Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,558)

Search Parameters:
Keywords = Tumor-associated macrophages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3451 KiB  
Article
Transcriptional Repression of CCL2 by KCa3.1 K+ Channel Activation and LRRC8A Anion Channel Inhibition in THP-1-Differentiated M2 Macrophages
by Miki Matsui, Junko Kajikuri, Hiroaki Kito, Yohei Yamaguchi and Susumu Ohya
Int. J. Mol. Sci. 2025, 26(15), 7624; https://doi.org/10.3390/ijms26157624 - 6 Aug 2025
Abstract
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful [...] Read more.
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful model for studying tumor-associated macrophages (TAMs). CCL2 is a potent chemoattractant involved in the recruitment of immunosuppressive cells and its expression is regulated through intracellular signaling pathways such as ERK, JNK, and Nrf2 in various types of cells including macrophages. The transcriptional expression of CCL2 was suppressed in M2-MACs following treatment with a KCa3.1 activator or an LRRC8A inhibitor via distinct signaling pathways: ERK–CREB2 and JNK–c-Jun pathways for KCa3.1, and the NOX2–Nrf2–CEBPB pathway for LRRC8A. Under in vitro conditions mimicking the elevated extracellular K+ concentration ([K+]e) characteristic of the tumor microenvironment (TME), CCL2 expression was markedly upregulated, and this increase was reversed by treatment with them in M2-MACs. Additionally, the WNK1–AMPK pathway was, at least in part, involved in the high [K+]e-induced upregulation of CCL2. Collectively, modulating KCa3.1 and LRRC8A activities offers a promising strategy to suppress CCL2 secretion in TAMs, potentially limiting the CCL2-induced infiltration of immunosuppressive cells (TAMs, Tregs, and MDSCs) in the TME. Full article
(This article belongs to the Special Issue Regulation of Ion Channels and Transporters)
Show Figures

Figure 1

31 pages, 3657 KiB  
Review
Lipid Metabolism Reprogramming in Cancer: Insights into Tumor Cells and Immune Cells Within the Tumor Microenvironment
by Rundong Liu, Chendong Wang, Zhen Tao and Guangyuan Hu
Biomedicines 2025, 13(8), 1895; https://doi.org/10.3390/biomedicines13081895 - 4 Aug 2025
Viewed by 28
Abstract
This review delves into the characteristics of lipid metabolism reprogramming in cancer cells and immune cells within the tumor microenvironment (TME), discussing its role in tumorigenesis and development and analyzing the value of lipid metabolism-related molecules in tumor diagnosis and prognosis. Cancer cells [...] Read more.
This review delves into the characteristics of lipid metabolism reprogramming in cancer cells and immune cells within the tumor microenvironment (TME), discussing its role in tumorigenesis and development and analyzing the value of lipid metabolism-related molecules in tumor diagnosis and prognosis. Cancer cells support their rapid growth through aerobic glycolysis and lipid metabolism reprogramming. Lipid metabolism plays distinct roles in cancer and immune cells, including energy supply, cell proliferation, angiogenesis, immune suppression, and tumor metastasis. This review focused on shared lipid metabolic enzymes and transporters, lipid metabolism-related oncogenes and non-coding RNAs (ncRNAs) involved in cancer cells, and the influence of lipid metabolism on T cells, dendritic cells (DCs), B cells, tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), and natural killer cells (NKs) within TME. Additionally, the role of lipid metabolism in tumor diagnosis and prognosis was explored, and lipid metabolism-based anti-tumor treatment strategies were summarized, aiming to provide new perspectives for achieving precision medicine. Full article
(This article belongs to the Special Issue Advanced Cancer Diagnosis and Treatment: Third Edition)
Show Figures

