Tumor Microenvironmental Dynamics in Shaping Resistance to Therapeutic Interventions in Melanoma: A Narrative Review
Abstract
1. Introduction
2. Discussion
2.1. Overview of the TME
2.2. Essential Components of the TME
2.2.1. Stromal Cells
2.2.2. Endothelial Cells
2.2.3. Immune Cells
2.2.4. Tumor Cells
2.2.5. Non-Cellular Components
2.3. Mechanisms of TME Resistance to the Host Immune System
2.4. Resistance Mechanisms in the TME of Melanoma to ICIs—Decreased Host Immune Response
2.4.1. Metabolic Mechanisms of Resistance
2.4.2. Genetic and Epigenetic Mechanisms of Resistance
2.4.3. Immune Cell Recruitment and Immune Suppression
2.4.4. Tumor Cell Survival and Proliferation
2.4.5. Immune Escape Through Reprogramming
3. Overcoming Immunotherapy Resistance and Increasing Host Response
3.1. Tumor Metabolism Targeting
3.2. Interventions Involving T Cell Activity or Infiltration
3.3. Interventions Involving Macrophages or Other Molecules and Pathways
3.4. Melanoma Immunotherapy and Resistance Overview
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALKBH5 | α-ketoglutarate-dependent dioxygenase AlkB homolog 5 |
ATF3 | activating transcription factor |
ATP | adenosine triphosphate |
AXL | AXL receptor tyrosine kinase |
BDNF | brain-derived neurotrophic factor |
BIRC2 | baculoviral IAP repeat containing 2 |
BRAF | B-raf proto-oncogene |
β2M | beta-2-microglobulin |
CAF | cancer-associated fibroblast |
cAMP | cyclic adenosine monophosphate |
cDC1 | Conventional type 1 dendritic cell |
CADO | 2-chloroadenosine |
CCL | chemokine (C-C motif) ligand |
CCN4 | cellular communication network factor 4 |
CCR2 | C-C chemokine receptor type 2 |
CTLA-4 | cytotoxic T-lymphocyte-associated protein 4 |
CTL | cytotoxic T-lymphocyte |
CXCL1 | chemokine (C-X-C motif) ligand 1 |
DC | dendritic cell |
dsDNA@DMON | dendritic mesoporous organosilica nanoparticles carrying double-stranded DNA |
ECM | extracellular matrix |
EM-DR | environment-mediated drug resistance |
eNVs-FAP | engineered exosome-like nanovesicles modified with the fibroblast activation protein-α gene |
EZH2 | enhancer of zeste homolog 2 |
FBXW7 | F-box and WD repeat domain-containing 7 |
FDX1 | erredoxin-1 |
FGF | fibroblast growth factor |
FOXP3 | forkhead box P3 |
GATA3 | GATA binding protein 3 |
GET | gene electrotransfer |
GLI2 | Glioma-Associated Oncogene Family Zinc Finger 2 |
GNAS-PKA | guanine nucleotide-binding protein, alpha stimulating protein kinase A |
HDAC | histone deacetylase |
HRS | Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate |
ICI | immune checkpoint inhibitor |
ICAM-1 | intercellular adhesion molecule 1 |
IFN | interferon |
IFN-γ | interferon gamma |
IGF2BP | insulin-like growth factor 2 mRNA-binding protein |
IL-32γ | interleukin-32 gamma |
IL4I1 | interleukin-4 induced-1 |
KLLN | killin |
KSRP | KH-type splicing regulatory protein |
LDH | lactate dehydrogenase |
LIF | leukemia inhibitory factor |
MAF | melanoma-associated fibroblast |
MAPK | mitogen-activated protein kinase |
MCT4 | monocarboxylate transporter 4 |
MC1R | melanocortin-1-receptor |
MDSC | myeloid-derived suppressor cell |
MHC | major histocompatibility complex |
MITF | microphthalmia-associated transcription factor |
MiR | micro RNA |
MMP | matrix metalloproteinase |
mRNA | messenger ribonucleic acid |
NAD+ | nicotinamide adenine dinucleotide |
NAMPT | nicotinamide phosphoribosyl transferase |
NET | neutrophil extracellular traps |
NGFR | nerve growth factor receptor |
NLRP3 | NOD-, LRR- and pyrin domain containing protein 3 |
NK | natural killer |
PAK4 | p21-activated kinase 4 |
PD-1 | programmed cell death protein |
PD-L1 | programmed cell death ligand 1 |
PDT | photodynamic therapy |
PGE2 | prostaglandin E2 |
phospho-elF4E | phosphorylated protein eIF4E |
PKA | protein kinase A |
PIK3C3 | phosphatidylinositol 3-kinase catalytic subunit type 3 |
PMN-MDSC | polymorphonuclear myeloid-derived suppressor cell |
PTEN | gene-encoding phosphatase and tensin homolog deleted on chromosome 10 |
RAC-1 | Ras-related C3 botulinum toxin substrate 1 |
RNLS | renalase |
ROCK | Rho-associated protein kinase |
ROS | reactive oxygen species |
R-spondin/LGR4 | R-spondin-Leucine-rich repeat containing G-protein coupled receptor 4 |
SGN1 | Salmonella typhimurium |
SK1 | sphingosine kinase 1 |
SKCM | skin cutaneous melanoma |
SOCS1 | suppressor of cytokine signaling 1 |
SPI1 | Spi-1-proto-oncogene |
STAT | signal transducer and activator of transcription |
TAM | tumor-associated macrophage |
TCA | tricarboxylic acid |
TCF4 | transcription factor 4 |
TCR | T-cell receptor |
TGF-β | transforming growth factor-beta |
TIGIT | T cell immunoreceptor with Ig and ITIM domains |
TIL | tumor-infiltrating lymphocyte |
TIM3 | T cell immunoglobulin and mucin domain-containing protein 3 |
TMB | tumor mutational burden |
TME | tumor microenvironment |
TLR | toll-like receptor |
TNF | tumor necrosis factor |
Treg | regulatory T cell |
TREM1 | triggering receptor expressed on myeloid cells |
TSA | trichostatin-A |
TSLP | thymic stromal lymphopoietin |
VEGF | vascular endothelial growth factor |
VCAM-1 | vascular cell adhesion molecule 1 |
UCP2 | uncoupling protein 2 |
UM | uveal melanoma |
VPS34 | vacuolar protein-sorting 34 |
ZEB1 | zinc finger E-box binding homeobox 1 |
References
