Lipid Metabolism Reprogramming in Cancer: Insights into Tumor Cells and Immune Cells Within the Tumor Microenvironment
Abstract
1. Introduction
2. The Overall Framework of Lipid Metabolism
3. Lipid Metabolism Reprogramming in Cancer Cells
3.1. Shared Enzymes and Transporters During the Lipid Metabolism Reprogramming
3.2. Lipid Metabolism Reprogramming-Related Cancer Genes
3.3. Lipid Metabolism Reprogramming-Related Non-Coding RNAs (NcRNAs)
4. Lipid Metabolism of Immune Cells in Tumor Microenvironment
4.1. DCs
4.2. T Cells
4.2.1. Dynamic Energy Supply
4.2.2. Signal Transduction and Membrane Molecule
4.2.3. Subgroup Differentiation and Anti-Tumor Function
4.3. TAMs
4.4. TANs
4.5. NKs
5. The Influence of Lipid Metabolism Genes and Metabolites on the Diagnosis and Prognosis of Tumors
5.1. Genes and Metabolites Related to Lipid Metabolism
5.2. Prognostic Models Based on Lipid Metabolism
5.3. Advantages and Challenges for Lipid Metabolism Indicators
6. Tumor Therapeutic Strategies Targeting Lipid Metabolism Reprogramming
6.1. Targeting Lipid Metabolism Molecules, Mitochondria, and Lipid Metabolism Reprogramming-Related NcRNAs
6.2. Chemotherapy and Immunotherapy
6.3. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
6.4. Chinese Herbal Medicines
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in the Body. J. Gen. Physiol. 1927, 8, 519–530. [Google Scholar] [CrossRef]
- Granchi, C. ATP citrate lyase (Acly) Inhibitors: An Anti-Cancer Strategy at the Crossroads of Glucose and Lipid Metabolism. Eur. J. Med. Chem. 2018, 157, 1276–1291. [Google Scholar] [CrossRef]
- Hirsch, H.A.; Iliopoulos, D.; Joshi, A.; Zhang, Y.; Jaeger, S.A.; Bulyk, M.; Tsichlis, P.N.; Liu, X.S.; Struhl, K. A Transcriptional Signature and Common Gene Networks Link Cancer with Lipid Metabolism and Diverse Human Diseases. Cancer Cell 2010, 17, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr.; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A Comprehensive Classification System for Lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.E.; Hur, J.; Hong, E.B.; Choi, J.I.; Yang, J.M.; Kim, J.Y.; Kim, Y.C.; Cho, H.J.; Peters, J.M.; et al. M-Csf from Cancer Cells Induces Fatty Acid Synthase and Pparβ/δ Activation in Tumor Myeloid Cells, Leading to Tumor Progression. Cell Rep. 2015, 10, 1614–1625. [Google Scholar] [CrossRef]
- Wang, G.; Xu, J.; Zhao, J.; Yin, W.; Liu, D.; Chen, W.; Hou, S.X. Arf1-Mediated Lipid Metabolism Sustains Cancer Cells and Its Ablation Induces Anti-Tumor Immune Responses in Mice. Nat. Commun. 2020, 11, 220. [Google Scholar] [CrossRef]
- Li, H.; Feng, Z.; He, M.L. Lipid Metabolism Alteration Contributes to and Maintains the Properties of Cancer Stem Cells. Theranostics 2020, 10, 7053–7069. [Google Scholar] [CrossRef]
- Li, Z.; Kang, Y. Lipid Metabolism Fuels Cancer’s Spread. Cell Metab. 2017, 25, 228–230. [Google Scholar] [CrossRef]
- de Visser, K.E.; Joyce, J.A. The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Pascual, G.; Majem, B.; Benitah, S.A. Targeting Lipid Metabolism in Cancer Metastasis. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189051. [Google Scholar] [CrossRef]
- Lei, X.; Lei, Y.; Li, J.K.; Du, W.X.; Li, R.G.; Yang, J.; Li, J.; Li, F.; Tan, H.B. Immune Cells within the Tumor Microenvironment: Biological Functions and Roles in Cancer Immunotherapy. Cancer Lett. 2020, 470, 126–133. [Google Scholar] [CrossRef]
- Zhang, Y.; Kurupati, R.; Liu, L.; Zhou, X.Y.; Zhang, G.; Hudaihed, A.; Filisio, F.; Giles-Davis, W.; Xu, X.; Karakousis, G.C.; et al. Enhancing Cd8(+) T Cell Fatty Acid Catabolism Within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell 2017, 32, 377–391.e9. [Google Scholar] [CrossRef] [PubMed]
- Kooshan, Z.; Cárdenas-Piedra, L.; Clements, J.; Batra, J. Glycolysis, the Sweet Appetite of the Tumor Microenvironment. Cancer Lett. 2024, 600, 217156. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Lei, Q.; Yang, L.; Qin, G.; Liu, S.; Wang, D.; Ping, Y.; Zhang, Y. Contradictory Roles of Lipid Metabolism in Immune Response within the Tumor Microenvironment. J. Hematol. Oncol. 2021, 14, 187. [Google Scholar] [CrossRef] [PubMed]
- Maran, L.; Hamid, A.; Hamid, S.B.S. Lipoproteins as Markers for Monitoring Cancer Progression. J. Lipids 2021, 2021, 8180424. [Google Scholar] [CrossRef]
- Vasan, N.; Baselga, J.; Hyman, D.M. A View on Drug Resistance in Cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef]
- Terry, A.R.; Hay, N. Emerging Targets in Lipid Metabolism for Cancer Therapy. Trends Pharmacol. Sci. 2024, 45, 537–551. [Google Scholar] [CrossRef]
- Cao, Y. Adipocyte and Lipid Metabolism in Cancer Drug Resistance. J. Clin. Investig. 2019, 129, 3006–3017. [Google Scholar] [CrossRef]
- Cheng, Z.; Fobian, S.F.; Gurrieri, E.; Amin, M.; D’Agostino, V.G.; Falahati, M.; Zalba, S.; Debets, R.; Garrido, M.J.; Saeed, M.; et al. Lipid-based nanosystems: The Next Generation of Cancer Immune Therapy. J. Hematol. Oncol. 2024, 17, 53. [Google Scholar] [CrossRef]
- Rubin, E.H.; Allen, J.D.; Nowak, J.A.; Bates, S.E. Developing Precision Medicine in a Global World. Clin. Cancer Res. 2014, 20, 1419–1427. [Google Scholar] [CrossRef]
- Pietrocola, F.; Galluzzi, L.; Bravo-San Pedro, J.M.; Madeo, F.; Kroemer, G. Acetyl Coenzyme A: A Central Metabolite and Second Messenger. Cell Metab. 2015, 21, 805–821. [Google Scholar] [CrossRef]
- Xu, R.; Molenaar, A.J.; Chen, Z.; Yuan, Y. Mode and Mechanism of Action of Omega-3 and Omega-6 Unsaturated Fatty Acids in Chronic Diseases. Nutrients 2025, 17, 1540. [Google Scholar] [CrossRef]
- Yan, D.; Hou, Y.; Lei, X.; Xiao, H.; Zeng, Z.; Xiong, W.; Fan, C. The Impact of Polyunsaturated Fatty Acids in Cancer and Therapeutic Strategies. Curr. Nutr. Rep. 2025, 14, 46. [Google Scholar] [CrossRef]
- Luo, J.; Yang, H.; Song, B.L. Mechanisms and Regulation of Cholesterol Homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Houten, S.M.; Violante, S.; Ventura, F.V.; Wanders, R.J. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu. Rev. Physiol. 2016, 78, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Marino, N.; German, R.; Rao, X.; Simpson, E.; Liu, S.; Wan, J.; Liu, Y.; Sandusky, G.; Jacobsen, M.; Stoval, M.; et al. Upregulation of Lipid Metabolism Genes in the Breast Prior to Cancer Diagnosis. npj Breast Cancer 2020, 6, 50. [Google Scholar] [CrossRef]
- Wang, J.; Millstein, J.; Yang, Y.; Stintzing, S.; Arai, H.; Battaglin, F.; Kawanishi, N.; Soni, S.; Zhang, W.; Mancao, C.; et al. Impact of Genetic Variants Involved in the Lipid Metabolism Pathway on Progression Free Survival in Patients Receiving Bevacizumab-Based Chemotherapy In Metastatic Colorectal Cancer: A Retrospective Analysis of FIRE-3 and Mavericc Trials. eClinicalMedicine 2023, 57, 101827. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Jeong, D.W.; Park, J.W.; Lee, K.W.; Fukuda, J.; Chun, Y.S. Fatty-Acid-Induced FABP5/HIF-1 Reprograms Lipid Metabolism and Enhances the Proliferation of Liver Cancer Cells. Commun. Biol. 2020, 3, 638. [Google Scholar] [CrossRef]
- Liu, P.; Fan, B.; Othmane, B.; Hu, J.; Li, H.; Cui, Y.; Ou, Z.; Chen, J.; Zu, X. m(6)A-induced lncDBET Promotes the Malignant Progression of Bladder Cancer Through FABP5-Mediated Lipid Metabolism. Theranostics 2022, 12, 6291–6307. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, P.; Liu, W.; Liu, G.; Zhang, J.; Yan, M.; Duan, Y.; Yang, N. A Positive Feedback Loop Between ZEB2 and ACSL4 Regulates Lipid Metabolism to Promote Breast Cancer Metastasis. eLife 2023, 12, RP87510. [Google Scholar] [CrossRef]
- Okada, N.; Ueki, C.; Shimazaki, M.; Tsujimoto, G.; Kohno, S.; Muranaka, H.; Yoshikawa, K.; Takahashi, C. NFYA Promotes Malignant Behavior of Triple-Negative Breast Cancer in Mice Through the Regulation of Lipid Metabolism. Commun. Biol. 2023, 6, 596. [Google Scholar] [CrossRef]
- Piccinin, E.; Cariello, M.; Moschetta, A. Lipid Metabolism in Colon Cancer: Role of Liver X Receptor (LXR) and Stearoyl-CoA Desaturase 1 (SCD1). Mol. Asp. Med. 2021, 78, 100933. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.L.; Ro, S.W. Making cancer fat: Reprogramming of Lipid Metabolism by CD147 in Hepatocellular Carcinoma. Chin. J. Cancer Res. 2016, 28, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Bu, Y.; Feng, J.; Zhang, H.; Chen, Y.; Yang, G.; Liu, Z.; Yuan, H.; Yuan, Y.; Liu, L.; et al. SPIN1 Triggers Abnormal Lipid Metabolism and Enhances Tumor Growth in Liver Cancer. Cancer Lett. 2020, 470, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhao, N.; Cai, P.; Hou, M.; Yang, S.; Zheng, B.; Ma, Q.; Jiang, J.; Gai, X.; Mao, Y.; et al. Active AKT2 Stimulation of SREBP1/SCD1-Mediated Lipid Metabolism Boosts Hepatosteatosis and Cancer. Transl. Res. 2024, 268, 51–62. [Google Scholar] [CrossRef]
