcWRKY33, and BcWRKY46 as potential regulators of saikosaponin metabolism under stress conditions. Our study provided a comprehensive framework for understanding BcWRKY gene evolution and secondary metabolic regulation in polyploid medicinal plants. It also offered candidate genes for breeding B. chinense cultivars with high saikosaponin content. Full article
Show Figures

Figure 1

18 pages, 1081 KB  
Review
Pharmacogenomics and Opioid Efficacy in Sickle Cell Disease
by Rabab H. Elshaikh, Asaad M. Babker, Sanaa Elfatih Hussein, Khalid Abdelsamea Mohamed Ahmed, Ashok Kumar Sah and Ayman Hussein Alfeel
Medicina 2026, 62(1), 172; https://doi.org/10.3390/medicina62010172 - 15 Jan 2026
Viewed by 135
Abstract
The impact of genetic variation in sickle cell patients plays a significant role in opioid therapy individual response and pain management. This review aims to provide a comprehensive overview of the importance of exploring genetic variability and its impact on pain management in [...] Read more.
The impact of genetic variation in sickle cell patients plays a significant role in opioid therapy individual response and pain management. This review aims to provide a comprehensive overview of the importance of exploring genetic variability and its impact on pain management in patients with sickle cell disease. It also explores opioid therapy variability and opioid Safety. With respect to literature, the polymorphisms in the key metabolic enzymes CYP2D6, UGT2B7, and COMT, as well as variations in the OPRM1, are important modifiers of the pharmacokinetics and pharmacodynamics of opioids. Variations in the COMT gene can influence how the body manages certain brain chemicals and how pain is experienced, while changes in the OPRM1 gene can alter how well opioids bind to their receptors. They help determine how opioids are broken down in the body, how well they attach to pain receptors, and how pain is felt by someone with sickle cell disease. Patients with reduced-function and ultra-rapid CYP2D6 alleles have a modified metabolism of codeine and tramadol, which presents either a reduced analgesic response or a risk for increased toxicity. These observations support the case for the need for tailored opioid prescriptions in a population that is genetically diverse, as well as the risk of not having standardized pain measurement, and the absence of clinical implementation. There remains the risk of unrecognized pharmacogenomics, lack of data, and personalized opioid descriptions persist. Future research should focus on integrating genetic testing into clinical practice to optimize opioid selection, personalize medicine, minimize adverse effects, and ensure each patient receives treatment that is both effective and safe to enhance quality of life for individuals with sickle cell disease. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Figure 1

21 pages, 5820 KB  
Article
Transcriptomic Profile of Directed Differentiation of iPSCs into Hepatocyte-like Cells
by Irina Panchuk, Valeriia Kovalskaia, Konstantin Kochergin-Nikitsky, Valentina Yakushina, Natalia Balinova, Oxana Ryzhkova, Alexander Lavrov and Svetlana Smirnikhina
Int. J. Mol. Sci. 2026, 27(2), 633; https://doi.org/10.3390/ijms27020633 - 8 Jan 2026
Viewed by 171
Abstract
The liver is the central organ in metabolism; however, modeling hepatic diseases remains limited by current experimental models. Animal models frequently fail to predict human liver physiology, while primary hepatocytes rapidly dedifferentiate in culture. We performed comprehensive transcriptomic profiling of induced pluripotent stem [...] Read more.
The liver is the central organ in metabolism; however, modeling hepatic diseases remains limited by current experimental models. Animal models frequently fail to predict human liver physiology, while primary hepatocytes rapidly dedifferentiate in culture. We performed comprehensive transcriptomic profiling of induced pluripotent stem cells (iPSCs) differentiation into hepatocyte-like cells (HLCs) under two-dimensional (2D) and three-dimensional (3D) culture conditions. RNA sequencing analysis revealed the sequential activation of lineage-specific markers across major developmental stages: definitive endoderm (FOXA2, SOX17, CXCR4, CER1, GATA4), posterior foregut (PROX1, GATA6), and hepatoblasts (HNF4A, AFP). Comparative analysis demonstrated a markedly enhanced hepatic gene expression of 3D organoids, as demonstrated by a 33-fold increase in HNF4A expression and elevated levels of mature hepatocyte markers, including ALB, SERPINA1, and UGT2B15. However, the 3D cultures retained fetal characteristics (290-fold higher AFP expression) and exhibited significantly impaired metabolic function, with CYP3A4 expression levels reduced by 2000-fold compared to the adult human liver. This partial maturation was further supported by a moderate correlation with adult liver tissue (ρ = 0.57). We demonstrated high reproducibility across five biologically distinct iPSCs lines, including those derived from patients with rare monogenic disorders. The establishment of quantitative benchmarks provides a crucial tool for standardizing in vitro liver models. Furthermore, we delineate the specific limitations of the current model, highlighting the need for further protocol optimization to enhance metabolic maturation and P450 enzyme activity. Functional validation of metabolic activity (CYP enzyme assays, albumin secretion) was not performed; therefore, conclusions regarding hepatocyte functionality are based on transcriptomic evidence. Full article
Show Figures