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Mourah, S.; Louveau, B.; Dumaz, N. Mechanisms of resistance and predictive biomarkers of response to targeted therapies and immunotherapies in metastatic melanoma. Curr. Opin. Oncol. 2020, 32, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.C.; Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: Understanding the molecular basis for immune sensitivity and resistance. Nat. Immunol. 2022, 23, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Umansky, V.; Sevko, A. Melanoma-induced immunosuppression and its neutralization. Semin. Cancer Biol. 2012, 22, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Gide, T.N.; Wilmott, J.S.; Scolyer, R.A.; Long, G.V. Primary and Acquired Resistance to Immune Checkpoint Inhibitors in Metastatic Melanoma. Clin. Cancer Res. 2018, 24, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, J.; Gao, Y.; Jiang, Y.; Guan, Z.; Xie, Y.; Hu, J.; Chen, J. Barrier permeation and improved nanomedicine delivery in tumor microenvironments. Cancer Lett. 2023, 562, 216166. [Google Scholar] [CrossRef] [PubMed]
- Langley, R.R.; Fidler, I.J. The seed and soil hypothesis revisited—The role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer 2011, 128, 2527–2535. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Miao, Y.; Cao, L.; Guo, L.; Cui, Y.; Yan, C.; Zeng, Z.; Xu, M.; Han, T. Activation of melanocortin-1 receptor signaling in melanoma cells impairs T cell infiltration to dampen antitumor immunity. Nat. Commun. 2023, 14, 5740. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shen, M.; Wu, L.; Yang, H.; Yao, Y.; Yang, Q.; Du, J.; Liu, L.; Li, Y.; Bai, Y. Stromal cells in the tumor microenvironment: Accomplices of tumor progression? Cell Death Dis. 2023, 14, 587. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.; Ly, T.; Kriet, M.; Czirok, A.; Thomas, S.M. Cancer-Associated Fibroblasts: Master Tumor Microenvironment Modifiers. Cancers 2023, 15, 1899. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 2018, 24, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
- Strainic, M.G.; Shevach, E.M.; An, F.; Lin, F.; Medof, M.E. Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells. Nat. Immunol. 2013, 14, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Bu, M.T.; Chandrasekhar, P.; Ding, L.; Hugo, W. The roles of TGF-β and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. Pharmacol. Ther. 2022, 240, 108211. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Luo, S.; Fan, D.; Guo, X.; Ma, S. The role of vascular endothelial cells in tumor metastasis. Acta Histochem. 2023, 125, 152070. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Kang, T.; Chen, S. The role of tumor-associated macrophages in tumor immune evasion. J. Cancer Res. Clin. Oncol. 2024, 150, 238. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Saeed, A.F.; Liu, Q.; Jiang, Q.; Xu, H.; Xiao, G.G.; Rao, L.; Duo, Y. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. 2023, 8, 207. [Google Scholar] [CrossRef] [PubMed]
- Bied, M.; Ho, W.W.; Ginhoux, F.; Blériot, C. Roles of macrophages in tumor development: A spatiotemporal perspective. Cell. Mol. Immunol. 2023, 20, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Khayati, S.; Dehnavi, S.; Sadeghi, M.; Afshari, J.T.; Esmaeili, S.-A.; Mohammadi, M. The potential role of miRNA in regulating macrophage polarization. Heliyon 2023, 9, e21615. [Google Scholar] [CrossRef] [PubMed]
- Russick, J.; Joubert, P.-E.; Gillard-Bocquet, M.; Torset, C.; Meylan, M.; Petitprez, F.; Dragon-Durey, M.-A.; Marmier, S.; Varthaman, A.; Josseaume, N.; et al. Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions. J. Immunother. Cancer 2020, 8, e001054. [Google Scholar] [CrossRef] [PubMed]
- Cózar, B.; Greppi, M.; Carpentier, S.; Narni-Mancinelli, E.; Chiossone, L.; Vivier, E. Tumor-Infiltrating Natural Killer Cells. Cancer Discov. 2021, 11, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, A.; Salvi, V.; Soriani, A.; Laffranchi, M.; Sozio, F.; Bosisio, D.; Sozzani, S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol. 2023, 20, 432–447. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Saxena, S.; Singh, R.K. Neutrophils in the Tumor Microenvironment. In Tumor Microenvironment; Advances in Experimental Medicine and Biology; Birbrair, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1224, pp. 1–20. [Google Scholar] [CrossRef]
- Lv, D.; Fei, Y.; Chen, H.; Wang, J.; Han, W.; Cui, B.; Feng, Y.; Zhang, P.; Chen, J. Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Front. Immunol. 2024, 15, 1340702. [Google Scholar] [CrossRef] [PubMed]
- Heintzman, D.R.; Fisher, E.L.; Rathmell, J.C. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell. Mol. Immunol. 2022, 19, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Appelt, J.W.; Jenkins, R.W. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers 2021, 13, 6052. [Google Scholar] [CrossRef] [PubMed]
- Popova, N.V.; Jücker, M. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers 2022, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.-X.; Wang, Z.; Yu, T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef] [PubMed]
- Nengroo, M.A.; Verma, A.; Datta, D. Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine 2022, 156, 155916. [Google Scholar] [CrossRef] [PubMed]