- Han, C.; Hu, C.; Liu, T.; Sun, Y.; Hu, F.; He, Y.; Zhang, J.; Chen, J.; Ding, J.; Fan, J.; et al. IGF2BP3 Enhances Lipid Metabolism in Cervical Cancer by Upregulating the Expression of SCD. Cell Death Dis. 2024, 15, 138. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Meng, X.; Wang, W.; Duan, F.; Chen, S.; Zhang, Y.; Sheng, Z.; Gao, Y.; Zhou, L. METTL16 Inhibits Papillary Thyroid Cancer Tumorigenicity Through m(6)A/YTHDC2/SCD1-Regulated Lipid Metabolism. Cell. Mol. Life Sci. 2024, 81, 81. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, H.; Chen, Z.; Yan, M.; Lu, C.; Xu, Z.; Li, Z. Helicobacter Pylori Promotes Gastric Cancer Through CagA-Mediated Mitochondrial Cholesterol Accumulation by Targeting CYP11A1 Redistribution. Int. J. Biol. Sci. 2024, 20, 4007–4028. [Google Scholar] [CrossRef]
- Sandor, L.F.; Huh, J.B.; Benko, P.; Hiraga, T.; Poliska, S.; Dobo-Nagy, C.; Simpson, J.P.; Homer, N.Z.M.; Mahata, B.; Gyori, D.S. De Novo Steroidogenesis in Tumor Cells Drives Bone Metastasis and Osteoclastogenesis. Cell Rep. 2024, 43, 113936. [Google Scholar] [CrossRef]
- Michmerhuizen, A.R.; Chandler, B.; Olsen, E.; Wilder-Romans, K.; Moubadder, L.; Liu, M.; Pesch, A.M.; Zhang, A.; Ritter, C.; Ward, S.T.; et al. Seviteronel, a Novel CYP17 Lyase Inhibitor and Androgen Receptor Antagonist, Radiosensitizes AR-Positive Triple Negative Breast Cancer Cells. Front. Endocrinol. 2020, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Gucalp, A.; DaCosta, N.; Gabrail, N.; Danso, M.; Ali, H.; Blackwell, K.L.; Carey, L.A.; Eisner, J.R.; Baskin-Bey, E.S.; et al. Phase 1 Study of Seviteronel, a Selective CYP17 Lyase and Androgen Receptor Inhibitor, in Women with Estrogen Receptor-Positive or Triple-Negative Breast Cancer. Breast Cancer Res. Treat. 2018, 171, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chung, Y.M.; Patel, M.; Sharifi, N. HSD3B1 Upregulation via LRH1 Sustains Estrogen Receptor Signaling and Promotes Endocrine Resistance in Breast Cancer. J. Biol. Chem. 2025, 301, 110405. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Q.M.; Du, P.C.; Ning, D.; Mo, J.; Zhu, H.D.; Wang, C.; Ge, Q.Y.; Cheng, Q.; Zhang, X.W.; et al. Type-2 11β-Hydroxysteroid Dehydrogenase Promotes the Metastasis of Colorectal Cancer via the Fgfbp1-AKT Pathway. Am. J. Cancer Res. 2020, 10, 662–673. [Google Scholar]
- Xu, Z.; Ma, T.; Zhou, J.; Gao, W.; Li, Y.; Yu, S.; Wang, Y.; Chan, F.L. Nuclear Receptor ERRα Contributes to Castration-Resistant Growth of Prostate Cancer via Its Regulation of Intratumoral Androgen Biosynthesis. Theranostics 2020, 10, 4201–4216. [Google Scholar] [CrossRef]
- Norris, J.D.; Ellison, S.J.; Baker, J.G.; Stagg, D.B.; Wardell, S.E.; Park, S.; Alley, H.M.; Baldi, R.M.; Yllanes, A.; Andreano, K.J.; et al. Androgen Receptor Antagonism Drives Cytochrome P450 17A1 Inhibitor Efficacy in Prostate Cancer. J. Clin. Investig. 2017, 127, 2326–2338. [Google Scholar] [CrossRef]
- Grasso, C.S.; Cani, A.K.; Hovelson, D.H.; Quist, M.J.; Douville, N.J.; Yadati, V.; Amin, A.M.; Nelson, P.S.; Betz, B.L.; Liu, C.J.; et al. Integrative Molecular Profiling of Routine Clinical Prostate Cancer Specimens. Ann. Oncol. 2015, 26, 1110–1118. [Google Scholar] [CrossRef]
- Qiu, Y. A Phosphorylation Switch Controls Androgen Biosynthesis in Prostate Cancer. J. Clin. Investig. 2023, 133, e166499. [Google Scholar] [CrossRef]
- Hu, Z.; Cheng, C.; Wang, Y.; Chen, T.; Tu, J.; Niu, C.; Xing, R.; Wang, Y.; Xu, Y. Synergistic Effect of Statins and Abiraterone Acetate on the Growth Inhibition of Neuroblastoma via Targeting Androgen Receptor. Front. Oncol. 2021, 11, 595285. [Google Scholar] [CrossRef]
- Nakamura, Y.; Maekawa, T.; Felizola, S.J.; Satoh, F.; Qi, X.; Velarde-Miranda, C.; Plonczynski, M.W.; Ise, K.; Kikuchi, K.; Rainey, W.E.; et al. Adrenal CYP11B1/2 Expression in Primary Aldosteronism: Immunohistochemical Analysis Using Novel Monoclonal Antibodies. Mol. Cell. Endocrinol. 2014, 392, 73–79. [Google Scholar] [CrossRef]
- Wang, Z.; Chao, Z.; Wang, Q.; Zou, F.; Song, T.; Xu, L.; Ning, J.; Cheng, F. EXO1/P53/SREBP1 Axis-Regulated Lipid Metabolism Promotes Prostate Cancer Progression. J. Transl. Med. 2024, 22, 104. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Y.; Yang, Q.; Jiang, Y.Y.; Yang, W.; Jiang, Y.; Li, X.; Hazawa, M.; Zhou, B.; Huang, G.W.; Xu, X.E.; et al. Interplay and Cooperation Between SREBF1 and Master Transcription Factors Regulate Lipid Metabolism and Tumor-Promoting Pathways in Squamous Cancer. Nat. Commun. 2021, 12, 4362. [Google Scholar] [CrossRef] [PubMed]
- Tu, R.H.; Wu, S.Z.; Huang, Z.N.; Zhong, Q.; Ye, Y.H.; Zheng, C.H.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; et al. Neurotransmitter Receptor HTR2B Regulates Lipid Metabolism to Inhibit Ferroptosis in Gastric Cancer. Cancer Res. 2023, 83, 3868–3885. [Google Scholar] [CrossRef]
- Zhao, M.; Yuan, H.; Yang, G.; Wang, Y.; Bu, Y.; Zhang, H.; Zhao, L.; Lv, P.; Yun, H.; Geng, Y.; et al. Tumour Cell-Expressed PD-L1 Reprograms Lipid Metabolism via EGFR/ITGB4/SREBP1c Signalling in Liver Cancer. JHEP Rep. 2024, 6, 101009. [Google Scholar] [CrossRef]
- Cristea, S.; Coles, G.L.; Hornburg, D.; Gershkovitz, M.; Arand, J.; Cao, S.; Sen, T.; Williamson, S.C.; Kim, J.W.; Drainas, A.P.; et al. The MEK5-ERK5 Kinase Axis Controls Lipid Metabolism in Small-Cell Lung Cancer. Cancer Res. 2020, 80, 1293–1303. [Google Scholar] [CrossRef]
- Wen, Z.; Jiang, R.; Huang, Y.; Wen, Z.; Rui, D.; Liao, X.; Ling, Z. Inhibition of Lung Cancer Cells and Ras/Raf/MEK/ERK Signal Transduction by Ectonucleoside Triphosphate Phosphohydrolase-7 (ENTPD7). Respir. Res. 2019, 20, 194. [Google Scholar] [CrossRef]
- Rozeveld, C.N.; Johnson, K.M.; Zhang, L.; Razidlo, G.L. KRAS Controls Pancreatic Cancer Cell Lipid Metabolism and Invasive Potential through the Lipase HSL. Cancer Res. 2020, 80, 4932–4945. [Google Scholar] [CrossRef]
- Ni, Y.; Yang, Y.; Ran, J.; Zhang, L.; Yao, M.; Liu, Z.; Zhang, L. miR-15a-5p Inhibits Metastasis and Lipid Metabolism by Suppressing Histone Acetylation in Lung Cancer. Free Radic. Biol. Med. 2020, 161, 150–162. [Google Scholar] [CrossRef]
- Yang, Q.; Kong, S.; Yu, J.; Xu, Y.; Tao, M.; Ma, S.; Tang, C.; Shen, X.; Tang, Z.; Ju, S. MicroRNA miR-1275 Coordinately Regulates AEA/LPA Signals via Targeting FAAH in Lipid Metabolism Reprogramming of Gastric Cancer. Cell Death Dis. 2023, 14, 62. [Google Scholar] [CrossRef]
- Qin, Y.; Hou, Y.; Liu, S.; Zhu, P.; Wan, X.; Zhao, M.; Peng, M.; Zeng, H.; Li, Q.; Jin, T.; et al. A Novel Long Non-Coding RNA lnc030 Maintains Breast Cancer Stem Cell Stemness by Stabilizing SQLE mRNA and Increasing Cholesterol Synthesis. Adv. Sci. 2021, 8, 2002232. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Fang, L.; Wang, L.; Liu, H.; Tian, H.; Zheng, Y.; Fan, T.; He, J. Lipid Metabolism-Related LncRNA SLC25A21-AS1 Promotes the Progression of Oesophageal Squamous Cell Carcinoma by Regulating the NPM1/c-Myc Axis and SLC25A21 Expression. Clin. Transl. Med. 2022, 12, e944. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Chen, Y.; Shi, L.; Han, X.; Xie, J.C.; Chen, Y.; Xiang, M.; Li, B.W.; Li, J.; Xing, H.R.; et al. A novel Lung Cancer Stem Cell Extracellular Vesicles lncRNA ROLLCSC Modulate Non-Stemness Cancer Cell Plasticity Through miR-5623-3p and miR-217-5p Targeting Lipid Metabolism. Int. J. Biol. Macromol. 2024, 256, 128412. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Torres, A.; Henry, R.A.; Trefely, S.; Wallace, M.; Lee, J.V.; Carrer, A.; Sengupta, A.; Campbell, S.L.; Kuo, Y.M.; et al. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch. Cell Rep. 2016, 17, 1037–1052. [Google Scholar] [CrossRef] [PubMed]
- Guertin, D.A.; Wellen, K.E. Acetyl-CoA Metabolism in Cancer. Nat. Rev. Cancer 2023, 23, 156–172. [Google Scholar] [CrossRef]
- Duan, J.; Wang, Z.; Duan, R.; Yang, C.; Zhao, R.; Feng, Q.; Qin, Y.; Jiang, J.; Gu, S.; Lv, K.; et al. Therapeutic Targeting of Hepatic ACSL4 Ameliorates NASH in Mice. Hepatology 2022, 75, 140–153. [Google Scholar] [CrossRef]
- Newberry, P.D. Unsaturated Fat and Cancer. Lancet 1971, 2, 322. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. SATURATED FAT, Carbohydrate, and Cardiovascular Disease. Am. J. Clin. Nutr. 2010, 91, 502–509. [Google Scholar] [CrossRef]