Figure 1

19 pages, 762 KB  
Article
Therapeutic Potential and Predictive Pharmaceutical Modeling of Indole Kratom Alkaloids
by Md Harunur Rashid, Matthew J. Williams, Andres Garcia Guerra, Arunporn Itharat, Raimar Loebenberg and Neal M. Davies
J. Phytomed. 2026, 1(1), 1; https://doi.org/10.3390/jphytomed1010001 - 29 Dec 2025
Viewed by 364
Abstract
Kratom alkaloids are classified as aromatic pentacyclic indole and substituted carbonyl oxindole alkaloids. This study investigates the metabolism and interactions of indole alkaloids using in silico tools, including ADMET Predictor 13.0™, to assess pharmacokinetic and metabolic profiles. The analysis examined absorption, distribution, metabolism, [...] Read more.
Kratom alkaloids are classified as aromatic pentacyclic indole and substituted carbonyl oxindole alkaloids. This study investigates the metabolism and interactions of indole alkaloids using in silico tools, including ADMET Predictor 13.0™, to assess pharmacokinetic and metabolic profiles. The analysis examined absorption, distribution, metabolism, and excretion (ADME), focusing on cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzyme interactions, drug transporters, and clearance. Most indole alkaloids showed strong substrate interaction and inhibition of CYP3A4 (79–99% confidence) and induction of CYP1A2 (up to 94% confidence). Among UGT enzymes, UGT1A1 demonstrated the highest substrate affinity (97%), while none interacted with UGT2B15. All alkaloids showed strong P-glycoprotein (Pgp) interaction but minimal inhibition of BCRP. Mitralactonine exhibited the highest skin permeability, and Mitralactonal showed maximal jejunal permeability. Most indole alkaloids demonstrated significant blood–brain barrier penetration (up to 99% confidence) and compliance with Lipinski’s rule of five. Predictive modeling indicated notable effects on hepatic microsomal clearance parameters. This investigation offers the first comprehensive in silico ADMET profiling of kratom indole alkaloids, uncovering their CYP3A4 inhibition potential and metabolic liabilities to prioritize candidates for safer therapeutic development, though limited by model biases, applicability domain restrictions, and inability to fully capture biological complexity, stereochemistry, or interindividual variability necessitating experimental in vitro and in vivo validation. Full article
Show Figures

Graphical abstract

12 pages, 760 KB  
Article
Transcriptome Analysis of the Response of Aphis glycines Feeding on Ambrosia artemisiifolia
by Xue Han, Changchun Dai, Jian Liu and Zhenqi Tian
Agronomy 2026, 16(1), 11; https://doi.org/10.3390/agronomy16010011 - 19 Dec 2025
Viewed by 352
Abstract
Common ragweed, Ambrosia artemisiifolia L., a noxious invasive plant, produces novel secondary metabolites. However, it attracts soybean aphid, Aphis glycines, a significant pest of soybean, to feed on it. Elucidating the molecular mechanisms of A. glycines adaptation to A. artemisiifolia may help [...] Read more.
Common ragweed, Ambrosia artemisiifolia L., a noxious invasive plant, produces novel secondary metabolites. However, it attracts soybean aphid, Aphis glycines, a significant pest of soybean, to feed on it. Elucidating the molecular mechanisms of A. glycines adaptation to A. artemisiifolia may help identify target genes useful for pest management. High-throughput transcriptome sequencing identified 4250 differentially expressed genes (DEGs), with 2399 upregulated and 1851 downregulated. KEGG pathway enrichment analysis suggested that these DEGs were significantly involved in core detoxification-related pathways, including metabolism of xenobiotics by cytochrome P450, drug metabolism, ascorbate and aldarate metabolism, and pentose and glucuronate interconversions. Further analysis revealed significant upregulation of 17 UDP-glycosyltransferase (UGT) genes, with AgUGT342B2, AgUGT343B2, AgUGT344J2, AgUGT344L2, and AgUGT344N2 showing 6.34-, 6.22-, 2.14-, 3.98-, and 7.49-fold higher expression, respectively, than in A. glycines fed on soybean. Bioassays demonstrated that A. glycines reared on A. artemisiifolia exhibited significantly reduced sensitivity to three common insecticides, imidacloprid, thiamethoxam, and lambda-cyhalothrin, with LC50 values increasing by 5.8-fold, 2.8-fold, and 3.6-foldhigher, respectively, than those reared on soybean. These findings indicate that feeding on A. artemisiifolia induces UGT gene family upregulation in A. glycines, conferring cross-resistance to multiple insecticide classes. This study reveals a molecular mechanism linking host adaptation to insecticide resistance, highlighting the ecological and evolutionary consequences of invasive plant-herbivore interactions. Full article
(This article belongs to the Special Issue Recent Advances in Legume Crop Protection—2nd Edition)
Show Figures