- Pirkey, A.C.; Deng, W.; Norman, D.; Razazan, A.; Klinke, D.J. Head-to-Head Comparison of CCN4, DNMT3A, PTPN11, and SPARC as Suppressors of Anti-tumor Immunity. Cell. Mol. Bioeng. 2023, 16, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Barba, C.; Ekiz, H.A.; Tang, W.W.; Ghazaryan, A.; Hansen, M.; Lee, S.-H.; Voth, W.P.; O’Connell, R.M. Interferon Gamma-Inducible NAMPT in Melanoma Cells Serves as a Mechanism of Resistance to Enhance Tumor Growth. Cancers 2023, 15, 1411. [Google Scholar] [CrossRef] [PubMed]
- Roche, V.; Sandoval, V.; Senders, Z.; Lyons, J.; Wolford, C.; Zhang, M. BG34-200 Immunotherapy of Advanced Melanoma. Cancers 2022, 14, 5911. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Jackson, E.K.; Gorelik, E. Receptor desensitization and blockade of the suppressive effects of prostaglandin E2 and adenosine on the cytotoxic activity of human melanoma-infiltrating T lymphocytes. Cancer Immunol. Immunother. 2011, 60, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Sackstein, R.; Schatton, T.; Barthel, S.R. T-lymphocyte homing: An underappreciated yet critical hurdle for successful cancer immunotherapy. Lab. Investig. 2017, 97, 669–697. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; German, B.; Chraa, D.; Braud, A.; Hugel, C.; Meyer, P.; Davidson, G.; Laurette, P.; Mengus, G.; Flatter, E.; et al. Keratinocyte-derived cytokine TSLP promotes growth and metastasis of melanoma by regulating the tumor-associated immune microenvironment. JCI Insight 2022, 7, e161438. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Dai, X.; Lin, X.; Shan, Y.; Ye, J. The prognostic landscape of adaptive immune resistance signatures and infiltrating immune cells in the tumor microenvironment of uveal melanoma. Exp. Eye Res. 2020, 196, 108069. [Google Scholar] [CrossRef] [PubMed]
- Kurt, F.G.O.; Lasser, S.; Arkhypov, I.; Utikal, J.; Umansky, V. Enhancing immunotherapy response in melanoma: Myeloid-derived suppressor cells as a therapeutic target. J. Clin. Investig. 2023, 133, e170762. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.-H.T.; Luo, Y.-H.; Li, A.-L.; Tsai, J.-C.; Wu, K.-L.; Chung, P.-J.; Ma, N. miRNA as a Modulator of Immunotherapy and Immune Response in Melanoma. Biomolecules 2021, 11, 1648. [Google Scholar] [CrossRef] [PubMed]
- Valencia, J.C.; Erwin-Cohen, R.A.; Clavijo, P.E.; Allen, C.; Sanford, M.E.; Day, C.-P.; Hess, M.M.; Johnson, M.; Yin, J.; Fenimore, J.M.; et al. Myeloid-Derived Suppressive Cell Expansion Promotes Melanoma Growth and Autoimmunity by Inhibiting CD40/IL27 Regulation in Macrophages. Cancer Res. 2021, 81, 5977–5990. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Gonçalves, C.; Bartish, M.; Rémy-Sarrazin, J.; Issa, M.E.; Cordeiro, B.; Guo, Q.; Emond, A.; Attias, M.; Yang, W.; et al. Inhibiting the MNK1/2-eIF4E axis impairs melanoma phenotype switching and potentiates antitumor immune responses. J. Clin. Investig. 2024, 134, e181575. [Google Scholar] [CrossRef] [PubMed]
- Cannon, A.C.; Budagyan, K.; Uribe-Alvarez, C.; Kurimchak, A.M.; Araiza-Olivera, D.; Cai, K.Q.; Peri, S.; Zhou, Y.; Duncan, J.S.; Chernoff, J. Unique vulnerability of RAC1-mutant melanoma to combined inhibition of CDK9 and immune checkpoints. Oncogene 2024, 43, 729–743. [Google Scholar] [CrossRef] [PubMed]
- Elcheva, I.A.; Gowda, C.P.; Bogush, D.; Gornostaeva, S.; Fakhardo, A.; Sheth, N.; Kokolus, K.M.; Sharma, A.; Dovat, S.; Uzun, Y.; et al. IGF2BP family of RNA-binding proteins regulate innate and adaptive immune responses in cancer cells and tumor microenvironment. Front. Immunol. 2023, 14, 1224516. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-X.; Wang, Y.; Ding, J.; Jiang, A.; Wang, J.; Yu, M.; Blake, S.; Liu, S.; Bieberich, C.J.; Farokhzad, O.C.; et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci. Transl. Med. 2021, 13, eaba9772. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chou, C.-F.; Liu, S.; Crossman, D.; Yusuf, N.; Wu, Y.; Chen, C.-Y. KSRP modulates melanoma growth and efficacy of vemurafenib. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2019, 1862, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Cazzato, G.; Ingravallo, G.; Ribatti, D. Angiogenesis Still Plays a Crucial Role in Human Melanoma Progression. Cancers 2024, 16, 1794. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Xiao, Z.; Bavisi, K.; Roszik, J.; Melendez, B.D.; Wang, Z.; Cantwell, M.J.; Davis, R.E.; Lizee, G.; Hwu, P.; et al. IL-1α Mediates Innate and Acquired Resistance to Immunotherapy in Melanoma. J. Immunol. 2021, 206, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Koskela, S.A.; Mehmood, A.; Langguth, M.; Maranou, E.; Figueiredo, C.R. Epigenetic control of CD1D expression as a mechanism of resistance to immune checkpoint therapy in poorly immunogenic melanomas. Front. Immunol. 2023, 14, 1152228. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zeng, D.; Sweren, E.; Miao, Y.; Chen, R.; Chen, J.; Wang, J.; Liao, W.; Hu, Z.; Kang, S.; et al. N6-methyladenosine RNA Methylation Correlates with Immune Microenvironment and Immunotherapy Response of Melanoma. J. Investig. Dermatol. 2023, 143, 1579–1590.e5. [Google Scholar] [CrossRef] [PubMed]