- Hankin, J.H.; Zhao, L.P.; Wilkens, L.R.; Kolonel, L.N. Attributable risk of Breast, Prostate, and Lung Cancer in Hawaii due to Saturated Fat. Cancer Causes Control 1992, 3, 17–23. [Google Scholar] [CrossRef]
- Lawrence, G.D. Perspective: The Saturated Fat-Unsaturated Oil Dilemma: Relations of Dietary Fatty Acids and Serum Cholesterol, Atherosclerosis, Inflammation, Cancer, and All-Cause Mortality. Adv. Nutr. 2021, 12, 647–656. [Google Scholar] [CrossRef]
- Buckley, D.; Duke, G.; Heuer, T.S.; O’Farrell, M.; Wagman, A.S.; McCulloch, W.; Kemble, G. Fatty Acid Synthase—Modern Tumor Cell Biology Insights Into a Classical Oncology Target. Pharmacol. Ther. 2017, 177, 23–31. [Google Scholar] [CrossRef]
- Sun, Q.; Xing, X.; Wang, H.; Wan, K.; Fan, R.; Liu, C.; Wang, Y.; Wu, W.; Wang, Y.; Wang, R. SCD1 Is the Critical Signaling Hub to Mediate Metabolic Diseases: Mechanism and the Development of Its Inhibitors. Biomed. Pharmacother. 2024, 170, 115586. [Google Scholar] [CrossRef]
- Horton, J.D.; Shah, N.A.; Warrington, J.A.; Anderson, N.N.; Park, S.W.; Brown, M.S.; Goldstein, J.L. Combined Analysis of Oligonucleotide Microarray Data from Transgenic and Knockout Mice Identifies Direct SREBP Target Genes. Proc. Natl. Acad. Sci. USA 2003, 100, 12027–12032. [Google Scholar] [CrossRef] [PubMed]
- Nohturfft, A.; Zhang, S.C. Coordination of Lipid Metabolism in Membrane Biogenesis. Annu. Rev. Cell Dev. Biol. 2009, 25, 539–566. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Ide, T.; Shimano, H.; Yahagi, N.; Amemiya-Kudo, M.; Matsuzaka, T.; Yatoh, S.; Kitamine, T.; Okazaki, H.; Tamura, Y.; et al. Cross-talk Between Peroxisome Proliferator-Activated Receptor (PPAR) Alpha and Liver X Receptor (LXR) in Nutritional Regulation of Fatty Acid Metabolism. I. PPARs Suppress Sterol Regulatory Element Binding Protein-1c Promoter Through Inhibition of LXR Signaling. Mol. Endocrinol. 2003, 17, 1240–1254. [Google Scholar] [CrossRef] [PubMed]
- Castagnetta, L.; Granata, O.M.; Cocciadiferro, L.; Saetta, A.; Polito, L.; Bronte, G.; Rizzo, S.; Campisi, I.; Agostara, B.; Carruba, G. Sex Steroids, Carcinogenesis, and Cancer Progression. Ann. N. Y. Acad. Sci. 2004, 1028, 233–246. [Google Scholar] [CrossRef]
- Ahmad, N.; Kumar, R. Steroid Hormone Receptors in Cancer Development: A Target for Cancer Therapeutics. Cancer Lett. 2011, 300, 1–9. [Google Scholar] [CrossRef]
- Cazorla-Saravia, P.; Pereyra-Elías, R. Is It the Creatine or the Anabolic Androgenic Steroids? Need for Assessing the Steroids Role in Testicular Cancer. Br. J. Cancer 2015, 113, 1638. [Google Scholar] [CrossRef]
- Uchida, T.; Nishimoto, K.; Fukumura, Y.; Asahina, M.; Goto, H.; Kawano, Y.; Shimizu, F.; Tsujimura, A.; Seki, T.; Mukai, K.; et al. Disorganized Steroidogenesis in Adrenocortical Carcinoma, a Case Study. Endocr. Pathol. 2017, 28, 27–35. [Google Scholar] [CrossRef]
- He, D.; Zhang, L.; Yu, L.; Zhang, Y.; Chen, J.; Wang, L.; Hu, H.; Liu, H.; Zheng, H.; Xia, J.; et al. Fine Structural Design of 3βHSD1 Inhibitors for Prostate Cancer Therapy. Proc. Natl. Acad. Sci. USA 2025, 122, e2422267122. [Google Scholar] [CrossRef]
- Todd, R.; Wong, D.T. Oncogenes. Anticancer Res. 1999, 19, 4729–4746. [Google Scholar] [PubMed]
- Dang, C.V.; Lewis, B.C.; Dolde, C.; Dang, G.; Shim, H. Oncogenes in Tumor Metabolism, Tumorigenesis, and Apoptosis. J. Bioenerg. Biomembr. 1997, 29, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Q.; Russo, J. Dysregulation of Glucose Transport, Glycolysis, TCA Cycle and Glutaminolysis by Oncogenes and Tumor Suppressors in Cancer Cells. Biochim. Biophys. Acta 2012, 1826, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Wang, W.J. p53 Regulates Lipid Metabolism in Cancer. Int. J. Biol. Macromol. 2021, 192, 45–54. [Google Scholar] [CrossRef]
- Stratton, S.A.; Barton, M.C. p53-Mediated Regulation of Hepatic Lipid Metabolism: Forging Links Between Metabolism, Atherogenesis, and Cancer. J. Hepatol. 2012, 56, 518–519. [Google Scholar] [CrossRef]
- Morrison, D.K. MAP Kinase Pathways. Cold Spring Harb. Perspect. Biol. 2012, 4, a011254. [Google Scholar] [CrossRef]
- Shang, R.; Lee, S.; Senavirathne, G.; Lai, E.C. microRNAs in Action: Biogenesis, Function and Regulation. Nat. Rev. Genet. 2023, 24, 816–833. [Google Scholar] [CrossRef]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Liu, C.X.; Chen, L.L. Circular RNAs: Characterization, Cellular Roles, and Applications. Cell 2022, 185, 2390. [Google Scholar] [CrossRef]
- Lewis, G.P. Immunoregulatory Activity of Metabolites of Arachidonic Acid and Their Role in Inflammation. Br. Med. Bull. 1983, 39, 243–248. [Google Scholar] [CrossRef]
- Korystov, Y.N.; Shaposhnikova, V.V.; Levitman, M.; Kudryavtsev, A.A.; Kublik, L.N.; Narimanov, A.A.; Orlova, O.E. The Effect of Inhibitors of Arachidonic Acid Metabolism on Proliferation and Death of Tumor Cells. FEBS Lett. 1998, 431, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.K.P. A Perspective Review on Fatty Acid Amide Hydrolase (FAAH) Inhibitors as Potential Therapeutic Agents. Eur. J. Med. Chem. 2020, 188, 111953. [Google Scholar] [CrossRef] [PubMed]
- Thomson, D.W.; Dinger, M.E. Endogenous microRNA Sponges: Evidence and Controversy. Nat. Rev. Genet. 2016, 17, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Karreth, F.A.; Pandolfi, P.P. ceRNA Cross-Talk in cancer: When Ce-Bling Rivalries Go Awry. Cancer Discov. 2013, 3, 1113–1121. [Google Scholar] [CrossRef]
- Tan, Y.T.; Lin, J.F.; Li, T.; Li, J.J.; Xu, R.H.; Ju, H.Q. LncRNA-Mediated Posttranslational Modifications and Reprogramming of Energy Metabolism in Cancer. Cancer Commun. 2021, 41, 109–120. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the Tumor Immune Microenvironment (TIME) for Effective Therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef]
- Gao, F.; Liu, C.; Guo, J.; Sun, W.; Xian, L.; Bai, D.; Liu, H.; Cheng, Y.; Li, B.; Cui, J.; et al. Radiation-Driven Lipid Accumulation and Dendritic Cell Dysfunction in Cancer. Sci. Rep. 2015, 5, 9613. [Google Scholar] [CrossRef]
- Kobayashi, S.; Wannakul, T.; Sekino, K.; Takahashi, Y.; Kagawa, Y.; Miyazaki, H.; Umaru, B.A.; Yang, S.; Yamamoto, Y.; Owada, Y. Fatty Acid-Binding Protein 5 LIMITS the Generation of Foxp3(+) Regulatory T Cells Through Regulating Plasmacytoid Dendritic Cell Function in the Tumor Microenvironment. Int. J. Cancer 2022, 150, 152–163. [Google Scholar] [CrossRef]
- Gardner, J.K.; Mamotte, C.D.; Patel, P.; Yeoh, T.L.; Jackaman, C.; Nelson, D.J. Mesothelioma Tumor Cells Modulate Dendritic Cell Lipid Content, Phenotype and Function. PLoS ONE 2015, 10, e0123563. [Google Scholar] [CrossRef]
- Liang, W.; Yi, R.; Wang, W.; Shi, Y.; Zhang, J.; Xu, X.; Wang, Q.; Liu, M.; Wang, F. Enhancing the Antitumor Immunity of T Cells by Engineering the Lipid-Regulatory Site of the TCR/CD3 Complex. Cancer Immunol. Res. 2023, 11, 93–108. [Google Scholar] [CrossRef]
- Hibino, S.; Eto, S.; Hangai, S.; Endo, K.; Ashitani, S.; Sugaya, M.; Osawa, T.; Soga, T.; Taniguchi, T.; Yanai, H. Tumor Cell-Derived Spermidine Is an Oncometabolite That Suppresses TCR Clustering for Intratumoral CD8(+) T Cell Activation. Proc. Natl. Acad. Sci. USA 2023, 120, e2305245120. [Google Scholar] [CrossRef]
- Hwang, S.H.; Yang, Y.; Jung, J.H.; Kim, J.W.; Kim, Y. Stearoyl-CoA Desaturase in CD4(+) T Cells Suppresses Tumor Growth Through Activation of the CXCR3/CXCL11 Axis in CD8(+) T Cells. Cell Biosci. 2024, 14, 137. [Google Scholar] [CrossRef]
- Nava Lauson, C.B.; Tiberti, S.; Corsetto, P.A.; Conte, F.; Tyagi, P.; Machwirth, M.; Ebert, S.; Loffreda, A.; Scheller, L.; Sheta, D.; et al. Linoleic Acid Potentiates CD8(+) T Cell Metabolic Fitness and Antitumor Immunity. Cell Metab. 2023, 35, 633–650.e639. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, W.; Zhang, Z.; Zhang, H.; Zhu, P.; He, R.; Wu, M.; Zhou, T.; Jiang, Y.; Jiang, L.; et al. Distinctly Altered Lipid Components in Hepatocellular Carcinoma Relate to Impaired T Cell-Dependent Antitumor Immunity. Hepatol. Int. 2024, 18, 582–594. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Shen, X.; Jin, W.; Song, C.; Dong, M.; Zhou, Z.; Wang, X. Elucidating the Role of S100A10 in CD8(+) T Cell Exhaustion and HCC Immune Escape via the cPLA2 and 5-LOX Axis. Cell Death Dis. 2024, 15, 573. [Google Scholar] [CrossRef] [PubMed]