Figure 1

32 pages, 4624 KB  
Article
Transcriptional Activity of Genes Related to the Biotransformation Process in the Development of Colorectal Cancer
by Grażyna Janikowska, Tomasz Janikowski, Aleksandra Kuźbińska, Mieszko Opiłka, Urszula Mazurek and Zbigniew Lorenc
Int. J. Mol. Sci. 2025, 26(24), 12116; https://doi.org/10.3390/ijms262412116 - 16 Dec 2025
Viewed by 1033
Abstract
Colorectal cancer (CRC) remains the third leading cause of mortality among cancer patients in developed countries. Each new study in this field can contribute to better detection, diagnosis, and treatment of this disease. Our study aimed to assess transcriptional activity of genes associated [...] Read more.
Colorectal cancer (CRC) remains the third leading cause of mortality among cancer patients in developed countries. Each new study in this field can contribute to better detection, diagnosis, and treatment of this disease. Our study aimed to assess transcriptional activity of genes associated with the biotransformation of xenobiotics and endobiotics in all three phases in the CRC adenocarcinoma, including correlations between them, as well as the aromatic hydrocarbon receptor (AhR) pathways. Based on transcriptome analysis (1252 mRNAs) of the CRC tissue and healthy colon, the upregulation or downregulation of 46 significant mRNAs was presented. The study also revealed the downregulation of AKR7A2 and upregulation of SLC5A6 and SLC29A2, previously undistinguished and potentially therapeutically valuable in CRC. The diagnostic potential of ADH1C, GGT5, NQO2, and SLC25A5 was demonstrated. It was stated that the AHR, EPHX1, GSTP1, and SLC25A32 did not correlate in healthy intestinal tissue whereas AHCY, ALDH1A1, NNMT, GSTM4, UGT2B17, and SLCO1B3 did not correlate in CRC. The disturbed transcriptional activity of genes related to the biotransformation process at all stages of CRC suggests that this may be the cause of its occurrence; the genes ought to be taken into account in preventive strategies and the treatment of patients. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

36 pages, 2335 KB  
Review
Medical Marijuana and Treatment Personalization: The Role of Genetics and Epigenetics in Response to THC and CBD
by Małgorzata Kalak, Anna Brylak-Błaszków, Łukasz Błaszków and Tomasz Kalak
Genes 2025, 16(12), 1487; https://doi.org/10.3390/genes16121487 - 12 Dec 2025
Viewed by 930
Abstract
Personalizing therapy using medical marijuana (MM) is based on understanding the pharmacogenomics (PGx) and drug–drug interactions (DDIs) involved, as well as identifying potential epigenetic risk markers. In this work, the evidence regarding the role of variants in phase I (CYP2C9, CYP2C19 [...] Read more.
Personalizing therapy using medical marijuana (MM) is based on understanding the pharmacogenomics (PGx) and drug–drug interactions (DDIs) involved, as well as identifying potential epigenetic risk markers. In this work, the evidence regarding the role of variants in phase I (CYP2C9, CYP2C19, CYP3A4/5) and II (UGT1A9/UGT2B7) genes, transporters (ABCB1), and selected neurobiological factors (AKT1/COMT) in differentiating responses to Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) has been reviewed. Data indicating enzyme inhibition by CBD and the possibility of phenoconversion were also considered, which highlights the importance of a dynamic interpretation of PGx in the context of current pharmacotherapy. Simultaneously, the results of epigenetic studies (DNA methylation, histone modifications, and ncRNA) in various tissues and developmental windows were summarized, including the reversibility of some signatures in sperm after a period of abstinence and the persistence of imprints in blood. Based on this, practical frameworks for personalization are proposed: the integration of PGx testing, DDI monitoring, and phenotype correction into clinical decision support systems (CDS), supplemented by cautious dose titration and safety monitoring. The culmination is a proposal of tables and diagrams that organize the most important PGx–DDI–epigenetics relationships and facilitate the elimination of content repetition in the text. The paper identifies areas of implementation maturity (e.g., CYP2C9/THC, CBD-CYP2C19/clobazam, AKT1, and acute psychotomimetic effects) and those requiring replication (e.g., multigenic analgesic signals), indicating directions for future research. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Graphical abstract