- James, J.L.; Taylor, B.C.; Axelrod, M.L.; Sun, X.; Guerin, L.N.; I Gonzalez-Ericsson, P.; Wang, Y.; Sanchez, V.; Fahey, C.C.; E Sanders, M.; et al. Polycomb repressor complex 2 suppresses interferon-responsive MHC-II expression in melanoma cells and is associated with anti-PD-1 resistance. J. Immunother. Cancer 2023, 11, e007736. [Google Scholar] [CrossRef] [PubMed]
- Gstalder, C.; Liu, D.; Miao, D.; Lutterbach, B.; DeVine, A.L.; Lin, C.; Shettigar, M.; Pancholi, P.; Buchbinder, E.I.; Carter, S.L.; et al. Inactivation of Fbxw7 Impairs dsRNA Sensing and Confers Resistance to PD-1 Blockade. Cancer Discov. 2020, 10, 1296–1311. [Google Scholar] [CrossRef] [PubMed]
- Ballotti, R.; Cheli, Y.; Bertolotto, C. The complex relationship between MITF and the immune system: A Melanoma ImmunoTherapy (response) Factor? Mol. Cancer 2020, 19, 170. [Google Scholar] [CrossRef] [PubMed]
- Pozniak, J.; Pedri, D.; Landeloos, E.; Van Herck, Y.; Antoranz, A.; Vanwynsberghe, L.; Nowosad, A.; Roda, N.; Makhzami, S.; Bervoets, G.; et al. A TCF4-dependent gene regulatory network confers resistance to immunotherapy in melanoma. Cell 2024, 187, 166–183.e25. [Google Scholar] [CrossRef] [PubMed]
- Plaschka, M.; Benboubker, V.; Grimont, M.; Berthet, J.; Tonon, L.; Lopez, J.; Le-Bouar, M.; Balme, B.; Tondeur, G.; de la Fouchardière, A.; et al. ZEB1 transcription factor promotes immune escape in melanoma. J. Immunother. Cancer 2022, 10, e003484. [Google Scholar] [CrossRef] [PubMed]
- Pinjusic, K.; Dubey, O.A.; Egorova, O.; Nassiri, S.; Meylan, E.; Faget, J.; Constam, D.B. Activin-A impairs CD8 T cell-mediated immunity and immune checkpoint therapy response in melanoma. J. Immunother. Cancer 2022, 10, e004533. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; An, L.; Moon, J.; Maymi, V.I.; McGurk, A.I.; Rudd, B.D.; Fowell, D.J.; White, A.C. Ccr2+ Monocyte-Derived Macrophages Influence Trajectories of Acquired Therapy Resistance in Braf-Mutant Melanoma. Cancer Res. 2023, 83, 2328–2344. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, S.M.; Shabaneh, T.B.; Zhang, P.; Martyanov, V.; Li, Z.; Malik, B.T.; Wood, T.A.; Boni, A.; Molodtsov, A.; Angeles, C.V.; et al. Myeloid Cells That Impair Immunotherapy Are Restored in Melanomas with Acquired Resistance to BRAF Inhibitors. Cancer Res. 2017, 77, 1599–1610. [Google Scholar] [CrossRef] [PubMed]
- Budhu, S.; Schaer, D.A.; Li, Y.; Toledo-Crow, R.; Panageas, K.; Yang, X.; Zhong, H.; Houghton, A.N.; Silverstein, S.C.; Merghoub, T.; et al. Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci. Signal. 2017, 10, eaak9702. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Peng, G.; Zhu, K.; Jie, X.; Xu, Y.; Rao, X.; Xu, Y.; Chen, Y.; Xing, B.; Wu, G.; et al. PD-1+ mast cell enhanced by PD-1 blocking therapy associated with resistance to immunotherapy. Cancer Immunol. Immunother. 2023, 72, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Theivanthiran, B.; Evans, K.S.; DeVito, N.C.; Plebanek, M.; Sturdivant, M.; Wachsmuth, L.P.; Salama, A.K.; Kang, Y.; Hsu, D.; Balko, J.M.; et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti–PD-1 immunotherapy. J. Clin. Investig. 2020, 130, 2570–2586. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, S.; Inozume, T.; Kawazu, M.; Ueno, T.; Nagasaki, J.; Tanji, E.; Honobe, A.; Ohnuma, T.; Kawamura, T.; Umeda, Y.; et al. TIGIT/CD155 axis mediates resistance to immunotherapy in patients with melanoma with the inflamed tumor microenvironment. J. Immunother. Cancer 2022, 9, e003134. [Google Scholar] [CrossRef] [PubMed]
- Frias, A.; Di Leo, L.; Antoranz, A.; Nazerai, L.; Carretta, M.; Bodemeyer, V.; Pagliuca, C.; Dahl, C.; Claps, G.; Mandelli, G.E.; et al. Ambra1 modulates the tumor immune microenvironment and response to PD-1 blockade in melanoma. J. Immunother. Cancer 2023, 11, e006389. [Google Scholar] [CrossRef] [PubMed]
- Synn, C.; Kim, S.E.; Lee, H.K.; Kim, M.; Kim, J.H.; Lee, J.M.; Ni Jo, H.; Lee, W.; Kim, D.K.; Byeon, Y.; et al. SKI-G-801, an AXL kinase inhibitor, blocks metastasis through inducing anti-tumor immune responses and potentiates anti-PD-1 therapy in mouse cancer models. Clin. Transl. Immunol. 2022, 11, e1364. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D.; Huang, T.Y.-T.; Shah, R.; Yang, Y.; Pan, F.; Semenza, G.L. BIRC2 Expression Impairs Anti-Cancer Immunity and Immunotherapy Efficacy. Cell Rep. 2020, 32, 108073. [Google Scholar] [CrossRef] [PubMed]
- Boshuizen, J.; Vredevoogd, D.W.; Krijgsman, O.; Ligtenberg, M.A.; Blankenstein, S.; de Bruijn, B.; Frederick, D.T.; Kenski, J.C.N.; Parren, M.; Brüggemann, M.; et al. Reversal of pre-existing NGFR-driven tumor and immune therapy resistance. Nat. Commun. 2020, 11, 3946. [Google Scholar] [CrossRef] [PubMed]
- Orgaz, J.L.; Crosas-Molist, E.; Sadok, A.; Perdrix-Rosell, A.; Maiques, O.; Rodriguez-Hernandez, I.; Monger, J.; Mele, S.; Georgouli, M.; Bridgeman, V.; et al. Myosin II Reactivation and Cytoskeletal Remodeling as a Hallmark and a Vulnerability in Melanoma Therapy Resistance. Cancer Cell 2020, 37, 85–103.e9. [Google Scholar] [CrossRef] [PubMed]
- Diazzi, S.; Tartare-Deckert, S.; Deckert, M. Bad Neighborhood: Fibrotic Stroma as a New Player in Melanoma Resistance to Targeted Therapies. Cancers 2020, 12, 1364. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Shklovskaya, E.; Lim, S.Y.; Carlino, M.S.; Menzies, A.M.; Stewart, A.; Pedersen, B.; Irvine, M.; Alavi, S.; Yang, J.Y.H.; et al. Transcriptional downregulation of MHC class I and melanoma de-differentiation in resistance to PD-1 inhibition. Nat. Commun. 2020, 11, 1897. [Google Scholar] [CrossRef] [PubMed]