- Kloosterman, D.J.; Erbani, J.; Boon, M.; Farber, M.; Handgraaf, S.M.; Ando-Kuri, M.; Sánchez-López, E.; Fontein, B.; Mertz, M.; Nieuwland, M.; et al. Macrophage-Mediated Myelin Recycling Fuels Brain Cancer Malignancy. Cell 2024, 187, 5336–5356.e5330. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, M.E.; Radyk, M.D.; Perricone, M.D.; Elhossiny, A.M.; Harold, A.C.; Medina-Cabrera, P.I.; Kadiyala, P.; Shi, J.; Frankel, T.L.; Carpenter, E.S.; et al. Metabolic Landscape of the Healthy Pancreas and Pancreatic Tumor Microenvironment. JCI Insight 2024, 9, e180114. [Google Scholar] [CrossRef]
- Governa, V.; de Oliveira, K.G.; Bång-Rudenstam, A.; Offer, S.; Cerezo-Magaña, M.; Li, J.; Beyer, S.; Johansson, M.C.; Månsson, A.S.; Edvardsson, C.; et al. Protumoral Lipid Droplet-Loaded Macrophages are Enriched in Human Glioblastoma and Can Be Therapeutically Targeted. Sci. Transl. Med. 2024, 16, eadk1168. [Google Scholar] [CrossRef]
- Wang, S.; Yan, W.; Kong, L.; Zuo, S.; Wu, J.; Zhu, C.; Huang, H.; He, B.; Dong, J.; Wei, J. Oncolytic Viruses Engineered to Enforce Cholesterol Efflux Restore Tumor-Associated Macrophage Phagocytosis and Anti-Tumor Immunity in Glioblastoma. Nat. Commun. 2023, 14, 4367. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, X.; Meng, L.; Dong, K.; Shang, S.; Jiang, T.; Liu, Z.; Gao, H. Single-cell RNA-Sequencing Reveals a Unique Landscape of the Tumor Microenvironment in Obesity-Associated Breast Cancer. Oncogene 2024, 43, 3277–3290. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Qiao, S.; Zou, H.; Yu, X.J.; Yang, Y.; Li, Z.; Wang, J.; Chen, M.S.; Xu, J.; et al. Lipid Droplet Accumulation Mediates Macrophage Survival and Treg Recruitment via the CCL20/CCR6 Axis in Human Hepatocellular Carcinoma. Cell. Mol. Immunol. 2024, 21, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.C.; Tong, Z.J.; Hwang, T.L.; Wei, K.C.; Chen, P.Y.; Huang, C.Y.; Chen, K.T.; Lin, Y.J.; Cheng, H.W.; Wang, H.T. Acrolein Produced by Glioma Cells Under Hypoxia Inhibits Neutrophil AKT Activity and Suppresses Anti-Tumoral Activities. Free Radic. Biol. Med. 2023, 207, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Cosenza-Contreras, M.; Schäfer, A.; Sing, J.; Cook, L.; Stillger, M.N.; Chen, C.Y.; Villacorta Hidalgo, J.; Pinter, N.; Meyer, L.; Werner, T.; et al. Proteometabolomics of Initial and Recurrent Glioblastoma Highlights an Increased Immune Cell Signature with Altered Lipid Metabolism. Neuro-Oncol. 2024, 26, 488–502. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dai, P.; Liu, L.; Chen, Y.; Lu, Y.; Zheng, L.; Wang, H.; Yuan, Q.; Li, X. The Lipid-Metabolism Enzyme ECI2 Reduces Neutrophil Extracellular Traps Formation for Colorectal Cancer Suppression. Nat. Commun. 2024, 15, 7184. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Lu, Y.; Sanchez, D.J.; Li, J.; Wang, L.; Meng, X.; Chen, J.; Kien, T.T.; Zhong, M.; et al. Region-Specific CD16(+) Neutrophils Promote Colorectal Cancer Progression by Inhibiting Natural Killer Cells. Adv. Sci. 2024, 11, e2403414. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, Y.; Sun, S.; Tong, X.; Chen, Y.; Tang, S.; Wang, X.; Bi, S.; Qiu, Y.; Zhao, Q.; et al. TET2-STAT3-CXCL5 Nexus Promotes Neutrophil Lipid Transfer to Fuel Lung Adeno-to-Squamous Transition. J. Exp. Med. 2024, 221, e20240111. [Google Scholar] [CrossRef]
- Dahal, A.; Hong, Y.; Mathew, J.S.; Geber, A.; Eckl, S.; Renner, S.; Sailer, C.J.; Ryan, A.T.; Mir, S.; Lim, K.; et al. Platelet-Activating Factor (PAF) Promotes Immunosuppressive Neutrophil Differentiation within Tumors. Proc. Natl. Acad. Sci. USA 2024, 121, e2406748121. [Google Scholar] [CrossRef]
- Niavarani, S.R.; Lawson, C.; Bakos, O.; Boudaud, M.; Batenchuk, C.; Rouleau, S.; Tai, L.H. Lipid Accumulation Impairs Natural Killer Cell Cytotoxicity and Tumor Control in the Postoperative Period. BMC Cancer 2019, 19, 823. [Google Scholar] [CrossRef]
- Jiao, D.; Sun, R.; Ren, X.; Wang, Y.; Tian, P.; Wang, Y.; Yuan, D.; Yue, X.; Wu, Z.; Li, C.; et al. Lipid Accumulation-Mediated Histone Hypoacetylation Drives Persistent NK Cell Dysfunction in Anti-Tumor Immunity. Cell Rep. 2023, 42, 113211. [Google Scholar] [CrossRef]
- Qin, W.H.; Yang, Z.S.; Li, M.; Chen, Y.; Zhao, X.F.; Qin, Y.Y.; Song, J.Q.; Wang, B.B.; Yuan, B.; Cui, X.L.; et al. High Serum Levels of Cholesterol Increase Antitumor Functions of Nature Killer Cells and Reduce Growth of Liver Tumors in Mice. Gastroenterology 2020, 158, 1713–1727. [Google Scholar] [CrossRef]
- Kühn, H.; O’Donnell, V.B. Inflammation and Immune Regulation by 12/15-Lipoxygenases. Prog. Lipid Res. 2006, 45, 334–356. [Google Scholar] [CrossRef]
- Rothe, T.; Gruber, F.; Uderhardt, S.; Ipseiz, N.; Rössner, S.; Oskolkova, O.; Blüml, S.; Leitinger, N.; Bicker, W.; Bochkov, V.N.; et al. 12/15-Lipoxygenase-Mediated Enzymatic Lipid Oxidation Regulates DC Maturation and Function. J. Clin. Investig. 2015, 125, 1944–1954. [Google Scholar] [CrossRef]
- Herber, D.L.; Cao, W.; Nefedova, Y.; Novitskiy, S.V.; Nagaraj, S.; Tyurin, V.A.; Corzo, A.; Cho, H.I.; Celis, E.; Lennox, B.; et al. Lipid Accumulation and Dendritic Cell Dysfunction in Cancer. Nat. Med. 2010, 16, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Trempolec, N.; Degavre, C.; Doix, B.; Brusa, D.; Corbet, C.; Feron, O. Acidosis-Induced TGF-β2 Production Promotes Lipid Droplet Formation in Dendritic Cells and Alters Their Potential to Support Anti-Mesothelioma T Cell Response. Cancers 2020, 12, 1284. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, J.; Nguyen, A.H.; Rehman, A.; Ochi, A.; Jamal, M.; Graffeo, C.S.; Henning, J.R.; Zambirinis, C.P.; Fallon, N.C.; Barilla, R.; et al. Dendritic Cell Populations with Different Concentrations of Lipid Regulate Tolerance and Immunity in Mouse and Human Liver. Gastroenterology 2012, 143, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Lukacs-Kornek, V.; Schuppan, D. Dendritic Cells in Liver Injury and Fibrosis: Shortcomings and Promises. J. Hepatol. 2013, 59, 1124–1126. [Google Scholar] [CrossRef]
- Cheng, S.; Li, Z.; Gao, R.; Xing, B.; Gao, Y.; Yang, Y.; Qin, S.; Zhang, L.; Ouyang, H.; Du, P.; et al. A Pan-Cancer Single-Cell Transcriptional Atlas of Tumor Infiltrating Myeloid Cells. Cell 2021, 184, 792–809.e723. [Google Scholar] [CrossRef]
- Chen, I.C.; Awasthi, D.; Hsu, C.L.; Song, M.; Chae, C.S.; Dannenberg, A.J.; Cubillos-Ruiz, J.R. High-Fat Diet-Induced Obesity Alters Dendritic Cell Homeostasis by Enhancing Mitochondrial Fatty Acid Oxidation. J. Immunol. 2022, 209, 69–76. [Google Scholar] [CrossRef]
- Qin, Y.T.; Liu, X.H.; An, J.X.; Liang, J.L.; Li, C.X.; Jin, X.K.; Ji, P.; Zhang, X.Z. Dendritic Cell-Based In Situ Nanovaccine for Reprogramming Lipid Metabolism to Boost Tumor Immunotherapy. ACS Nano 2023, 17, 24947–24960. [Google Scholar] [CrossRef]
- Raccosta, L.; Marinozzi, M.; Costantini, S.; Maggioni, D.; Ferreira, L.M.; Corna, G.; Zordan, P.; Sorice, A.; Farinello, D.; Bianchessi, S.; et al. Harnessing the Reverse Cholesterol Transport Pathway to Favor Differentiation of Monocyte-Derived APCs and Antitumor Responses. Cell Death Dis. 2023, 14, 129. [Google Scholar] [CrossRef]
- Marchingo, J.M.; Cantrell, D.A. Protein Synthesis, Degradation, and Energy Metabolism in T cell Immunity. Cell. Mol. Immunol. 2022, 19, 303–315. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, K.; Ma, J.; Zhou, L.; Liu, J.; Zeng, L.; Zhu, L.; Xu, P.; Chen, J.; Wei, K.; et al. Ketogenesis-Generated β-Hydroxybutyrate Is an Epigenetic Regulator of CD8(+) T-Cell Memory Development. Nat. Cell Biol. 2020, 22, 18–25. [Google Scholar] [CrossRef]
- Dong, D.; Zheng, L.; Lin, J.; Zhang, B.; Zhu, Y.; Li, N.; Xie, S.; Wang, Y.; Gao, N.; Huang, Z. Author Correction: Structural Basis of Assembly of the Human T Cell Receptor-CD3 Complex. Nature 2021, 590, E52. [Google Scholar] [CrossRef]
- Rudd, C.E.; Janssen, O.; Cai, Y.C.; da Silva, A.J.; Raab, M.; Prasad, K.V. Two-Step TCR zeta/CD3-CD4 and CD28 Signaling in T Cells: SH2/SH3 Domains, Protein-Tyrosine and Lipid Kinases. Immunol. Today 1994, 15, 225–234. [Google Scholar] [CrossRef]
- Janes, P.W.; Ley, S.C.; Magee, A.I.; Kabouridis, P.S. The Role of Lipid Rafts in T Cell Antigen Receptor (TCR) Signalling. Semin. Immunol. 2000, 12, 23–34. [Google Scholar] [CrossRef]
- Molnár, E.; Swamy, M.; Holzer, M.; Beck-García, K.; Worch, R.; Thiele, C.; Guigas, G.; Boye, K.; Luescher, I.F.; Schwille, P.; et al. Cholesterol and Sphingomyelin Drive Ligand-Independent T-Cell Antigen Receptor Nanoclustering. J. Biol. Chem. 2012, 287, 42664–42674. [Google Scholar] [CrossRef]