18 pages, 876 KB  
Review
Personalized Perioperative Opioid Strategies in Children: Focus on Methadone, Pharmacogenomics and Prevention of Persistent Postoperative Opioid Use
by Hamsa Priya Bhuchakra, Sennaraj Balasubramanian, Alivia G. Nair, Isabella Marcos, Victoria Chen Falconett, Dominic Falcon, Ayesha Abdul Bari and Senthilkumar Sadhasivam
Children 2025, 12(12), 1660; https://doi.org/10.3390/children12121660 - 7 Dec 2025
Viewed by 632
Abstract
Persistent postoperative opioid use (PPOU) is an emerging challenge in pediatric perioperative care, with rates as high as 4.7% in opioid-naive adolescents. Despite advances in multimodal analgesia, current protocols often fail to prevent long-term opioid exposure, particularly after high-risk surgeries such as spinal [...] Read more.
Persistent postoperative opioid use (PPOU) is an emerging challenge in pediatric perioperative care, with rates as high as 4.7% in opioid-naive adolescents. Despite advances in multimodal analgesia, current protocols often fail to prevent long-term opioid exposure, particularly after high-risk surgeries such as spinal fusions. While multiple strategies exist to reduce PPOU in children, including regional anesthesia and non-opioid analgesics, this review specifically focuses on methadone and pharmacogenomic-guided opioid prescribing as promising approaches. Methadone, a long-acting opioid with mu-opioid agonism, NMDA antagonism, and monoamine reuptake inhibition, has shown encouraging outcomes in adult and emerging pediatric studies but remains underutilized due to concerns over safety, variability, and familiarity. This narrative review explores the intersection of methadone pharmacology, pharmacogenomic (PGx)-guided opioid prescribing, and their potential to reduce PPOU and optimize perioperative pain control in children. We examine methadone’s unique pharmacokinetic profile, extended half-life, and ability to reduce central sensitization and opioid tolerance. Data from pediatric trials in cardiac, spinal, and major abdominal surgeries are reviewed, highlighting methadone’s potential to lower total opioid use, stabilize postoperative pain trajectories, and improve recovery. The review also discusses the role of PGx testing, particularly CYP2D6, CYP3A4, UGT2B7, and OPRM1 variants, in tailoring methadone dosing to individual metabolic profiles, reducing adverse effects, and improving analgesic efficacy. There are no well accepted generalizable perioperative methadone dose, number of doses and dosing intervals due to limited large multicenter studies in children. We outline challenges, including QTc prolongation, dosing variability, lack of pediatric-specific PGx guidelines, and ethical considerations around genetic testing in minors. The review calls for multidisciplinary perioperative teams, expanded PGx implementation, and real-world data from registries and AI-integrated models to support precision opioid strategies. Preventing PPOU in children is critical. Integration of methadone-based multimodal analgesia in high-risk painful in-patient procedures and future integration of PGx represent positive steps toward personalized, effective, and safer pain management in pediatric surgical patients, an urgent need as opioid stewardship becomes a clinical and public health imperative. Full article
(This article belongs to the Section Pediatric Anesthesiology, Pain Medicine and Palliative Care)
Show Figures