- Maggiorani, D.; Le, O.; Lisi, V.; Landais, S.; Moquin-Beaudry, G.; Lavallée, V.P.; Decaluwe, H.; Beauséjour, C. Senescence drives immunotherapy resistance by inducing an immunosuppressive tumor microenvironment. Nat. Commun. 2024, 15, 2435. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; De Tenbossche, C.G.P.; Canè, S.; Colau, D.; Van Baren, N.; Lurquin, C.; Schmitt-Verhulst, A.-M.; Liljeström, P.; Uyttenhove, C.; Van den Eynde, B.J. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat. Commun. 2017, 8, 1404. [Google Scholar] [CrossRef] [PubMed]
- DeVito, N.C.; Nguyen, Y.-V.; Sturdivant, M.; Plebanek, M.P.; Villarreal, K.A.; Yarla, N.; Jain, V.; Aksu, M.; Beasley, G.M.; Theivanthiran, B.; et al. Gli2 Facilitates Tumor Immune Evasion and Immunotherapeutic Resistance by Coordinating Wnt Ligand and Prostaglandin Signaling. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Wu, B.; Li, T.; Beer, L.A.; Sharma, G.; Li, M.; Lee, C.N.; Liu, S.; Yang, C.; Huang, L.; et al. HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors. Nat. Commun. 2022, 13, 4078. [Google Scholar] [CrossRef] [PubMed]
- Hirose, S.; Mashima, T.; Yuan, X.; Yamashita, M.; Kitano, S.; Torii, S.; Migita, T.; Seimiya, H. Interleukin-4 induced 1-mediated resistance to an immune checkpoint inhibitor through suppression of CD8+ T cell infiltration in melanoma. Cancer Sci. 2024, 115, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G.; et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 2016, 165, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Tcyganov, E.N.; Sanseviero, E.; Marvel, D.; Beer, T.; Tang, H.-Y.; Hembach, P.; Speicher, D.W.; Zhang, Q.; Donthireddy, L.R.; Mostafa, A.; et al. Peroxynitrite in the tumor microenvironment changes the profile of antigens allowing escape from cancer immunotherapy. Cancer Cell 2022, 40, 1173–1189.e6. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Evans, K.S.; Xiao, C.; DeVito, N.; Theivanthiran, B.; Holtzhausen, A.; Siska, P.J.; Blobe, G.C.; Hanks, B.A. Stromal Fibroblasts Mediate Anti–PD-1 Resistance via MMP-9 and Dictate TGFβ Inhibitor Sequencing in Melanoma. Cancer Immunol. Res. 2018, 6, 1459–1471. [Google Scholar] [CrossRef] [PubMed]
- Feichtinger, R.G.; Lang, R. Targeting L-Lactate Metabolism to Overcome Resistance to Immune Therapy of Melanoma and Other Tumor Entities. J. Oncol. 2019, 2019, 2084195. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Kang, Y.; Wang, L.; Huff, S.; Tang, R.; Hui, H.; Agrawal, K.; Gonzalez, G.M.; Wang, Y.; Patel, S.P.; et al. ALKBH5 regulates anti–PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc. Natl. Acad. Sci. USA 2020, 117, 20159–20170. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.W.; Gammon, S.T.; Yang, P.; Ma, W.; Wang, J.; Piwnica-Worms, D. Inhibition of myeloperoxidase enhances immune checkpoint therapy for melanoma. J. Immunother. Cancer 2023, 11, e005837. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Yan, M.; Tao, Q.; Wu, J.; Chen, J.; Chen, X.; Peng, C. Inhibition of TCA cycle improves the anti-PD-1 immunotherapy efficacy in melanoma cells via ATF3-mediated PD-L1 expression and glycolysis. J. Immunother. Cancer 2023, 11, e007146. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhang, S.; Zheng, K.; Li, Z.; Hu, E.; Mu, Y.; Mai, J.; Zhao, A.; Zhao, Z.; Li, F. Salmonella-mediated methionine deprivation drives immune activation and enhances immune checkpoint blockade therapy in melanoma. J. Immunother. Cancer 2024, 12, e008238. [Google Scholar] [CrossRef] [PubMed]
- Abril-Rodriguez, G.; Torrejon, D.Y.; Karin, D.; Campbell, K.M.; Medina, E.; Saco, J.D.; Galvez, M.; Champhekar, A.S.; Perez-Garcilazo, I.; Baselga-Carretero, I.; et al. Remodeling of the Tumor Microenvironment Through PAK4 Inhibition Sensitizes Tumors to Immune Checkpoint Blockade. Cancer Res. Commun. 2022, 2, 1214–1228. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ma, J.; Guo, S.; Wang, H.; Wang, S.; Shi, Q.; Liu, L.; Zhao, T.; Yang, F.; Chen, S.; et al. A20 regulates the therapeutic effect of anti-PD-1 immunotherapy in melanoma. J. Immunother. Cancer 2020, 8, e001866. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Scott, M.; Mangiamele, C.G.; Heller, R. Modification of the Tumor Microenvironment Enhances Anti-PD-1 Immunotherapy in Metastatic Melanoma. Pharmaceutics 2022, 14, 2429. [Google Scholar] [CrossRef] [PubMed]
- Rafei-Shamsabadi, D.; Lehr, S.; von Bubnoff, D.; Meiss, F. Successful combination therapy of systemic checkpoint inhibitors and intralesional interleukin-2 in patients with metastatic melanoma with primary therapeutic resistance to checkpoint inhibitors alone. Cancer Immunol. Immunother. 2019, 68, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Gruber, T.; Kremenovic, M.; Sadozai, H.; Rombini, N.; Baeriswyl, L.; Maibach, F.; Modlin, R.L.; Gilliet, M.; von Werdt, D.; Hunger, R.E.; et al. IL-32γ potentiates tumor immunity in melanoma. JCI Insight 2020, 5, e138772. [Google Scholar] [CrossRef] [PubMed]