- Wang, F.; Beck-García, K.; Zorzin, C.; Schamel, W.W.; Davis, M.M. Inhibition of T Cell Receptor Signaling by Cholesterol Sulfate, A Naturally Occurring Derivative of Membrane Cholesterol. Nat. Immunol. 2016, 17, 844–850. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Y.; Li, X.; Gao, W.; Zhen, Z.; Dong, D.; Huang, B.; Ma, Z.; Zhang, A.; Song, X.; et al. Cholesterol Inhibits TCR Signaling by Directly Restricting TCR-CD3 Core Tunnel Motility. Mol. Cell 2022, 82, 1278–1287.e1275. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.R. Molecular Mechanisms of T Helper Cell Differentiation and Functional Specialization. Immune Netw. 2023, 23, e4. [Google Scholar] [CrossRef] [PubMed]
- Mullen, A.C.; High, F.A.; Hutchins, A.S.; Lee, H.W.; Villarino, A.V.; Livingston, D.M.; Kung, A.L.; Cereb, N.; Yao, T.P.; Yang, S.Y.; et al. Role of T-Bet in Commitment of TH1 Cells Before IL-12-Dependent Selection. Science 2001, 292, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
- Sinigaglia, F.; D’Ambrosio, D.; Panina-Bordignon, P.; Rogge, L. Regulation of the IL-12/IL-12R Axis: A Critical Step in T-Helper Cell Differentiation and Effector Function. Immunol. Rev. 1999, 170, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Chu, J.; Liu, Y.; Sun, L.; Zhou, S.; Li, X.; Ji, C.; Zhang, N.; Guo, X.; Liang, S.; et al. Hepatocellular Carcinoma LINC01116 Outcompetes T Cells for Linoleic Acid and Accelerates Tumor Progression. Adv. Sci. 2024, 11, e2400676. [Google Scholar] [CrossRef] [PubMed]
- Daveri, E.; Vergani, B.; Lalli, L.; Ferrero, G.; Casiraghi, E.; Cova, A.; Zorza, M.; Huber, V.; Gariboldi, M.; Pasanisi, P.; et al. Cancer-Associated Foam Cells Hamper Protective T Cell Immunity and Favor Tumor Progression in Human Colon Carcinogenesis. J. Immunother. Cancer 2024, 12, e009720. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.X.; Huang, H.S.; Dong, S.W.; Chen, J.Y.; Zhang, B.; Li, H.H.; Zhang, T.T.; Xie, Q.; Long, Q.Y.; Yang, Y.; et al. ATP6V0A1-Dependent Cholesterol Absorption in Colorectal Cancer Cells Triggers Immunosuppressive Signaling to Inactivate Memory CD8(+) T Cells. Nat. Commun. 2024, 15, 5680. [Google Scholar] [CrossRef]
- Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 Polarization. Eur. J. Pharmacol. 2020, 877, 173090. [Google Scholar] [CrossRef]
- Shao, N.; Qiu, H.; Liu, J.; Xiao, D.; Zhao, J.; Chen, C.; Wan, J.; Guo, M.; Liang, G.; Zhao, X.; et al. Targeting Lipid Metabolism of Macrophages: A New Strategy for Tumor Therapy. J. Adv. Res. 2024, 68, 99–114. [Google Scholar] [CrossRef]
- Qin, H.; Xiao, A.; Lu, Q.; Li, Y.; Luo, X.; Zheng, E.; Tian, C.; Liu, H.; Zheng, X.; Wei, L.; et al. The Fatty Acid Receptor CD36 Promotes Macrophage Infiltration via p110γ Signaling to Stimulate Metastasis. J. Adv. Res. 2024, 74, 237–253. [Google Scholar] [CrossRef]
- Kazakova, E.; Iamshchikov, P.; Larionova, I.; Kzhyshkowska, J. Macrophage Scavenger Receptors: Tumor Support and Tumor Inhibition. Front. Oncol. 2022, 12, 1096897. [Google Scholar] [CrossRef]
- Jiang, J.; Tu, H.; Li, P. Lipid Metabolism and Neutrophil Function. Cell. Immunol. 2022, 377, 104546. [Google Scholar] [CrossRef]
- Bodac, A.; Meylan, E. Neutrophil Metabolism in the Cancer Context. Semin. Immunol. 2021, 57, 101583. [Google Scholar] [CrossRef]
- Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of Tumor-Associated Neutrophil Phenotype by TGF-Beta: “N1” versus “N2” TAN. Cancer Cell 2009, 16, 183–194. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L. The Pro-Tumor Effect and the Anti-Tumor Effect of Neutrophils Extracellular Traps. Biosci. Trends 2020, 13, 469–475. [Google Scholar] [CrossRef]
- Herro, R.; Grimes, H.L. The Diverse Roles of Neutrophils from Protection to Pathogenesis. Nat. Immunol. 2024, 25, 2209–2219. [Google Scholar] [CrossRef]
- Ng, M.S.F.; Kwok, I.; Tan, L.; Shi, C.; Cerezo-Wallis, D.; Tan, Y.; Leong, K.; Calvo, G.F.; Yang, K.; Zhang, Y.; et al. Deterministic Reprogramming of Neutrophils within Tumors. Science 2024, 383, eadf6493. [Google Scholar] [CrossRef]
- Yan, Q.; Mohammadpour, H. Platelet-Activating Factor: A Potential Therapeutic Target to Improve Cancer Immunotherapy. Mol. Oncol. 2024, 19, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Hillyard, D.Z.; Nutt, C.D.; Thomson, J.; McDonald, K.J.; Wan, R.K.; Cameron, A.J.; Mark, P.B.; Jardine, A.G. Statins Inhibit NK Cell Cytotoxicity by Membrane Raft Depletion Rather than Inhibition of Isoprenylation. Atherosclerosis 2007, 191, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Porter, C.M.; Horvath-Arcidiacono, J.A.; Bloom, E.T. Lipophilic Statins Suppress Cytotoxicity by Freshly Isolated Natural Killer Cells Through Modulation of Granule Exocytosis. Int. Immunol. 2007, 19, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Cholesterol metabolism: A Positive target to Revoke the Function of Exhausted CAR-NK Cells in Tumor Microenvironment. Front. Pharmacol. 2024, 15, 1440869. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.; Schwartz, B. The Relationship Between Nutrition and the Immune System. Front. Nutr. 2022, 9, 1082500. [Google Scholar] [CrossRef]
- Sheppard, S.; Srpan, K.; Lin, W.; Lee, M.; Delconte, R.B.; Owyong, M.; Carmeliet, P.; Davis, D.M.; Xavier, J.B.; Hsu, K.C.; et al. Fatty Acid Oxidation Fuels Natural Killer Cell Responses Against Infection and cancer. Proc. Natl. Acad. Sci. USA 2024, 121, e2319254121. [Google Scholar] [CrossRef]
- Delconte, R.B.; Owyong, M.; Santosa, E.K.; Srpan, K.; Sheppard, S.; McGuire, T.J.; Abbasi, A.; Diaz-Salazar, C.; Chun, J.; Rogatsky, I.; et al. Fasting Reshapes Tissue-Specific Niches to Improve NK Cell-Mediated Anti-Tumor Immunity. Immunity 2024, 57, 1923–1938.e1927. [Google Scholar] [CrossRef]
- Michelet, X.; Dyck, L.; Hogan, A.; Loftus, R.M.; Duquette, D.; Wei, K.; Beyaz, S.; Tavakkoli, A.; Foley, C.; Donnelly, R.; et al. Metabolic Reprogramming of Natural Killer Cells in Obesity Limits Antitumor Responses. Nat. Immunol. 2018, 19, 1330–1340. [Google Scholar] [CrossRef]
- Weichhart, T.; Hengstschläger, M.; Linke, M. Regulation of Innate Immune Cell Function by mTOR. Nat. Rev. Immunol. 2015, 15, 599–614. [Google Scholar] [CrossRef]
- Gong, Z.; Li, Q.; Shi, J.; Liu, E.T.; Shultz, L.D.; Ren, G. Lipid-Laden Lung Mesenchymal Cells Foster Breast Cancer Metastasis via Metabolic Reprogramming of Tumor Cells and Natural Killer Cells. Cell Metab. 2022, 34, 1960–1976.e1969. [Google Scholar] [CrossRef] [PubMed]
- Slattery, K.; Yao, C.H.; Mylod, E.; Scanlan, J.; Scott, B.; Crowley, J.P.; McGowan, O.; McManus, G.; Brennan, M.; O’Brien, K.; et al. Uptake of Lipids from Ascites Drives NK Cell Metabolic Dysfunction in Ovarian Cancer. Sci. Immunol. 2025, 10, eadr4795. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, R.; Rämö, J.T.; Ripatti, P.; Koskela, J.T.; Kurki, M.; Karjalainen, J.; Palta, P.; Hassan, S.; Nunez-Fontarnau, J.; Kiiskinen, T.T.J.; et al. Genetic Architecture of Human Plasma Lipidome and Its Link to Cardiovascular Disease. Nat. Commun. 2019, 10, 4329. [Google Scholar] [CrossRef] [PubMed]
- Kochan, Z.; Szupryczynska, N.; Malgorzewicz, S.; Karbowska, J. Dietary Lipids and Dyslipidemia in Chronic Kidney Disease. Nutrients 2021, 13, 3138. [Google Scholar] [CrossRef]
- Bukowiecka-Matusiak, M.; Chmielewska-Kassassir, M.; Szczesna, D.; Wozniak, L.A. Metabolomic Insight into Lipid and Protein Profile in Diabetes Using Mass Spectrometry. Mini Rev. Med. Chem. 2016, 16, 1167–1174. [Google Scholar] [CrossRef]
- Islam, M.A.; Amin, M.N.; Siddiqui, S.A.; Hossain, M.P.; Sultana, F.; Kabir, M.R. Trans Fatty Acids and Lipid Profile: A Serious Risk Factor to Cardiovascular Disease, Cancer and Diabetes. Diabetes Metab. Syndr. 2019, 13, 1643–1647. [Google Scholar] [CrossRef]
- Castagnoli, L.; Franceschini, A.; Cancila, V.; Dugo, M.; Bigliardi, M.; Chiodoni, C.; Toneguzzo, P.; Regondi, V.; Corsetto, P.A.; Pietrantonio, F.; et al. CD36 Enrichment in HER2-Positive mesenchymal Stem Cells Drives Therapy Refractoriness in Breast Cancer. J. Exp. Clin. Cancer Res. 2025, 44, 19. [Google Scholar] [CrossRef]