Figure 1

19 pages, 1462 KB  
Article
Effects of Food Enrichment Based on Diverse Feeding Regimes on Growth, Immunity, and Stress Resistance of Nibea albiflora
by Yuhan Ruan, Jipeng Sun, Yuting Zheng, Jiaxing Wang, Dongdong Xu, Tianxiang Gao, Anle Xu and Xiumei Zhang
Antioxidants 2025, 14(12), 1446; https://doi.org/10.3390/antiox14121446 - 30 Nov 2025
Viewed by 535
Abstract
Food enrichment represents a novel feeding strategy for aquaculture. In the current study, juvenile Nibea albiflora (average weight 29.65 ± 0.13 g) were used and three feeding regimes (A—commercial diet; B—a diet comprising 90% commercial feed and 10% ice-fresh Palaemon gravieri; C—a [...] Read more.
Food enrichment represents a novel feeding strategy for aquaculture. In the current study, juvenile Nibea albiflora (average weight 29.65 ± 0.13 g) were used and three feeding regimes (A—commercial diet; B—a diet comprising 90% commercial feed and 10% ice-fresh Palaemon gravieri; C—a diet consisting of 90% commercial diet, 5% ice-fresh Palaemon gravieri and 5% live Perinereis nuntia; named control group, Group 1, and Group 2) with comparable nutrient compositions: were designed to establish the food enrichment model and explore the effects of such feeding strategies on the fish. The cultivation period was 60 days, and the physiological, pathological, and RNA-seq analyses were performed to evaluate the effects. The results showed that the food enrichment feeding strategy significantly enhanced fish growth performance, immunity, and stress resistance without increasing the unit production cost (UPC). Furthermore, the tri-combined food feeding (C) was better than the two-combined food feeding (B). Liver transcriptomic analysis revealed that, in the comparison between the control group and Group 1, the up-regulated genes (alox15b, gng7, hif1a, ppara, and pla2g) and down-regulated genes (ins, gck, il4i1) influenced fish physiology and further improved growth. Similar to the comparison between the control group and Group 2, the major functional genes included ugt, nlrp3, mx1, col1a, gst (up-regulated), and map2k1, myc, mmp9, wnt7, socs3 (down-regulated) that participated in regulating the body growth, immunity, and stress resistance. The up-regulated genes (ins, mhc2, foxo3, ppara, and mx1) alongside the down-regulated genes (egfr, fos, cyc, myc, and mmp9) probably contributed to the enhanced efficacy of the tri-combined food feeding compared to the two-combined food feeding. In summary, this study demonstrates the beneficial effects of such a food enrichment model on the fish and provides empirical evidence supporting the implementation of the feeding strategies in the healthy culturing of the fish. Full article
Show Figures

Figure 1

25 pages, 16990 KB  
Article
Integrative Transcriptomic and Metabolomic Analysis Reveals That Acanthopanax senticosus Fruit Ameliorates Cisplatin-Induced Acute Kidney Injury by Suppressing the NF-κB/PI3K-AKT Pathway via UGT1A1 Regulation
by Liu Han, Zebo Tang, Xiangyu Ma, Qiuyue Zhang, Yu Han, Qi Wang, Jinlong Liu, Xuefeng Bian, Liancong Gao, Mengran Xu and Xin Sun
Int. J. Mol. Sci. 2025, 26(22), 11131; https://doi.org/10.3390/ijms262211131 - 18 Nov 2025
Viewed by 824
Abstract
The chemical composition of the ethanol extract of Acanthopanax senticosus fruit (ASFEE) was systematically characterized using UPLC-MS/MS (Q Exactive Orbitrap), leading to the identification of 45 compounds. Through integrated network pharmacology and molecular docking analyses, the binding affinities between key bioactive constituents—such as [...] Read more.
The chemical composition of the ethanol extract of Acanthopanax senticosus fruit (ASFEE) was systematically characterized using UPLC-MS/MS (Q Exactive Orbitrap), leading to the identification of 45 compounds. Through integrated network pharmacology and molecular docking analyses, the binding affinities between key bioactive constituents—such as eleutheroside E (EE) and quercetin—and core therapeutic targets were predicted and validated. A total of 125 overlapping targets were identified between ASFEE and acute kidney injury (AKI), with significant enrichment observed in critical signaling pathways, including NF-κB, IL-17, and PI3K-Akt. To evaluate the protective effects of ASFEE, both in vitro (HK-2 cells) and in vivo (murine) models of cisplatin (DDP)-induced AKI were employed. Parameters assessed included cell viability, apoptosis, reactive oxygen species (ROS) production, activation of the NF-κB signaling pathway, kidney function, histopathological alterations, and levels of inflammatory cytokines. ASFEE treatment markedly enhanced HK-2 cell viability and reduced cellular apoptosis and ROS generation. In the murine model, DDP administration resulted in significantly elevated serum creatinine (Scr) and blood urea nitrogen (BUN) levels. Both low- and high-dose ASFEE treatments significantly attenuated these increases, improved overall kidney function, and alleviated kidney tubular damage. Furthermore, ASFEE reduced serum levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Multi-omics integration analysis enabled the identification of differentially expressed genes and metabolites. ASFEE was found to reverse 4689 DDP-induced gene expression changes and 323 metabolic disturbances, with the uridine diphosphate glucuronosyltransferase (UGT)-mediated ascorbic acid metabolism pathway emerging as the central regulatory axis. Key candidate genes and proteins were further validated via real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. DDP significantly upregulated the expression of inflammatory markers and associated signaling molecules in kidney tissues, while concurrently downregulating UGT family genes and the UGT1A1 protein involved in uronic acid metabolism. Notably, ASFEE treatment effectively counteracted these alterations, confirming its role in enhancing UGT1A1-mediated metabolic processes and suppressing the NF-κB/PI3K-Akt/IL-17 signaling cascade. These mechanisms contribute to improved antioxidant capacity, mitigation of inflammatory responses, and restoration of metabolic homeostasis, thereby conferring protection against DDP-induced AKI. ASFEE exerts a protective effect on AKI caused by DDP by enhancing antioxidant capacity, inhibiting inflammation and restoring metabolic homeostasis, providing an experimental basis for its subsequent development and application. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