Graphical abstract

21 pages, 3562 KiB  
Article
scRNA-seq Can Identify Different Cell Populations in Ovarian Cancer Bulk RNA-seq Experiments
by Sofia Gabrilovich, Eric Devor, Nicholas Cardillo, David Bender, Michael Goodheart and Jesus Gonzalez-Bosquet
Int. J. Mol. Sci. 2025, 26(15), 7512; https://doi.org/10.3390/ijms26157512 - 4 Aug 2025
Viewed by 52
Abstract
High-grade serous ovarian cancer (HGSC) is a heterogeneous disease. RNA sequencing (RNAseq) of bulk solid tissue is of limited use in these populations due to heterogeneity. Single-cell RNA-seq (scRNA-seq) allows for the identification of diverse genetic compositions of heterogeneous cell populations. New computational [...] Read more.
High-grade serous ovarian cancer (HGSC) is a heterogeneous disease. RNA sequencing (RNAseq) of bulk solid tissue is of limited use in these populations due to heterogeneity. Single-cell RNA-seq (scRNA-seq) allows for the identification of diverse genetic compositions of heterogeneous cell populations. New computational methodologies are now available that use scRNAseq results to estimate cell type proportions in bulk RNAseq data. We performed bulk RNA-seq gene expression analysis on 112 HGSC specimens and 12 benign fallopian tube (FT) controls. We identified several publicly available scRNAseq datasets for use as annotation and reference datasets. Deconvolution was performed with MUlti-Subject SIngle Cell Deconvolution (MuSiC) to estimate cell type proportions in the bulk RNA-seq data. Datasets from the Cancer Genome Atlas (TCGA). HGSC repositories were also evaluated. Clinical variables and percentages of cell types were compared for differences in clinical outcomes and treatment results. Pathway enrichment analysis was also performed. Different annotations for referenced scRNA-seq datasets used for deconvolution of bulk RNA-seq data revealed different cellular proportions that were significantly associated with clinical outcomes; for example, higher proportions of macrophages were associated with a better response to primary chemotherapy. Our deconvolution study of bulk RNAseq HGSC samples identified cell populations within the tumor that may be associated with some of the observed clinical outcomes. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

18 pages, 3020 KiB  
Article
JAK2/STAT3 Signaling in Myeloid Cells Contributes to Obesity-Induced Inflammation and Insulin Resistance
by Chunyan Zhang, Jieun Song, Wang Zhang, Rui Huang, Yi-Jia Li, Zhifang Zhang, Hong Xin, Qianqian Zhao, Wenzhao Li, Saul J. Priceman, Jiehui Deng, Yong Liu, David Ann, Victoria Seewaldt and Hua Yu
Cells 2025, 14(15), 1194; https://doi.org/10.3390/cells14151194 - 2 Aug 2025
Viewed by 302
Abstract
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to [...] Read more.
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to insulin resistance remain largely unknown. Although the Janus Kinase (Jak)/signal transducer and activator of transcription 3 (Stat3) signaling in myeloid cells are known to promote the M2 phenotype in tumors, we demonstrate here that the Jak2/Stat3 pathway amplifies M1-mediated adipose tissue inflammation and insulin resistance under metabolic challenges. Ablating Jak2 in the myeloid compartment reduces insulin resistance in obese mice, which is associated with a decrease in infiltration of adipose tissue macrophages (ATMs). We show that the adoptive transfer of Jak2-deficient myeloid cells improves insulin sensitivity in obese mice. Furthermore, the protection of obese mice with myeloid-specific Stat3 deficiency against insulin resistance is also associated with reduced tissue infiltration by macrophages. Jak2/Stat3 in the macrophage is required for the production of pro-inflammatory cytokines that promote M1 macrophage polarization in the adipose tissues of obese mice. Moreover, free fatty acids (FFAs) activate Stat3 in macrophages, leading to the induction of M1 cytokines. Silencing the myeloid cell Stat3 with an in vivo siRNA targeted delivery approach reduces metabolically activated pro-inflammatory ATMs, thereby alleviating obesity-induced insulin resistance. These results demonstrate Jak2/Stat3 in myeloid cells is required for obesity-induced insulin resistance and inflammation. Moreover, targeting Stat3 in myeloid cells may be a novel approach to ameliorate obesity-induced insulin resistance. Full article
Show Figures