- Cataldo, M.L.; De Placido, P.; Esposito, D.; Formisano, L.; Arpino, G.; Giuliano, M.; Bianco, R.; De Angelis, C.; Veneziani, B.M. The effect of the alpha-specific PI3K Inhibitor Alpelisib Combined with Anti-HER2 Therapy in HER2+/PIK3CA Mutant Breast Cancer. Front. Oncol. 2023, 13, 1108242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qiu, X.; Yan, Y.; Liang, Q.; Cai, Y.; Peng, B.; Xu, Z.; Xia, F. Evaluation of Ferroptosis-related Gene AKR1C1 as a Novel Biomarker Associated with the Immune Microenvironment and Prognosis in Breast Cancer. Int. J. Gen. Med. 2021, 14, 6189–6200. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.K.; Lee, H.S.; Park, Y.S.; Lee, J.H.; Lee, S.C.; Lee, J.H.; Lee, S.J.; Shanta, S.R.; Park, H.M.; Kim, H.R.; et al. Lipid MALDI Profile Classifies Non-Small Cell Lung Cancers According to the Histologic Type. Lung Cancer 2012, 76, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, Z.; Zhong, J.; Li, L.; Min, L.; Xu, L.; Li, H.; Zhang, J.; Wu, W.; Dai, L. Simultaneous Quantification of Serum Monounsaturated and Polyunsaturated Phosphatidylcholines as Potential Biomarkers for Diagnosing Non-Small Cell Lung Cancer. Sci. Rep. 2018, 8, 7137. [Google Scholar] [CrossRef]
- Klupczynska, A.; Plewa, S.; Kasprzyk, M.; Dyszkiewicz, W.; Kokot, Z.J.; Matysiak, J. Serum Lipidome Screening in Patients with Stage I Non-Small Cell Lung Cancer. Clin. Exp. Med. 2019, 19, 505–513. [Google Scholar] [CrossRef]
- Ma, C.; Wang, X.; Guo, J.; Liu, P. Prognostic significance of Preopesrative Serum Triglycerides and High-Density Lipoproteins Cholesterol in Patients with Non-Small Cell Lung Cancer: A Retrospective Study. Lipids Health Dis. 2021, 20, 69. [Google Scholar] [CrossRef]
- Wang, G.; Qiu, M.; Xing, X.; Zhou, J.; Yao, H.; Li, M.; Yin, R.; Hou, Y.; Li, Y.; Pan, S.; et al. Lung Cancer scRNA-seq and Lipidomics Reveal Aberrant Lipid Metabolism for Early-Stage Diagnosis. Sci. Transl. Med. 2022, 14, eabk2756. [Google Scholar] [CrossRef]
- Song, J.; Jin, Y.; Yu, Q.; Wu, H.; Gao, X. Impact of Blood Lipid Levels on Breast Cancer Prognosis: A Systematic Review and Meta-Analysis. Front. Oncol. 2025, 15, 1496468. [Google Scholar] [CrossRef]
- Xiao, B.; Ouyang, H.; Gulizeba, H.; Fu, H.; Wang, Z.; Huang, Y. Nomogram for Predicting the Prognosis of Metastatic Colorectal Cancer Patients Treated with Anti-PD1 Therapy Based on Serum Lipids Analysis. Cancer Immunol. Immunother. 2023, 72, 3683–3692. [Google Scholar] [CrossRef]
- Wu, B.; Shen, W.; Wang, X.; Wang, J.; Zhong, Z.; Zhou, Z.; Chen, X. Plasma Lipid Levels Are Associated with the CD8+ T-Cell Infiltration and Prognosis of Patients with Pancreatic Cancer. Cancer Med. 2023, 12, 14138–14148. [Google Scholar] [CrossRef]
- Dorado, E.; Doria, M.L.; Nagelkerke, A.; McKenzie, J.S.; Maneta-Stavrakaki, S.; Whittaker, T.E.; Nicholson, J.K.; Coombes, R.C.; Stevens, M.M.; Takats, Z. Extracellular Vesicles as a Promising Source of Lipid Biomarkers for Breast Cancer Detection in Blood Plasma. J. Extracell. Vesicles 2024, 13, e12419. [Google Scholar] [CrossRef]
- Shen, L.; Huang, H.; Li, J.; Chen, W.; Yao, Y.; Hu, J.; Zhou, J.; Huang, F.; Ni, C. Exploration of Prognosis and Immunometabolism Landscapes in ER+ Breast Cancer Based on a Novel Lipid Metabolism-Related Signature. Front. Immunol. 2023, 14, 1199465. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Zhao, S.; Lv, J.; Li, Y.; Wang, S.; Guo, J.; Wang, Y.; Wang, R.; Zhang, M.; et al. Progressions of the Correlation Between Lipid Metabolism and Immune Infiltration Characteristics in Gastric Cancer and Identification of BCHE as a Potential Biomarker. Front. Immunol. 2024, 15, 1327565. [Google Scholar] [CrossRef]
- Maseki, H.; Jimbo, K.; Watase, C.; Murata, T.; Shiino, S.; Takayama, S.; Yamamoto, N.; Satomi, K.; Maeshima, A.; Yoshida, M.; et al. Clinical Significance of Tumor Cell Seeding Associated with Needle Biopsy in Patients with Breast Cancer. Asian J. Surg. 2023, 46, 3700–3704. [Google Scholar] [CrossRef]
- Ngamruengphong, S.; Xu, C.; Woodward, T.A.; Raimondo, M.; Stauffer, J.A.; Asbun, H.J.; Wallace, M.B. Risk of gastric or peritoneal recurrence, and long-term outcomes, following pancreatic cancer resection with preoperative endosonographically guided fine needle aspiration. Endoscopy 2013, 45, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Takatori, Y.; Kato, M.; Saito, Y.; Kataoka, K.; Yahagi, N. Genetically proven multiple tumor cell seeding on the wounds of endoscopic resection from an intramucosal rectal cancer. Gastrointest. Endosc. 2022, 95, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Turkoz, K.H.; Erol, B.; Seven, I.E. Tumor cell seeding in the biopsy tract and its clinical significance in osteosarcomas. J. Surg. Oncol. 2018, 118, 1335–1340. [Google Scholar] [CrossRef]
- Karcioglu, Z.A.; Gordon, R.A.; Karcioglu, G.L. Tumor seeding in ocular fine needle aspiration biopsy. Ophthalmology 1985, 92, 1763–1767. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; He, Y.; Pan, C. Analysis of Baseline Serum Lipid Profile for Predicting Clinical Outcomes of Patients with Extensive-Stage Small Cell Lung Cancer. Cancer Manag. Res. 2023, 15, 773–783. [Google Scholar] [CrossRef]
- Liu, X.; Ren, B.; Fang, Y.; Ren, J.; Wang, X.; Gu, M.; Zhou, F.; Xiao, R.; Luo, X.; You, L.; et al. Comprehensive analysis of bulk and single-cell transcriptomic data reveals a novel signature associated with endoplasmic reticulum stress, lipid metabolism, and liver metastasis in pancreatic cancer. J. Transl. Med. 2024, 22, 393. [Google Scholar] [CrossRef]
- Franklin, B.A.; Durstine, J.L.; Roberts, C.K.; Barnard, R.J. Impact of diet and exercise on lipid management in the modern era. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 405–421. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Nelson, A.J. Achieving More Optimal Lipid Control with Non-Statin Lipid Lowering Therapy. Curr. Atheroscler. Rep. 2025, 27, 32. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Gao, H.; Qi, Q.; Liu, X.; Li, J.; Gao, J.; Li, P.; Wang, Y.; Du, L.; Wang, C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021, 11, 5889–5910. [Google Scholar] [CrossRef] [PubMed]
- Di Sebastiano, K.M.; Mourtzakis, M. The role of dietary fat throughout the prostate cancer trajectory. Nutrients 2014, 6, 6095–6109. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, G.L.; Copeland, T.; Khaodhiar, L.; Buckley, R.B. Diet and breast cancer. J. Women’s Health 2003, 12, 183–192. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Rogers, T.J.; Anderson, C.E.; Lien, E.C. Tumor lipid metabolism: A mechanistic link between diet and cancer progression. Curr. Opin. Biotechnol. 2023, 84, 102993. [Google Scholar] [CrossRef]
- Wang, X.; Du, Q.; Mai, Q.; Zou, Q.; Wang, S.; Lin, X.; Chen, Q.; Wei, M.; Chi, C.; Peng, Z.; et al. Targeting FASN enhances cisplatin sensitivity via SLC7A11-mediated ferroptosis in cervical cancer. Transl. Oncol. 2025, 56, 102396. [Google Scholar] [CrossRef]
- Alwarawrah, Y.; Hughes, P.; Loiselle, D.; Carlson, D.A.; Darr, D.B.; Jordan, J.L.; Xiong, J.; Hunter, L.M.; Dubois, L.G.; Thompson, J.W.; et al. Fasnall, a Selective FASN Inhibitor, Shows Potent Anti-tumor Activity in the MMTV-Neu Model of HER2(+) Breast Cancer. Cell Chem. Biol. 2016, 23, 678–688. [Google Scholar] [CrossRef]
- Gruslova, A.; McClellan, B.; Balinda, H.U.; Viswanadhapalli, S.; Alers, V.; Sareddy, G.R.; Huang, T.; Garcia, M.; deGraffenried, L.; Vadlamudi, R.K.; et al. FASN inhibition as a potential treatment for endocrine-resistant breast cancer. Breast Cancer Res. Treat. 2021, 187, 375–386. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Xu, H.; Wang, X.; Zhang, Y.; Shang, R.; O’Farrell, M.; Roessler, S.; Sticht, C.; Stahl, A.; et al. Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology 2022, 76, 951–966. [Google Scholar] [CrossRef]
- Polonio-Alcalá, E.; Porta, R.; Ruiz-Martínez, S.; Vásquez-Dongo, C.; Relat, J.; Bosch-Barrera, J.; Ciurana, J.; Puig, T. AZ12756122, a novel fatty acid synthase inhibitor, decreases resistance features in EGFR-TKI resistant EGFR-mutated NSCLC cell models. Biomed. Pharmacother. 2022, 156, 113942. [Google Scholar] [CrossRef]
- Chen, R.R.; Yung, M.M.H.; Xuan, Y.; Zhan, S.; Leung, L.L.; Liang, R.R.; Leung, T.H.Y.; Yang, H.; Xu, D.; Sharma, R.; et al. Targeting of lipid metabolism with a metabolic inhibitor cocktail eradicates peritoneal metastases in ovarian cancer cells. Commun. Biol. 2019, 2, 281. [Google Scholar] [CrossRef] [PubMed]