19 pages, 7232 KB  
Article
Physiological Responses to Thermal Stress in the Liver of Gymnocypris eckloni Revealed by Multi-Omics
by Miaomiao Nie, Weilin Ni, Zhenji Wang, Dan Liu, Qiang Gao, Cunfang Zhang and Delin Qi
Animals 2025, 15(22), 3272; https://doi.org/10.3390/ani15223272 - 12 Nov 2025
Viewed by 621
Abstract
Climate-change-induced thermal stress poses a significant threat to cold-adapted aquatic species, particularly fish endemic to high-altitude ecosystems such as Gymnocypris eckloni, which is native to the Qinghai-Tibetan Plateau. To elucidate the molecular and metabolic mechanisms underlying their response to elevated temperatures, we [...] Read more.
Climate-change-induced thermal stress poses a significant threat to cold-adapted aquatic species, particularly fish endemic to high-altitude ecosystems such as Gymnocypris eckloni, which is native to the Qinghai-Tibetan Plateau. To elucidate the molecular and metabolic mechanisms underlying their response to elevated temperatures, we integrated RNA-seq, miRNA-seq, and LC-MS-based metabolomic analyses of liver tissue from fish exposed to chronic thermal stress (HT) versus control (CT) conditions. Although no significant differences were observed in growth parameters, histopathological examination revealed structural damage under heat stress. Transcriptomic analysis identified widespread dysregulation of genes involved in energy metabolism, with significant downregulation of pathways related to amino acid, fatty acid, glucose, and oxidative phosphorylation. In contrast, upregulated DEGs were enriched in N-glycan biosynthesis, protein processing in the endoplasmic reticulum, and phagosome. Concomitant miRNA profiling revealed differentially expressed miRNAs, including miR-196a-5p, miR-132-3p, and miR-181b-5p, which were predicted to regulate key metabolic genes such as ugt1a1, pepck, and calr. Metabolomic analysis further demonstrated significant alterations in metabolic profiles, with glutathione metabolism, tryptophan metabolism, steroid hormone biosynthesis, and pyruvate metabolism emerging as central pathways in the heat stress response. Integrated multi-omics analysis confirmed coordinated regulation of these pathways, highlighting the critical role of glutathione and tryptophan, as well as disruptions in purine and energy metabolism. The DEMiR-DEG-DEM networks involving miR-196a-5p-pepck-PEP, miR-133a-3p-gne-UDP-GlcNAc, and miR-132-3p-ugt1a1-Bilirubin may play an important role in thermal stress. This study provided a new perspective on the molecular, regulatory, and metabolic adaptations of Gymnocypris eckloni to thermal stress, identifying potential biomarkers and regulatory networks that may inform conservation strategies for cold-water fish under global warming. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

22 pages, 4448 KB  
Article
Genome-Wide Association Study Revealed Candidate Genes Associated with Litter Size, Weight, and Body Size Traits in Tianmu Polytocous Sheep (Ovis aries)
by Wenna Liu, Shengchao Ma, Qingwei Lu, Sen Tang, Nuramina Mamat, Yaqian Wang, Wei Hong, Xiangrong Hu, Cuiling Wu and Xuefeng Fu
Biology 2025, 14(10), 1446; https://doi.org/10.3390/biology14101446 - 20 Oct 2025
Cited by 1 | Viewed by 911
Abstract
Reproductive and growth traits are key economic traits in sheep. This study aims to identify key single nucleotide polymorphisms (SNPs) and candidate genes associated with reproductive and growth traits in Tianmu polytocous sheep through a genome-wide association study (GWAS). The findings are expected [...] Read more.
Reproductive and growth traits are key economic traits in sheep. This study aims to identify key single nucleotide polymorphisms (SNPs) and candidate genes associated with reproductive and growth traits in Tianmu polytocous sheep through a genome-wide association study (GWAS). The findings are expected to provide both a theoretical foundation for molecular breeding in this breed and novel insights into the genetic basis of ovine reproductive and growth performance. This study took 483 adult Tianmu polytocous ewes as the research subjects, collected their lambing records, measured their phenotypic values of growth traits (3 weight and 11 body size traits), and collected their blood samples for whole-genome resequencing to identify SNPs in the Tianmu polytocous sheep genome. The results identified a total of 9,499,019 (3× coverage) and 27,413,216 (30× coverage) high-quality SNPs in the Tianmu polytocous sheep genome. Subsequently, the association analysis between SNPs and reproductive and growth traits was conducted using a mixed linear model. A total of 92, 66, 18, 28, 6, 42, 3, 3, 6, 1, 12, 3, 22, 8, 6, and 3 SNPs were found associated with litter size at first parity, litter size at second parity, litter size at third parity, litter size at fourth parity, birth weight, weaning weight, body height, withers height, body length, head length, head width, cannon bone circumference, forelimb height, chest girth, chest depth, and withers width, respectively. Further, based on SNP annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, candidate genes associated with the reproductive and growth traits were identified. Among these genes, 11 LOC, DEPTOR, GNG12, GRM7, PTH, PTH2R, WWOX, INHA, and NRG3 are candidate genes associated with litter size at first parity or litter size at third parity. These genes are involved in the G protein-coupled receptor signaling pathway, G protein-coupled receptor activity, ovarian tissue development, and hormone secretion. Additionally, TFRC and NTN1 are candidate genes associated with birth weight, while five UGT1A and CASR are candidate genes associated with weaning weight. These candidate genes are primarily involved in lipid metabolism. Finally, the following genes were identified as candidates associated with specific traits: DLG2, TMEM126A, and TMEM126B with body height; DSCAM and SCN8A with body length; BARX1 with cannon bone circumference; four LOC genes with forelimb height; EPHA4 with chest depth; and MRS2 with withers width. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