- Chow, M.T.; Ozga, A.J.; Servis, R.L.; Frederick, D.T.; Lo, J.A.; Fisher, D.E.; Freeman, G.J.; Boland, G.M.; Luster, A.D. Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy. Immunity 2019, 50, 1498–1512.e5. [Google Scholar] [CrossRef] [PubMed]
- Schlenker, R.; Schwalie, P.C.; Dettling, S.; Huesser, T.; Irmisch, A.; Mariani, M.; Gómez, J.M.M.; Ribeiro, A.; Limani, F.; Herter, S.; et al. Myeloid-T cell interplay and cell state transitions associated with checkpoint inhibitor response in melanoma. Med 2024, 5, 759–779.e7. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, X.; Gao, S.; Yan, Y.; Li, X.; Wang, H. Tumor microenvironment-responsive DNA-based nanomedicine triggers innate sensing for enhanced immunotherapy. J. Nanobiotechnol. 2023, 21, 382. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Ma, J.; Su, C.; Chen, Y.; Shu, Y.; Qi, Z.; Zhang, B.; Shi, G.; Zhang, Y.; Zhang, Y.; et al. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater. 2021, 135, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Ajith, A.; Mamouni, K.; Horuzsko, D.D.; Musa, A.; Dzutsev, A.K.; Fang, J.R.; Chadli, A.; Zhu, X.; Lebedyeva, I.; Trinchieri, G.; et al. Targeting TREM1 augments antitumor T cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti–PD-1 resistance. J. Clin. Investig. 2023, 133, e167951. [Google Scholar] [CrossRef] [PubMed]
- Harjunpää, H.; Blake, S.J.; Ahern, E.; Allen, S.; Liu, J.; Yan, J.; Lutzky, V.; Takeda, K.; Aguilera, A.R.; Guillerey, C.; et al. Deficiency of host CD96 and PD-1 or TIGIT enhances tumor immunity without significantly compromising immune homeostasis. OncoImmunology 2018, 7, e1445949. [Google Scholar] [CrossRef] [PubMed]
- Imbert, C.; Montfort, A.; Fraisse, M.; Marcheteau, E.; Gilhodes, J.; Martin, E.; Bertrand, F.; Marcellin, M.; Burlet-Schiltz, O.; Peredo, A.G.; et al. Resistance of melanoma to immune checkpoint inhibitors is overcome by targeting the sphingosine kinase-1. Nat. Commun. 2020, 11, 437. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liang, J.; He, X.; Ye, H.; Ruan, C.; Shao, H.; Zhang, R.; Li, Y. A Novel Oncogenic Role of FDX1 in Human Melanoma Related to PD-L1 Immune Checkpoint. Int. J. Mol. Sci. 2023, 24, 9182. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Jessel, S.; Qu, R.; Kluger, Y.; Chen, T.-M.; Hollander, L.; Safirstein, R.; Nelson, B.; Cha, C.; Bosenberg, M.; et al. Inhibition of renalase drives tumour rejection by promoting T cell activation. Eur. J. Cancer 2022, 165, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wu, Y.; Chick, J.M.; Abbott, A.; Jiang, B.; Wang, D.J.; Comte-Walters, S.; Johnson, R.H.; Oberholtzer, N.; Nishimura, M.I.; et al. Targeting protein tyrosine phosphatases for CDK6-induced immunotherapy resistance. Cell Rep. 2023, 42, 112314. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-C.; Tsui, Y.-C.; Ragusa, S.; Koelzer, V.H.; Mina, M.; Franco, F.; Läubli, H.; Tschumi, B.; Speiser, D.; Romero, P.; et al. Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. Nat. Immunol. 2019, 20, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Shi, X.; Zhang, J.; Qin, J.; Zhang, N.; Ren, H.; Qian, M.; Siwko, S.; Carmon, K.; Liu, Q.; et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Res. 2018, 78, 4929–4942. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Su, X.; Liu, R.; Pan, Y.; Fang, J.; Cao, L.; Feng, C.; Shang, Q.; Chen, Y.; Shao, C.; et al. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene 2021, 40, 1836–1850. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xu, Y.; Fang, J.; Liu, W.; Chen, J.; Liu, Z.; Xu, Q. Targeting STAT3 Abrogates Tim-3 Upregulation of Adaptive Resistance to PD-1 Blockade on Regulatory T Cells of Melanoma. Front. Immunol. 2021, 12, 654749. [Google Scholar] [CrossRef] [PubMed]
- Janji, B.; Hasmim, M.; Parpal, S.; De Milito, A.; Berchem, G.; Noman, M.Z. Lighting up the fire in cold tumors to improve cancer immunotherapy by blocking the activity of the autophagy-related protein PIK3C3/VPS34. Autophagy 2020, 16, 2110–2111. [Google Scholar] [CrossRef] [PubMed]
- Langenbach, M.; Giesler, S.; Richtsfeld, S.; Costa-Pereira, S.; Rindlisbacher, L.; Wertheimer, T.; Braun, L.M.; Andrieux, G.; Duquesne, S.; Pfeifer, D.; et al. MDM2 Inhibition Enhances Immune Checkpoint Inhibitor Efficacy by Increasing IL15 and MHC Class II Production. Mol. Cancer Res. 2023, 21, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Jin, X.; Zhao, Y.; Wang, Y.; Tao, M.; Cao, Y.; Yin, X. Melanoma-associated fibroblasts in tumor-promotion flammation and antitumor immunity: Novel mechanisms and potential immunotherapeutic strategies. Hum. Mol. Genet. 2024, 33, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Kang, K.; Chen, P.; Zeng, Z.; Li, G.; Xiong, W.; Yi, M.; Xiang, B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 2024, 23, 108. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 2009, 206, 3015–3029. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Schröter, U.; Höxtermann, S.; Susok, L.; Stockfleth, E.; Becker, J.C. Decline of programmed death-1-positive circulating T regulatory cells predicts more favourable clinical outcome of patients with melanoma under immune checkpoint blockade. Br. J. Dermatol. 2020, 182, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Winder, M.; Virós, A. Mechanisms of Drug Resistance in Melanoma. In Mechanisms of Drug Resistance in Cancer Therapy; Handbook of Experimental Pharmacology; Mandalà, M., Romano, E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 249, pp. 91–108. [Google Scholar] [CrossRef]