- Falchook, G.; Infante, J.; Arkenau, H.T.; Patel, M.R.; Dean, E.; Borazanci, E.; Brenner, A.; Cook, N.; Lopez, J.; Pant, S.; et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. eClinicalMedicine 2021, 34, 100797. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.; Diaz Duque, A.E.; Michalek, J.; Konkel, B.; Caflisch, L.; Chen, Y.; Pathuri, S.C.; Madhusudanannair-Kunnuparampil, V.; Floyd, J.; Brenner, A. Phase II Investigation of TVB-2640 (Denifanstat) with Bevacizumab in Patients with First Relapse High-Grade Astrocytoma. Clin. Cancer Res. 2023, 29, 2419–2425. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Hurt-Camejo, E. Phospholipase A2 enzymes and the risk of atherosclerosis. Eur. Heart J. 2012, 33, 2899–2909. [Google Scholar] [CrossRef]
- Oh, M.; Jang, S.Y.; Lee, J.Y.; Kim, J.W.; Jung, Y.; Kim, J.; Seo, J.; Han, T.S.; Jang, E.; Son, H.Y.; et al. The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism. Nat. Commun. 2023, 14, 5728. [Google Scholar] [CrossRef]
- Deng, H.; Li, W. Monoacylglycerol lipase inhibitors: Modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm. Sin. B 2020, 10, 582–602. [Google Scholar] [CrossRef]
- Bartel, K.; Pein, H.; Popper, B.; Schmitt, S.; Janaki-Raman, S.; Schulze, A.; Lengauer, F.; Koeberle, A.; Werz, O.; Zischka, H.; et al. Connecting lysosomes and mitochondria—A novel role for lipid metabolism in cancer cell death. Cell Commun. Signal. 2019, 17, 87. [Google Scholar] [CrossRef]
- Gao, L.; Xu, Z.; Huang, Z.; Tang, Y.; Yang, D.; Huang, J.; He, L.; Liu, M.; Chen, Z.; Teng, Y. CPI-613 rewires lipid metabolism to enhance pancreatic cancer apoptosis via the AMPK-ACC signaling. J. Exp. Clin. Cancer Res. 2020, 39, 73. [Google Scholar] [CrossRef]
- Wu, S.; Wang, J.; Fu, Z.; Familiari, G.; Relucenti, M.; Aschner, M.; Li, X.; Chen, H.; Chen, R. Matairesinol Nanoparticles Restore Chemosensitivity and Suppress Colorectal Cancer Progression in Preclinical Models: Role of Lipid Metabolism Reprogramming. Nano Lett. 2023, 23, 1970–1980. [Google Scholar] [CrossRef]
- Morciano, G.; Naumova, N.; Koprowski, P.; Valente, S.; Sardão, V.A.; Potes, Y.; Rimessi, A.; Wieckowski, M.R.; Oliveira, P.J. The mitochondrial permeability transition pore: An evolving concept critical for cell life and death. Biol. Rev. Camb. Philos. Soc. 2021, 96, 2489–2521. [Google Scholar] [CrossRef]
- Barazzuol, L.; Giamogante, F.; Calì, T. Mitochondria Associated Membranes (MAMs): Architecture and physiopathological role. Cell Calcium 2021, 94, 102343. [Google Scholar] [CrossRef] [PubMed]
- Cascone, A.; Lalowski, M.; Lindholm, D.; Eriksson, O. Unveiling the Function of the Mitochondrial Filament-Forming Protein LACTB in Lipid Metabolism and Cancer. Cells 2022, 11, 1703. [Google Scholar] [CrossRef] [PubMed]
- Jean, S.R.; Tulumello, D.V.; Riganti, C.; Liyanage, S.U.; Schimmer, A.D.; Kelley, S.O. Mitochondrial Targeting of Doxorubicin Eliminates Nuclear Effects Associated with Cardiotoxicity. ACS Chem. Biol. 2015, 10, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yang, Y.; Chen, T.; Wang, Y.; Guo, T.; Liu, Y.; Li, H.; Yang, L. Cell death regulation in myocardial toxicity induced by antineoplastic drugs. Front. Cell Dev. Biol. 2023, 11, 1075917. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, W.; Kong, X.; Zhou, X.; Zhu, D.; Kong, L. Genistein Restricts the Epithelial Mesenchymal Transformation (EMT) and Stemness of Hepatocellular Carcinoma via Upregulating miR-1275 to Inhibit the EIF5A2/PI3K/Akt Pathway. Biology 2022, 11, 1383. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Q.; Chang, S.; Zhang, R.; Wang, J. Vitamin D3 mediates miR-15a-5p inhibition of liver cancer cell proliferation via targeting E2F3. Oncol. Lett. 2020, 20, 292–298. [Google Scholar] [CrossRef]
- Joseph, S.; Silbiger, V.N.; Fatah, M.; Chatterjee, D.; Rosa Neta, A.P.; Sacilotto, L.; D’Arezzo Pessente, G.; Darrieux, F.; Scanavacca, M.I.; Krieger, J.E.; et al. Diagnostic and prognostic significance of miRNA-15a-5p, 16–5p, and 92a-3p in arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm, 2025; in press. [Google Scholar] [CrossRef]
- Cao, F.; Li, Z.; Ding, W.; Qv, C.; Zhao, H. Exosomal miR-15a-5p from cardiomyocytes promotes myocardial fibrosis. Mol. Cell. Biochem. 2025, 480, 1701–1713. [Google Scholar] [CrossRef]
- Huan, T.; Rong, J.; Tanriverdi, K.; Meng, Q.; Bhattacharya, A.; McManus, D.D.; Joehanes, R.; Assimes, T.L.; McPherson, R.; Samani, N.J.; et al. Dissecting the roles of microRNAs in coronary heart disease via integrative genomic analyses. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1011–1021. [Google Scholar] [CrossRef]
- Zeng, Z.; Ma, H.; Chen, J.; Huang, N.; Zhang, Y.; Su, Y.; Zhang, H. Knockdown of miR-1275 protects against cardiomyocytes injury through promoting neuromedin U type 1 receptor. Cell Cycle 2020, 19, 3639–3649. [Google Scholar] [CrossRef]
- Tong, Q.H.; Hu, H.Y.; Chai, H.; Wu, A.B.; Guo, X.H.; Wang, S.; Zhang, Y.F.; Fan, X.Y. Dysregulation of the miR-1275/HK2 Axis Contributes to the Progression of Hypoxia/Reoxygenation-Induced Myocardial Injury. Arch. Med. Res. 2021, 52, 461–470. [Google Scholar] [CrossRef]
- Salemi, M.; Marchese, G.; Lanza, G.; Cosentino, F.I.I.; Salluzzo, M.G.; Schillaci, F.A.; Ventola, G.M.; Cordella, A.; Ravo, M.; Ferri, R. Role and Dysregulation of miRNA in Patients with Parkinson’s Disease. Int. J. Mol. Sci. 2022, 24, 712. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, R.; Chen, G.; Jiang, M. Diagnostic value and role of serum miR-15a-5p in patients with schizophrenia. Ann. Gen. Psychiatry 2024, 23, 4. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, C.; Wang, H.; Lin, Q.; Cai, L.; Meng, F.; Tesfaye, E.B.; Lai, H.C.; Tzeng, C.M. Identification of hsa-miR-1275 as a Novel Biomarker Targeting MECP2 for Human Epilepsy of Unknown Etiology. Mol. Ther. Methods Clin. Dev. 2020, 19, 398–410. [Google Scholar] [CrossRef]
- Li, Y.; Kong, C.; Wang, W.; Hu, F.; Chen, X.; Xu, B.; Lu, S. Screening of miR-15a-5p as a potential biomarker for intervertebral disc degeneration through RNA-sequencing. Int. Immunopharmacol. 2023, 123, 110717. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, H.; Yang, W.; Huang, K.; Zhang, X.; Xing, L.; Zhang, Y.; Zhao, K. miR-1275 Delivered via Mesenchymal Stem Cell-Derived Extracellular Vesicles Regulates ER-Phagy Through AXIN2 in Nucleus Pulposus Cells. Stem Cells Int. 2025, 2025, 5091529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, L.; Ma, Y.; Zhou, Z.; Luo, Q.; Zhang, J.; Yang, Y.; Liu, L.; Guan, L. Specific Non-Coding RNAs Involve in and Regulate the Transcriptional Network during Keloid Formation. Crit. Rev. Eukaryot. Gene Expr. 2025, 35, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Flores-Chova, A.; Martinez-Arroyo, O.; Puertes, A.; Vela-Bernal, S.; Gorriz, J.L.; Solis-Salguero, M.A.; Terradez, L.; Ortega, A.; Forner, M.J.; Cortes, R. Exosomal Specificity of MiR-15a-5p as Marker of Activity, Renal Damage, and Disease Flares in Systemic Lupus Erythematosus. Am. J. Nephrol. 2025; 1–14, in press. [Google Scholar] [CrossRef] [PubMed]
- Kopsida, M.; Clavero, A.L.; Khaled, J.; Balgoma, D.; Luna-Marco, C.; Chowdhury, A.; Nyman, S.S.; Rorsman, F.; Ebeling Barbier, C.; Bergsten, P.; et al. Inhibiting the endoplasmic reticulum stress response enhances the effect of doxorubicin by altering the lipid metabolism of liver cancer cells. Mol. Metab. 2024, 79, 101846. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Hou, Y.; Yang, L.; Wan, X.; Qin, Y.; Liu, Y.; Wang, R.; Zhu, P.; Teng, Y.; et al. A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties. J. Hematol. Oncol. 2021, 14, 178. [Google Scholar] [CrossRef]
- Liu, L.; Mo, M.; Chen, X.; Chao, D.; Zhang, Y.; Chen, X.; Wang, Y.; Zhang, N.; He, N.; Yuan, X.; et al. Targeting inhibition of prognosis-related lipid metabolism genes including CYP19A1 enhances immunotherapeutic response in colon cancer. J. Exp. Clin. Cancer Res. CR 2023, 42, 85. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Saw, P.E.; Shen, Q.; Li, R.; Liu, Y.; Xu, X. Reduction-responsive RNAi nanoplatform to reprogram tumor lipid metabolism and repolarize macrophage for combination pancreatic cancer therapy. Biomaterials 2022, 280, 121264. [Google Scholar] [CrossRef] [PubMed]
- Machado, G.C.; Abdel-Shaheed, C.; Underwood, M.; Day, R.O. Non-steroidal anti-inflammatory drugs (NSAIDs) for musculoskeletal pain. BMJ 2021, 372, n104. [Google Scholar] [CrossRef] [PubMed]
- Klegeris, A.; McGeer, P.L. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr. Alzheimer Res. 2005, 2, 355–365. [Google Scholar] [CrossRef]
- Eccleston, C.; Cooper, T.E.; Fisher, E.; Anderson, B.; Wilkinson, N.M. Non-steroidal anti-inflammatory drugs (NSAIDs) for chronic non-cancer pain in children and adolescents. Cochrane Database Syst. Rev. 2017, 8, Cd012537. [Google Scholar] [CrossRef]