24 pages, 5319 KB  
Article
Selenium Supplementation Mitigates Copper-Induced Systemic Toxicity via Transcriptomic Reprogramming and Redox Homeostasis in Mice
by Faiz Hussain Panhwar, Muhammad Zahir Ahsan, Xiaomei Jia, Xiaoying Ye, Rongjun Chen, Lihua Li and Jianqing Zhu
Foods 2025, 14(20), 3528; https://doi.org/10.3390/foods14203528 - 16 Oct 2025
Viewed by 1290
Abstract
Copper is an essential trace element that supports numerous physiological functions; however, excessive copper accumulation can disrupt cellular and biological processes. In this study, forty-eight male mice were randomly divided into four groups (n = 12): Control (fed normal rice), Cu300 (300 mg/kg [...] Read more.
Copper is an essential trace element that supports numerous physiological functions; however, excessive copper accumulation can disrupt cellular and biological processes. In this study, forty-eight male mice were randomly divided into four groups (n = 12): Control (fed normal rice), Cu300 (300 mg/kg copper), Cu300+Se (Cu300 + selenium-enriched rice), and Cu300+iSe (Cu300 + 1 mg/kg iSe), and were treated for 180 days. Copper exposure resulted in reduced body weight, hepatomegaly and nephritis, elevated copper deposition in organs, oxidative stress, and significant declines in RBC, HGB, and WBC counts, leading to anemia and immunosuppression. Selenium supplementation, effectively mitigated these effects by reducing copper accumulation, restoring antioxidant balance, and enhancing selenoprotein-related functions. Histopathological analysis revealed that copper toxicity induced hydropic degeneration and focal necrosis in hepatic and renal tissues, effects that were significantly attenuated by selenium supplementation. Transcriptomic profiling revealed that selenium-enriched rice reversed copper-induced gene expression changes. In the liver, selenium treatment significantly upregulated protective genes such as Slc7a, Bola1, Uqcrq, Dtx1, and Znrd2, while downregulating stress-related genes like Trim75, Dpm3, Moxd1, Tnfrsf25, and Gpr75. In the kidneys, selenium enhanced the expression of detoxification and immune-modulating genes (Mt1, Mt2, Rhbdl1, Crisp3, Mif) and suppressed stress-related genes (Nnt, Ifi44l, NLRP12, Eno1b, Ugt1a), demonstrating its role in mitigating oxidative and inflammatory stress. Collectively, these findings demonstrate that selenium-enriched rice exerts potent protective effects against chronic copper toxicity through multiple mechanisms: (1) restoration of mitochondrial function, (2) attenuation of ER stress and apoptosis, (3) enhancement of antioxidant and detoxification pathways, and (4) modulation of metabolic and immune responses. This study highlights selenium-enriched rice as a promising nutritional intervention for mitigating chronic copper toxicity and maintaining hepatorenal health. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