Figure 1

18 pages, 2125 KiB  
Article
A Replication-Defective Myxoma Virus Inducing Pro-Inflammatory Responses as Monotherapy and an Adjuvant to Chemo- and DC Immuno-Therapy for Ovarian Cancer
by Martin J. Cannon and Jia Liu
Viruses 2025, 17(8), 1058; https://doi.org/10.3390/v17081058 - 29 Jul 2025
Viewed by 355
Abstract
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic [...] Read more.
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic benefit by chemotherapy and dendritic cell (DC) vaccine. Because MYXV favors binding/entry of macrophages/monocytes, we examined the therapeutic potential of MYXV against TAMs. We found previously that a replication-defective MYXV with targeted deletion of an essential gene, M062R, designated ΔM062R MYXV, activated both the host DNA sensing pathway and the SAMD9 pathway. Treatment with ΔM062R confers therapeutic benefit comparable to that of wild-type replicating MYXV in preclinical models. Here we found that ΔM062R MYXV, when integrated with cisplatin and DC immunotherapy, further improved treatment benefit, likely through promoting tumor antigen-specific T cell function. Moreover, we also tested ΔM062R MYXV in targeting human immunosuppressive TAMs from OC patient ascites in a co-culture system. We found that ΔM062R treatment subverted the immunosuppressive properties of TAMs and elevated the avidity of cytokine production in tumor antigen-specific CD4+ T cells. Overall, ΔM062R presents a promising immunotherapeutic platform as a beneficial adjuvant to chemotherapy and DC vaccine. Full article
(This article belongs to the Special Issue Women in Virology 2025)
Show Figures

Figure 1

15 pages, 1064 KiB  
Article
Targeting RARγ Decreases Immunosuppressive Macrophage Polarization and Reduces Tumor Growth
by Jihyeon Park, Jisun Oh, Sang-Hyun Min, Ji Hoon Yu, Jong-Sup Bae and Hui-Jeon Jeon
Molecules 2025, 30(15), 3099; https://doi.org/10.3390/molecules30153099 - 24 Jul 2025
Viewed by 273
Abstract
Tumor-associated macrophages (TAMs) play a critical role in the tumor microenvironment (TME), interacting with cancer cells and other components to promote tumor growth. Given the influence of TAMs on tumor progression and resistance to therapy, regulating the activity of these macrophages is crucial [...] Read more.
Tumor-associated macrophages (TAMs) play a critical role in the tumor microenvironment (TME), interacting with cancer cells and other components to promote tumor growth. Given the influence of TAMs on tumor progression and resistance to therapy, regulating the activity of these macrophages is crucial for improving cancer treatment outcomes. TAMs often exhibit immunosuppressive phenotypes (commonly referred to as M2-like macrophages), which suppress immune responses and contribute to drug resistance. Therefore, inhibiting immunosuppressive polarization offers a promising strategy to impede tumor growth. This study revealed retinoic acid receptor gamma (RARγ), a nuclear receptor, as a key regulator of immunosuppressive polarization in THP-1 macrophages. Indeed, the inhibition of RARγ, either by a small molecule or gene silencing, significantly reduced the expression of immunosuppressive macrophage markers. In a three-dimensional tumor spheroid model, immunosuppressive macrophages enhanced the proliferation of HCT116 colorectal cancer cells, which was significantly hindered by RARγ inhibition. These findings suggest that targeting RARγ reprograms immunosuppressive macrophages and mitigates the tumor-promoting effects of TAMs, highlighting RARγ as a promising therapeutic target for developing novel anti-cancer strategies. Full article
Show Figures