- Stolfi, C.; De Simone, V.; Pallone, F.; Monteleone, G. Mechanisms of action of non-steroidal anti-inflammatory drugs (NSAIDs) and mesalazine in the chemoprevention of colorectal cancer. Int. J. Mol. Sci. 2013, 14, 17972–17985. [Google Scholar] [CrossRef]
- Kanikarla-Marie, P.; Kopetz, S.; Hawk, E.T.; Millward, S.W.; Sood, A.K.; Gresele, P.; Overman, M.; Honn, K.; Menter, D.G. Bioactive lipid metabolism in platelet “first responder” and cancer biology. Cancer Metastasis Rev. 2018, 37, 439–454. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, B.; Xu, W.; Guo, L.; Wang, Z.; Li, G.; Hou, N.; Zhang, J.; Ling, R. Compound C enhances the anticancer effect of aspirin in HER-2-positive breast cancer by regulating lipid metabolism in an AMPK-independent pathway. Int. J. Biol. Sci. 2020, 16, 583–597. [Google Scholar] [CrossRef]
- Bai, X.; Ding, S.Q.; Zhang, X.P.; Han, M.H.; Dai, D.Q. Exposure to Commonly Used Drugs and the Risk of Gastric Cancer: An Umbrella Review of Meta-Analyses. Cancers 2023, 15, 372. [Google Scholar] [CrossRef]
- Rashid, G.; Khan, N.A.; Elsori, D.; Rehman, A.; Tanzeelah; Ahmad, H.; Maryam, H.; Rais, A.; Usmani, M.S.; Babker, A.M.; et al. Non-steroidal anti-inflammatory drugs and biomarkers: A new paradigm in colorectal cancer. Front. Med. 2023, 10, 1130710. [Google Scholar] [CrossRef]
- Sheng, J.; Zou, X.; Cheng, Z.; Xiang, Y.; Yang, W.; Lin, Y.; Cui, R. Recent Advances in Herbal Medicines for Digestive System Malignancies. Front. Pharmacol. 2018, 9, 1249. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Wu, L.; Wang, S.; Deng, W. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front. Oncol. 2022, 12, 949332. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, F.; Kong, J.; Zong, Y.; Li, Q.; Shao, B.; Wang, J. Traditional Chinese medicine enhances the effectiveness of immune checkpoint inhibitors in tumor treatment: A mechanism discussion. J. Ethnopharmacol. 2024, 338, 118955. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, X.; Dong, Y.; Zhou, C.; Rezeng, C. Lipid metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. J. Cancer 2023, 14, 2066–2074. [Google Scholar] [CrossRef]
- Jin, H.R.; Du, C.H.; Wang, C.Z.; Yuan, C.S.; Du, W. Ginseng metabolite protopanaxadiol interferes with lipid metabolism and induces endoplasmic reticulum stress and p53 activation to promote cancer cell death. Phytother. Res. 2019, 33, 610–617. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, L.; Xie, X.; Luo, J.; Yu, J.; Zhang, L.; Meng, W.; Zhou, Y.; Chen, L.; Ouyang, D.; et al. Targeting PLA2G16, a lipid metabolism gene, by Ginsenoside Compound K to suppress the malignant progression of colorectal cancer. J. Adv. Res. 2022, 36, 265–276. [Google Scholar] [CrossRef]
- Villéger, R.; Lopès, A.; Carrier, G.; Veziant, J.; Billard, E.; Barnich, N.; Gagnière, J.; Vazeille, E.; Bonnet, M. Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? Int. J. Mol. Sci. 2019, 20, 4584. [Google Scholar] [CrossRef]
- Ji, G.; Zhao, J.; Si, X.; Song, W. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria. Adv. Drug Deliv. Rev. 2024, 211, 115345. [Google Scholar] [CrossRef]
- Peck, B.; Schulze, A. Lipid Metabolism at the Nexus of Diet and Tumor Microenvironment. Trends Cancer 2019, 5, 693–703. [Google Scholar] [CrossRef]
- Lee-Rueckert, M.; Canyelles, M.; Tondo, M.; Rotllan, N.; Kovanen, P.T.; Llorente-Cortes, V.; Escolà-Gil, J.C. Obesity-induced changes in cancer cells and their microenvironment: Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Semin. Cancer Biol. 2023, 93, 36–51. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Cao, B. Exploring the impact of HDL and LMNA gene expression on immunotherapy outcomes in NSCLC: A comprehensive analysis using clinical & gene data. Front. Oncol. 2024, 14, 1448966. [Google Scholar] [CrossRef]
- Zheng, Y.; Peng, Y.; Gao, Y.; Yang, G.; Jiang, Y.; Zhang, G.; Wang, L.; Yu, J.; Huang, Y.; Wei, Z.; et al. Identification and dissection of prostate cancer grounded on fatty acid metabolism-correlative features for predicting prognosis and assisting immunotherapy. Comput. Biol. Chem. 2025, 115, 108323. [Google Scholar] [CrossRef]
- He, T.; Hu, J.; Guo, H.; Diao, M.; Wang, Y.; Wu, Y.; Cheng, L.; Zhao, C.; Li, X.; Zhou, C. Lipid Metabolism Related Gene ACSL3 as a Biomarker for Predicting Immunotherapy Outcomes in Lung Adenocarcinoma. Cancer Res. Treat. 2025; in press. [Google Scholar] [CrossRef]
- Xu, L.; Xiao, T.; Chao, T.; Xiong, H.; Yao, W. From genes to therapy: A lipid Metabolism-Related genetic risk model predicts HCC outcomes and enhances immunotherapy. BMC Cancer 2025, 25, 895. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, J.; Zhao, S.; Wei, Y.; Qi, Y.; Liu, S.; Wang, Y.; Ge, H.; Yang, X.; Tan, Y.; et al. Multi-cohort validation of a lipid metabolism and ferroptosis-associated index for prognosis and immunotherapy response prediction in hormone receptor-positive breast cancer. Int. J. Biol. Sci. 2025, 21, 3968–3992. [Google Scholar] [CrossRef]
Molecular | Tumor | Reference | |
---|---|---|---|
FA uptake | |||
FABP, CD36 | BC | [28] | |
CRC | [29] | ||
HCC | [30] | ||
Bladder cancer | [31] | ||
FA oxidation | |||
CPT1A | BC | [32] | |
CRC | [29] | ||
FA synthesis | |||
FASN, SCD1 | BC | [33] | |
CRC | [34] | ||
HCC | [35,36,37] | ||
CESC | [38] | ||
THCA | [39] | ||
CHOL synthesis | |||
SREBP1, LXR, PPARα | BC | [33] | |
CRC | [34] | ||
HCC | [35,36,37] | ||
Steroid synthesis | |||
CYP17, CYP11A, CYP11B, βHSD | GC | [40] | |
BC | [41,42,43,44] | ||
CRC | [45] | ||
Melanoma | [41] | ||
Prostate cancer | [41,46,47,48,49] | ||
Neuroblastoma | [50] | ||
Adrenal cortical tumor | [51] | ||
Cancer genes | |||
P53 | Prostate cancer | [52] | |
P63 | SCC | [53] | |
PI3k/AKT pathway | GC | [54] | |
HCC | [55] | ||
MAPK pathway | HCC | [35] | |
SCLC | [56] | ||
Lung cancer | [57] | ||
Pancreatic cancer | [58] | ||
NcRNAs | |||
MiR-15a-5p | Lung cancer | [59] | |
MiR-1275 | GC | [60] | |
LncRNA lnc030 | BC | [61] | |
LncRNA SLC25A21-AS1 | ESCC | [62] | |
LncRNA ROLLCSC | Lung cancer | [63] |
Immune Cells | Molecule | Influence of Lipid Metabolism on Immune Cells | Tumor | Reference |
---|---|---|---|---|
DCs | ||||
Lipids | Stimulate T cells | Lymphoma | [97] | |
Build an immunosuppressive TME | Melanoma | [98] | ||
Antigen presentation, migration, and immune cell activation | MESA | [99] | ||
T Cells | ||||
CHOL | TCR signal transduction | Melanoma, lung cancer, CRC | [100,101] | |
SCD | Interactions among T cells | Melanoma, CRC, BC | [102] | |
LA | Anti-tumor function | Neuroblastoma, lymphoma, melanoma, BC, CRC | [103] | |
cPLA2, 5-LOX, LCAC | T cell exhaustion and functional defects | HCC | [104,105] | |
TAMs | ||||
LDs, CHOL | Differentiate into lipid-overburdened macrophages | BC, HCC, GBM, pancreatic cancer | [106,107,108,109,110,111] | |
TANs | ||||
Acrolein | Differentiate into TAN2 | Glioma | [112] | |
ASAH1 | The formation of NETs | GBM | [113] | |
ECL2 | The NETs formation and the TANs recruitment | CRC | [114] | |
CHOL | Interaction between TANs and NKs | CRC | [115] | |
TGs | Interaction between TANs and cancer cells | Lung cancer | [116] | |
PAF | Interaction between cancer cells and TANs | CRC, PDAC, lung cancer, ovarian cancer | [117] | |
NKs | ||||
Lipids | Anti-tumor function | CRC, HCC, PRAD, melanoma, oral cancer | [118,119,120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Wang, C.; Tao, Z.; Hu, G. Lipid Metabolism Reprogramming in Cancer: Insights into Tumor Cells and Immune Cells Within the Tumor Microenvironment. Biomedicines 2025, 13, 1895. https://doi.org/10.3390/biomedicines13081895
Liu R, Wang C, Tao Z, Hu G. Lipid Metabolism Reprogramming in Cancer: Insights into Tumor Cells and Immune Cells Within the Tumor Microenvironment. Biomedicines. 2025; 13(8):1895. https://doi.org/10.3390/biomedicines13081895
Chicago/Turabian StyleLiu, Rundong, Chendong Wang, Zhen Tao, and Guangyuan Hu. 2025. "Lipid Metabolism Reprogramming in Cancer: Insights into Tumor Cells and Immune Cells Within the Tumor Microenvironment" Biomedicines 13, no. 8: 1895. https://doi.org/10.3390/biomedicines13081895
APA StyleLiu, R., Wang, C., Tao, Z., & Hu, G. (2025). Lipid Metabolism Reprogramming in Cancer: Insights into Tumor Cells and Immune Cells Within the Tumor Microenvironment. Biomedicines, 13(8), 1895. https://doi.org/10.3390/biomedicines13081895