16 pages, 3548 KB  
Article
Identification and Functional Analysis of Two UGT84 Glycosyltransferases in Flavonoid Biosynthesis of Carthamus tinctorius
by Chaoxiang Ren, Jinxin Guo, Siyu Liu, Bin Xian, Yuhang Li, Changyan Yang, Cheng Peng, Jin Pei and Jiang Chen
Plants 2025, 14(19), 3112; https://doi.org/10.3390/plants14193112 - 9 Oct 2025
Cited by 1 | Viewed by 791
Abstract
Safflower (Carthamus tinctorius L.) is a multipurpose economic crop. Flavonoid glycosides are its key bioactive constituents, and several glycosyltransferases involved in their biosynthesis have been identified. The glycosyltransferase 84 subfamily represents a specialized branch with diverse functions, involved not only in catalyzing [...] Read more.
Safflower (Carthamus tinctorius L.) is a multipurpose economic crop. Flavonoid glycosides are its key bioactive constituents, and several glycosyltransferases involved in their biosynthesis have been identified. The glycosyltransferase 84 subfamily represents a specialized branch with diverse functions, involved not only in catalyzing flavonoid glycosylation but also in the biosynthesis of auxins, tannins, and other compounds. However, this subfamily remains poorly characterized in safflower. In this study, two UGT84 subfamily genes, UGT84A28 and UGT84B3, were screened based on expression patterns and phylogenetic evolution analysis. Recombinant proteins were induced and purified using prokaryotic expression systems. Functional characterization was subsequently conducted through enzymatic assays in vitro and transient expression in tobacco leaves. Molecular docking was employed to investigate the binding modes of UGTs with UDP-glucose. The results indicated that both UGTs demonstrated glycosylation activity at the flavonoid 7-OH position. Notably, when luteolin was employed as the aglycone, both enzymes also exhibited 3′-O-glycosylation activity. Combined with amino acid sequence alignment, we propose that residues A351/T343 and G263/F254, which affect spatial conformation and hydrogen bonding ability, may be one of the reasons for the functional differences between these two enzymes. These findings provide new insights into the catalytic diversity of glycosyltransferases. Full article
(This article belongs to the Special Issue Advances in Plant Molecular Biology and Gene Function)
Show Figures

Figure 1

19 pages, 1260 KB  
Article
Custom Gene Panel Analysis Identifies Novel Polymorphisms Associated with Clopidogrel Response in Patients Undergoing Percutaneous Coronary Intervention with Stent
by Alba Antúnez-Rodríguez, Sonia García-Rodríguez, Ana Pozo-Agundo, Jesús Gabriel Sánchez-Ramos, Eduardo Moreno-Escobar, José Matías Triviño-Juárez, María Jesús Álvarez-Cubero, Luis Javier Martínez-González and Cristina Lucía Dávila-Fajardo
Int. J. Mol. Sci. 2025, 26(19), 9766; https://doi.org/10.3390/ijms26199766 - 7 Oct 2025
Viewed by 811
Abstract
Clopidogrel is widely used as an antiplatelet therapy for acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI). Genetic factors influence variability in clopidogrel response, with non-functional CYP2C19 alleles increasing the risk of major adverse cardiovascular events (MACEs). While CYP2C19 genotype-guided therapy [...] Read more.
Clopidogrel is widely used as an antiplatelet therapy for acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI). Genetic factors influence variability in clopidogrel response, with non-functional CYP2C19 alleles increasing the risk of major adverse cardiovascular events (MACEs). While CYP2C19 genotype-guided therapy after PCI improves outcomes, MACEs persist at variable rates. Pharmacogenomics (PGx) has primarily focused on genes related to drug metabolism, but therapeutic failure may stem from individual disease predisposition. This study aims to identify novel genetic variants underlying adverse events after PCI despite PGx-guided therapy. A custom sequencing panel was analyzed in 244 ACS-PCI-stent patients and 99 controls without cardiovascular (CV) disease. Association analysis was performed independent of treatment and by prescribed treatment (clopidogrel or prasugrel), complemented by random forest models to predict risk during antiplatelet therapy. No polymorphism reached genomic significance, but in clopidogrel-treated patients, rs2472434 in ABCA1, related to altered lipid metabolism, was strongly associated with secondary CV events (p = 1.7 × 10−3). Variants in the clopidogrel pathway, including CYP2C19, ABCB1, and UGT2B7, were also identified and may influence clopidogrel response. Predictive models incorporating these variants effectively discriminated patients with and without events (p = 0.02445). Our findings support combined genotyping of CYP2C19 loss-of-function and ABCB1 C3435T variants to guide antiplatelet therapy and suggest additional targets, such as rs2472434 (ABCA1) and rs7439366 (UGT2B7), to improve risk prediction of adverse CV events. Therefore, the unexplained variability in clopidogrel response may be due to disease pathogenesis itself, highlighting the need for a paradigm shift in PGx studies. Full article
Show Figures

Graphical abstract

Back to TopTop