Figure 1

15 pages, 1078 KiB  
Review
Immunological Insights into Photodynamic Therapy of Glioblastoma Multiforme
by Paweł Woźnicki, Dorota Bartusik-Aebisher, Agnieszka Przygórzewska and David Aebisher
Molecules 2025, 30(15), 3091; https://doi.org/10.3390/molecules30153091 - 24 Jul 2025
Viewed by 312
Abstract
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of [...] Read more.
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of only 6%, underscoring the urgent need for novel therapeutic approaches. Immunotherapy has emerged as a promising strategy, and photodynamic therapy (PDT) in particular has attracted attention for its dual cytotoxic and immunostimulatory effects. In GBM models, PDT induces immunogenic cell death characterized by the release of damage-associated molecular patterns (DAMPs), which promote antigen presentation and activate T cell responses. Additionally, PDT transiently increases blood–brain barrier permeability, facilitating immune cell infiltration into the tumor microenvironment, and enhances clearance of waste products via stimulation of meningeal lymphatic vessels. Importantly, PDT can reprogram or inactivate immunosuppressive tumor-associated macrophages, thereby counteracting the pro-tumoral microenvironment. Despite these encouraging findings, further preclinical and clinical studies are required to elucidate PDT’s underlying immunological mechanisms fully and to optimize treatment regimens that maximize its efficacy as part of integrated immunotherapeutic strategies against GBM. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

28 pages, 1692 KiB  
Review
Exploring the Complexity of Cutaneous Squamous CellCarcinoma Microenvironment: Focus on Immune Cell Roles by Novel 3D In Vitro Models
by Marika Quadri, Marco Iuliano, Paolo Rosa, Giorgio Mangino and Elisabetta Palazzo
Life 2025, 15(8), 1170; https://doi.org/10.3390/life15081170 - 23 Jul 2025
Viewed by 456
Abstract
Non-melanoma skin cancer (NMSC), comprising basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), represents the most common type of cancer worldwide, particularly among Caucasians. While BCC is locally invasive with minimal metastatic potential, cSCC is a highly aggressive tumor with a [...] Read more.
Non-melanoma skin cancer (NMSC), comprising basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), represents the most common type of cancer worldwide, particularly among Caucasians. While BCC is locally invasive with minimal metastatic potential, cSCC is a highly aggressive tumor with a significant potential for metastasis, particularly in elderly populations. Tumor development and progression and the metastasis of cSCC are influenced by a complex interplay between tumor cells and the tumor microenvironment. Recent research highlights the importance of various immune cell subsets, including T cells, tumor-associated macrophages (TAMs), and dendritic cells, in influencing tumor progression, immune evasion, and treatment resistance. This review outlines key regulatory mechanisms in the immune tumor microenvironment (TME) of cSCC and explores the role of cytokines, immune checkpoints, and stromal interactions. We further discuss the relevance of three-dimensional (3D) in vitro models such as spheroids, organoids, and tumor-on-chip systems as tools to mimic immune–tumor interactions with higher physiological relevance, such as macrophage activation and polarization against cSCC cells. Globally, 3D models offer new opportunities for immunotherapy screening and mechanistic studies. Understanding the immune landscape in cSCC through advanced modeling techniques holds strong clinical potential for improving diagnostic and therapeutic strategies. Full article
Show Figures

Figure 1

42 pages, 2555 KiB  
Review
Prosaposin: A Multifaceted Protein Orchestrating Biological Processes and Diseases
by Xin Li and Liang Guo
Cells 2025, 14(15), 1131; https://doi.org/10.3390/cells14151131 - 22 Jul 2025
Viewed by 430
Abstract
Prosaposin (PSAP), a multifunctional protein, plays a central role in various biological processes and diseases. It is the precursor of lysosomal activating protein, which is important for lipid metabolism and glucose metabolism. PSAP is implicated in cell signaling, neuroprotection, immunomodulation, and tumorigenesis. In [...] Read more.
Prosaposin (PSAP), a multifunctional protein, plays a central role in various biological processes and diseases. It is the precursor of lysosomal activating protein, which is important for lipid metabolism and glucose metabolism. PSAP is implicated in cell signaling, neuroprotection, immunomodulation, and tumorigenesis. In neurological disorders, PSAP acts as a neurotrophic factor influencing nerve cell survival and synapse growth, and its dysfunction is associated with a variety of diseases. It modulates immune responses and macrophage functions, affecting inflammation and immune cell activities. The role of PSAP in cancers is complex, because it promotes or inhibits tumor growth depending on the context and it serves as a potential biomarker for various malignancies. This review examines current research on the functional and pathological roles of PSAP, emphasizing the importance of PSAP in Gaucher disease, neurodegenerative diseases, cardiovascular diseases, and cancer. In order to develop targeted therapies for various diseases, it is essential to understand the mechanisms of action of PSAP in different biological processes. Full article
Show Figures