- Tian, J.; Quek, C. Understanding the Tumor Microenvironment in Melanoma Patients with In-Transit Metastases and Its Impacts on Immune Checkpoint Immunotherapy Responses. Int. J. Mol. Sci. 2024, 25, 4243. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, S.; Togashi, Y. Resistance to immune checkpoint inhibitors and the tumor microenvironment. Exp. Dermatol. 2023, 32, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.P.; Somasundram, P.M.; Smith, L.K.; Sheppard, K.E.; McArthur, G.A. The therapeutic potential of targeting minimal residual disease in melanoma. Clin. Transl. Med. 2023, 13, e1197. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Quek, C. Unravelling Tumour Microenvironment in Melanoma at Single-Cell Level and Challenges to Checkpoint Immunotherapy. Genes 2022, 13, 1757. [Google Scholar] [CrossRef] [PubMed]
- Wessely, A.; Steeb, T.; Berking, C.; Heppt, M.V. How Neural Crest Transcription Factors Contribute to Melanoma Heterogeneity, Cellular Plasticity, and Treatment Resistance. Int. J. Mol. Sci. 2021, 22, 5761. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Thompson, B.; Strange, A.; Amato, C.M.; Vassallo, M.; Dolgalev, I.; Hester-McCullough, J.; Muramatsu, T.; Kimono, D.; Puranik, A.S.; et al. A Population of Tumor-Infiltrating CD4+ T Cells Co-Expressing CD38 and CD39 Is Associated with Checkpoint Inhibitor Resistance. Clin. Cancer Res. 2023, 29, 4242–4255. [Google Scholar] [CrossRef] [PubMed]
- Indini, A.; Massi, D.; Pirro, M.; Roila, F.; Grossi, F.; Sahebkar, A.; Glodde, N.; Bald, T.; Mandalà, M. Targeting inflamed and non-inflamed melanomas: Biological background and clinical challenges. Semin. Cancer Biol. 2022, 86, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Olbryt, M.; Rajczykowski, M.; Widłak, W. Biological Factors behind Melanoma Response to Immune Checkpoint Inhibitors. Int. J. Mol. Sci. 2020, 21, 4071. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wang, Z.; Li, J.; Pi, X.; Gao, R.; Ma, J.; Qing, Y.; Zhou, S. The Identification of the Metabolism Subtypes of Skin Cutaneous Melanoma Associated with the Tumor Microenvironment and the Immunotherapy. Front. Cell Dev. Biol. 2021, 9, 707677. [Google Scholar] [CrossRef] [PubMed]
- Newell, F.; da Silva, I.P.; Johansson, P.A.; Menzies, A.M.; Wilmott, J.S.; Addala, V.; Carlino, M.S.; Rizos, H.; Nones, K.; Edwards, J.J.; et al. Multiomic profiling of checkpoint inhibitor-treated melanoma: Identifying predictors of response and resistance, and markers of biological discordance. Cancer Cell 2022, 40, 88–102.e7. [Google Scholar] [CrossRef] [PubMed]
- Ratkaj, I.; Mušković, M.; Malatesti, N. Targeting Microenvironment of Melanoma and Head and Neck Cancers in Photodynamic Therapy. Curr. Med. Chem. 2022, 29, 3261–3299. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Kadkhodazadeh, M.; Shapourabadi, M.B.; Goradel, N.H.; Shokrgozar, M.A.; Arashkia, A.; Abdoli, S.; Sharifzadeh, Z. Immunovirotherapy: The role of antibody based therapeutics combination with oncolytic viruses. Front. Immunol. 2022, 13, 1012806. [Google Scholar] [CrossRef] [PubMed]
- Trojaniello, C.; Vitale, M.G.; Scarpato, L.; Esposito, A.; Ascierto, P.A. Melanoma immunotherapy: Strategies to overcome pharmacological resistance. Expert Rev. Anticancer Ther. 2020, 20, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Routy, B.; Jackson, T.; Mählmann, L.; Baumgartner, C.K.; Blaser, M.; Byrd, A.; Corvaia, N.; Couts, K.; Davar, D.; Derosa, L.; et al. Melanoma and microbiota: Current understanding and future directions. Cancer Cell 2024, 42, 16–34. [Google Scholar] [CrossRef] [PubMed]
Molecule/Pathway | Mechanism |
---|---|
β-catenin pathway | Decreases ICI efficacy by suppressing CD8+ T cell recruitment [1]. |
Epigenetic modifications | Methylation of TME impacts β2M and SPI1, which control CD1D expression and affect tumor antigen presentation [46]. |
EZH2 pathway | Suppresses MHC-II presentation [48]. |
FBXW7 inactivation | Decreases expression of dsRNA sensors (MDA5 and RIG-I), which recruit IFN and cause MHC-I expression, altering the TME [49]. |
MITF transcription factor | Changes antigen presentation, controls expression of co-inhibitory receptors, and inflammatory secretome production to reduce infiltration of TME [50]. |
N6-methyladenosine RNA methylation | Decreases ICI efficacy by suppressing immune cell recruitment [47]. |
TCF4 transcription factor | Promotes a mesenchymal-like state in the tumor, which causes low susceptibility to T cell infiltration, downregulates antigen presentation, and interferon signaling, causing resistance [51]. |
ZEB1 transcription factor | Decreases ICI efficacy by suppressing the excretion of the CXCL10 chemokine that recruits CD8+ T cells, leading to suppressed T cell recruitment [52]. |
Molecule/Pathway | Mechanism |
---|---|
Activin-A | Prevents T cell recruitment by decreasing CXCL9/10 chemokine release [53]. |
CC2R macrophages | Infiltrate tumors and help support drug resistance [54]. |
IL-1a | Increases PD-L1 expression on tumors [45]. |