Figure 1

27 pages, 1103 KiB  
Review
Tumor Microenvironmental Dynamics in Shaping Resistance to Therapeutic Interventions in Melanoma: A Narrative Review
by Laci M. Turner, Hanna Terhaar, Victoria Jiminez, Bailey J. Anderson, Emily Grant and Nabiha Yusuf
Pharmaceuticals 2025, 18(8), 1082; https://doi.org/10.3390/ph18081082 - 22 Jul 2025
Viewed by 440
Abstract
Background/Objectives: This review discusses the resistance mechanisms in the tumor microenvironment (TME) of malignant melanoma that disrupt the efficacy of immune checkpoint inhibitors (ICIs). In this review, we focus on the roles of immune cells, including tumor-infiltrating lymphocytes (TILs), macrophages, dendritic cells, [...] Read more.
Background/Objectives: This review discusses the resistance mechanisms in the tumor microenvironment (TME) of malignant melanoma that disrupt the efficacy of immune checkpoint inhibitors (ICIs). In this review, we focus on the roles of immune cells, including tumor-infiltrating lymphocytes (TILs), macrophages, dendritic cells, and other signaling pathways. We explore the interplay between innate and adaptive immunity in the TME and tumor intrinsic resistance mechanisms, such as β-catenin, which has future implications for the usage of ICIs in patients with therapy-resistant tumors. Methods: A total of 1052 studies were extracted from the PubMed database searching for keywords and phrases that included [melanoma AND immune checkpoint inhibitor resistance]. After a title/abstract and full-text review, 101 studies were identified that fit the inclusion/exclusion criteria. Results: Cancer-associated fibroblasts (CAFs), M2 macrophages, and myeloid-derived suppressor cells (MDSCs) are significant in remodeling the TME to promote melanoma growth. Melanoma resistance to ICIs is complex and involves TME alterations, tumor intrinsic factors, and immune evasion. Key components of resistance include reduced CD8+ T cell infiltration, decreased host immune response, and immunosuppressive cytokines. Conclusions: Predictive biomarkers and specific models are the future of individualized melanoma management and show great promise in their approach to targeted therapy production. Tumor profiling can be utilized to help predict the efficacy of ICIs, and specific biomarkers predicting therapy responses are instrumental in moving towards personalized and more efficacious medicine. As more melanoma resistance emerges, alternative and combinatorial therapy based on knowledge of existing resistance mechanisms will be needed. Full article
(This article belongs to the Special Issue Combating Drug Resistance in Cancer)
Show Figures

Graphical abstract

15 pages, 2893 KiB  
Article
NRP1 and GFAP Expression in the Medulloblastoma Microenvironment: Implications for Angiogenesis and Tumor Progression
by Margarita Belem Santana-Bejarano, María Paulina Reyes-Mata, José de Jesús Guerrero-García, Daniel Ortuño-Sahagún and Marisol Godínez-Rubí
Cancers 2025, 17(15), 2417; https://doi.org/10.3390/cancers17152417 - 22 Jul 2025
Viewed by 241
Abstract
Background/Objectives: Medulloblastoma (MB) is the second leading cause of cancer-related death in children. Its tumor microenvironment (TME) includes endothelial, glial, and immune cells that influence tumor architecture and progression. Neuropilin-1 (NRP1), a co-receptor for semaphorins and vascular endothelial growth factor (VEGF), is [...] Read more.
Background/Objectives: Medulloblastoma (MB) is the second leading cause of cancer-related death in children. Its tumor microenvironment (TME) includes endothelial, glial, and immune cells that influence tumor architecture and progression. Neuropilin-1 (NRP1), a co-receptor for semaphorins and vascular endothelial growth factor (VEGF), is expressed in various cell types during oncogenesis, yet its role in MB progression remains unclear. This study aimed to evaluate the expression and localization of NRP1 and glial fibrillary acidic protein (GFAP) in MB tissue. Methods: We analyzed MB tissue samples using immunohistochemistry, immunofluorescence, and quantitative PCR. Samples were stratified by molecular subgroup (WNT, SHH, non-WNT/non-SHH). We assessed NRP1 expression in tumor-associated microglia/macrophages (TAMs) and endothelial cells, as well as GFAP expression in astrocytes and tumor cells. Histopathological correlations and survival analyses were also conducted. Results: NRP1 was consistently expressed by TAMs across all MB molecular subgroups. Tumor vasculature showed strong endothelial NRP1 expression, while perivascular astrocytic coverage was frequently absent. Astrocytic processes exhibited spatial differences according to tumor histology. In SHH-MBs, a subset of tumor cells showed aberrant GFAP expression, which correlated with tumor recurrence or progression. Conclusions: NRP1 and GFAP display distinct expression patterns within the MB microenvironment, reflecting subgroup-specific biological behavior. Endothelial NRP1 positivity combined with limited vascular-astrocytic interaction and aberrant GFAP expression in SHH-MB may contribute to dysregulated angiogenesis and tumor progression. These findings warrant further investigation to explore their prognostic and therapeutic implications. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Malignant Nervous System Cancers)
Show Figures

Graphical abstract

19 pages, 3009 KiB  
Article
PD-1-Positive CD8+ T Cells and PD-1-Positive FoxP3+ Cells in Tumor Microenvironment Predict Response to Neoadjuvant Chemoimmunotherapy in Gastric Cancer Patients
by Liubov A. Tashireva, Anna Yu. Kalinchuk, Elena O. Shmakova, Elisaveta A. Tsarenkova, Dmitriy M. Loos, Pavel Iamschikov, Ivan A. Patskan, Alexandra V. Avgustinovich, Sergey V. Vtorushin, Irina V. Larionova and Evgeniya S. Grigorieva
Cancers 2025, 17(14), 2407; https://doi.org/10.3390/cancers17142407 - 21 Jul 2025
Viewed by 380
Abstract
Background/Objectives: In gastric cancer, only a subset of patients benefit clinically from neoadjuvant chemoimmunotherapy, underscoring the need for robust biomarkers that can predict treatment responses and guide personalized immunotherapy. This study aimed to characterize the immune microenvironment of gastric tumors and identify predictive [...] Read more.
Background/Objectives: In gastric cancer, only a subset of patients benefit clinically from neoadjuvant chemoimmunotherapy, underscoring the need for robust biomarkers that can predict treatment responses and guide personalized immunotherapy. This study aimed to characterize the immune microenvironment of gastric tumors and identify predictive markers associated with therapeutic efficacy. Methods: We prospectively enrolled 16 patients with histologically confirmed, PD-L1–positive (CPS ≥ 1) gastric adenocarcinoma (T2–4N0–1M0). All patients received eight cycles of FLOT chemotherapy combined with pembrolizumab. Treatment response was assessed by Mandard tumor regression grading. Spatial transcriptomic profiling (10x Genomics Visium) and multiplex immunofluorescence were used to evaluate tumor-infiltrating immune cell subsets and PD-1 expression at baseline and after treatment. Results: Transcriptomic analysis differentiated the immune landscapes of responders from non-responders. Responders exhibited elevated expression of IL1B, CXCL5, HMGB1, and IFNGR2, indicative of an inflamed tumor microenvironment and type I/II interferon signaling. In contrast, non-responders demonstrated upregulation of immunosuppressive genes such as LGALS3, IDO1, and CD55, along with enrichment in oxidative phosphorylation and antigen presentation pathways. Multiplex immunofluorescence confirmed a higher density of FoxP3+ regulatory T cells in non-responders (median 5.36% vs. 2.41%; p = 0.0032). Notably, PD-1+ CD8+ T cell and PD-1+ FoxP3+ Treg frequencies were significantly elevated in non-responders, suggesting that PD-1 expression within cytotoxic and regulatory compartments may contribute to immune evasion. No substantial differences were observed in PD-L1 CPS or PD-1+ B cells and PD-1+ macrophages. Conclusions: Our findings identify PD-1+ CD8+ T cells and PD-1+ FoxP3+ Tregs as potential biomarkers of resistance to neoadjuvant chemoimmunotherapy in gastric cancer. Transcriptional programs centered on IL1B/CXCL5 and LGALS3/IDO1 define distinct immune phenotypes that may guide future combination strategies targeting both effector and suppressive arms of the tumor immune response. Full article
Show Figures

Figure 1

16 pages, 1980 KiB  
Review
Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance
by Guadalupe Avalos-Navarro, Martha Patricia Gallegos-Arreola, Emmanuel Reyes-Uribe, Luis Felipe Jave Suárez, Gildardo Rivera-Sánchez, Héctor Rangel-Villalobos, Ana Luisa Madriz-Elisondo, Itzae Adonai Gutiérrez Hurtado, Juan José Varela-Hernández and Ramiro Ramírez-Patiño
Int. J. Mol. Sci. 2025, 26(14), 6954; https://doi.org/10.3390/ijms26146954 - 20 Jul 2025
Viewed by 398
Abstract
Metastases are the leading cause of cancer-related deaths. The spread of neoplasms involves multiple mechanisms, with metastatic tumors exhibiting molecular behaviors distinct from their primary counterparts. The key hallmarks of metastatic lesions include chromosomal instability, copy number alterations (CNAs), and a reduced degree [...] Read more.
Metastases are the leading cause of cancer-related deaths. The spread of neoplasms involves multiple mechanisms, with metastatic tumors exhibiting molecular behaviors distinct from their primary counterparts. The key hallmarks of metastatic lesions include chromosomal instability, copy number alterations (CNAs), and a reduced degree of subclonality. Furthermore, metabolic adaptations such as enhanced glycogen synthesis and storage, as well as increased fatty acid oxidation (FAO), play a critical role in sustaining energy supply in metastases and contributing to chemoresistance. FAO promotes the infiltration of macrophages into the tumor, where they polarize to the M2 phenotype, which is associated with immune suppression and tissue remodeling. Additionally, the tumor microbiome and the action of cytotoxic drugs trigger neutrophil extravasation through inflammatory pathways. Chemoresistant neutrophils in the tumor microenvironment can suppress effector lymphocyte activation and facilitate the formation of neutrophil extracellular traps (NETs), which are linked to drug resistance. This article examines the genomic features of metastatic tumors, along with the metabolic and immunological dynamics within the metastatic tumor microenvironment, and their contribution to drug resistance. It also discusses the molecular mechanisms underlying resistance to chemotherapeutic agents commonly used in the treatment of metastatic cancer. Full article
(This article belongs to the Special Issue Breast Cancer: From Pathophysiology to Novel Therapies)
Show Figures

Figure 1

18 pages, 9009 KiB  
Article
Cancer-Associated Fibroblasts Establish Spatially Distinct Prognostic Niches in Subcutaneous Colorectal Cancer Mouse Model
by Zhixian Lin, Jinmeng Wang, Yixin Ma, Yanan Zhu, Yuhan Li, Zhengtao Xiao and Wei Zhao
Cancers 2025, 17(14), 2402; https://doi.org/10.3390/cancers17142402 - 19 Jul 2025
Viewed by 492
Abstract
Background/Objectives: Subcutaneous tumor models are widely used in colorectal cancer (CRC) research due to their experimental accessibility; however, the spatial organization and regulatory mechanisms of their tumor microenvironment remain poorly understood. Methods: Here, we applied spatial transcriptomics to systematically characterize spatial heterogeneity within [...] Read more.
Background/Objectives: Subcutaneous tumor models are widely used in colorectal cancer (CRC) research due to their experimental accessibility; however, the spatial organization and regulatory mechanisms of their tumor microenvironment remain poorly understood. Methods: Here, we applied spatial transcriptomics to systematically characterize spatial heterogeneity within MC38 subcutaneous tumors in a syngeneic mouse model. Results: We identified two spatially distinct tumor zones, partitioned by cancer-associated fibroblasts (CAFs), that differ markedly in cellular composition, oncogenic signaling, immune infiltration, and metabolic states. One zone exhibited features of TGF-β-driven extracellular matrix remodeling, immune exclusion, and hyperproliferative metabolism, while the other was enriched for immunosuppressive macrophages, metabolic reprogramming via PPAR and AMPK pathways, and high-risk cell populations. Spatially resolved cell–cell communication networks further revealed zone-specific ligand–receptor interactions—such as ANGPTL4–SDC2 and PROS1–AXL—that underpin stromal remodeling and immune evasion and are associated with patient prognosis. Conclusions: Collectively, our study uncovers how region-specific cellular ecosystems and intercellular crosstalk establish prognostically divergent niches within subcutaneous CRC tumors, offering insights into spatially guided therapeutic strategies. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

23 pages, 43055 KiB  
Article
Tumor-Associated Macrophages and Collagen Remodeling in Mammary Carcinomas: A Comparative Analysis in Dogs and Humans
by Ana Paula Vargas Garcia, Marisa Salvi, Luana Aparecida Reis, Bárbara Regina Melo Ribeiro, Cristiana Buzelin Nunes, Ana Maria de Paula and Geovanni Dantas Cassali
Int. J. Mol. Sci. 2025, 26(14), 6928; https://doi.org/10.3390/ijms26146928 - 18 Jul 2025
Viewed by 490
Abstract
The tumor microenvironment (TME) plays a central role in cancer progression, with tumor-associated macrophages (TAMs) and extracellular matrix (ECM) components such as collagen being key modulators of invasiveness and immune regulation. Although macrophage infiltration and ECM remodeling are well-documented individually, their coordinated contribution [...] Read more.
The tumor microenvironment (TME) plays a central role in cancer progression, with tumor-associated macrophages (TAMs) and extracellular matrix (ECM) components such as collagen being key modulators of invasiveness and immune regulation. Although macrophage infiltration and ECM remodeling are well-documented individually, their coordinated contribution to mammary carcinoma aggressiveness remains underexplored, particularly in comparative oncology models. This study analyzed 117 mammary carcinoma samples—59 from dogs and 58 from women—using immunohistochemistry, immunofluorescence, and second-harmonic-generation (SHG) microscopy. We quantified TAM density and phenotype (CD206, iNOS, and S100A8/A9), assessed collagen fiber organization, and examined correlations with clinical–pathological variables and overall survival. Increased TAM infiltration was associated with a higher histological grade, aggressive molecular subtypes, enhanced cell proliferation, and shortened survival in dogs. High TAM density also correlated with decreased collagen fiber length and increased alignment, suggesting active immune–matrix remodeling in aggressive tumors. Macrophage phenotyping revealed heterogeneous populations, with CD206+ cells predominating in high-grade tumors, while S100A8/A9+/iNOS+ phenotypes were enriched in less aggressive subtypes. The findings were consistent across species, reinforcing the relevance of canine models. Our results identify macrophage–collagen interactions as critical determinants of tumor aggressiveness in mammary carcinomas. This study bridges comparative oncology and translational research by proposing immune–ECM signatures as potential prognostic biomarkers and therapeutic targets. These insights contribute to the advancement of molecular oncology in Brazil by supporting innovative strategies that integrate immune modulation and matrix-targeted interventions in breast cancer. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Brazil, 3rd Edition)
Show Figures

Figure 1

Back to TopTop