MDSCs | Correlated with the MAPK pathway and increased PD-L1 expression. MDSCs also work to decrease the host immune response via increased levels of IL-6, VEGF, and TGF-β to induce T-cell apoptosis. They also neutralize the IL-27/CD40 signaling pathway [38,55]. |
PD-1 | Recruit mast cells, which release histamine and cytokines to alter the TME [57]. |
PD-L1/NLRP3 inflammasome pathway | Recruits PMN-MDSCs with high Fas/FasL levels, which mediate apoptosis [58]. |
TIGIT/CD55 axis | Decreases ICI efficacy by suppressing T cell recruitment [59]. |
TLSP | Suppress CD8+ T-cells [34]. |
Tregs | Tregs create an immunosuppressed TME by reducing CD8 T cell granzyme B and increasing PD-1 [56]. |
Molecule/Pathway | Mechanism |
---|---|
Ambral protein loss | Loss of TME maintenance facilitates autophagy, apoptosis, cell proliferation, and invasion. This promotes metastasis and accelerated growth [60]. |
AXL kinase | Creates an immunosuppressed environment by upregulating PD-L1 on tumors and downregulating NK cells [61]. |
BIRC2 | Decreases ICI efficacy by suppressing the excretion of CXCL9 chemokine that recruits CD8+ T cells [62]. |
NGFR | Induces BDNF, which allows them to evade T cell killing mechanisms [63]. |
ROCK-Myosin-II pathway | Diminishes reactive oxygen species and prevents DNA damage in cancerous cells [64]. |
ZEB1 transcription factor | Decreases ICI efficacy by suppressing the excretion of the CXCL10 chemokine that recruits CD8+ T cells, leading to suppressed T cell recruitment5 [3]. |
Molecule/Pathway | Mechanism |
---|---|
Fas-L | High levels of the Fas/Fas-ligand mediate apoptosis of TILs [68]. |
Fibrotic Stroma | The tumor creates a fibrotic stroma ECM shield in response to therapy and protects itself through MMP9-dependent PD-L1 cleavage and downregulation of MHC-I expression [65,74]. |
GLI2 Pathway | Decreases host immune response by recruiting PMN-MDSCs and impairing the function of DCs, CD8+T cells, and NK cells [69]. |
HRS phosphorylation | Decreases ICI efficacy by suppressing T cell recruitment, enhancing the effect via interaction with PD-L1 [70]. |
IFN-γ/NAMPT | Decreases host immune response by upregulating the IFN/STAT1 pathway, which increases NAMPT levels and allows for greater tumor growth [30]. |
IL4I1 | Reduces CD8+ T cell infiltration and creates an immunosuppressive environment by depleting amino acids essential for T cells, producing toxic metabolites H2O2 and indole, and activating the aryl hydrocarbon receptor [71]. |
MAPK Pathway | Increases PD-L1 expression on tumors [72]. |
Peroxynitrite | Presence causes alteration of MHC-I antigen presentation on tumor cells [73]. |
PGE2/CADO | Increase cAMP and PKA, decreasing the effectiveness of TILs [32]. |
Molecule/Pathway | Mechanism |
---|---|
ALK-04 | Inhibits ALKBH5 and MCT4, reducing lactate levels [76]. |
Lactate dehydrogenase (LDH) inhibition | Reduces lactate production, restores T cell function [75]. |
Myeloperoxidase inhibition | Prevents the production of ROS [77]. |
SGN1 | Induces methionine deprivation, improves immune cell infiltration [79]. |
TCA cycle enzyme inhibition | Shifts metabolic preference to glycolysis [78]. |
Molecule/Pathway | Mechanism |
---|---|
A0317859 | Inhibits PAK4, improves blood vessel functionality, and increases immune cell tumor infiltration by increasing CCL21 levels [80]. |
A20 inhibition | Increases CD8+ T cell activity [81]. |
CCL4 | Increased T cell recruitment and infiltration [1]. |
cDC1s | Increases NK and T cell priming [86]. |
CDK6 depletion | Inhibits tumor growth, increases T and NK cell activity [94]. |
CD96 inhibition | Increases the CD8+ T cell/Treg ratio, decreases myeloid cell-mediated immune suppression [90]. |
CXCR3 and CXCL9 | Essential for the activation and proliferation of CD8+ T cells within the TME [85,86]. |
dsDNA@DMONs | Upregulate IFN-Is, increase maturation of DCs, and increase T cell activation [87]. |
ENVs-FAP | Increase activation and maturation of DCs, and increase CTLs [88]. |
FDX1 inhibition | Increases CD8+ T cells, decreases immunosuppressive cells, involved in lactate metabolism [92]. |
IL-2 | Increases T-cell activation and proliferation, improves antigen presentation, and increases IFN-γ and granzyme production [82,83]. |
IL-32γ | Activates intratumoral DCs, increases CD8+ T cells [84]. |
MDSC inhibition | Restores amino acids, prevents production of ROS, TGF-B, and IL-10 [36]. |
RNLS inhibition | Reduce T-regs, increase immune cell infiltration [93]. |
SK1 inhibitors | Reduces immunosuppressive cytokines, improves CD8+ T cell function [91]. |
TREM1 inhibition | Increases CD8+ T cell activity, reduces MDSC immunosuppression [89]. |
UCP2 | Increases CXCL10 production to attract T cells, normalizes tumor vasculature [95]. |
Molecule/Pathway | Mechanism |
---|---|
CD105 and CXCL13+ MAFs | Reduce T cell exhaustion, prevent activation of MDSCs [101]. |
PIK3C3/VPS34 inhibitors | Increased production of pro-inflammatory cytokines CCL5 and CXCL10 [99]. |
p53 | Tumor suppressor gene that increases activation of IL-15 and MHC Class II [100]. |
R-spondin/LGR4 inhibitors | Prevents pro-tumor M2 macrophage polarization, increases CD8+ T cells [96]. |
STAT3 inhibition | Decreases TIM3 expression, reduces immunosuppressive cytokine production (IL-10 and TGF-β) [98]. |
TSA-induced HDAC inhibition | Reprograms pro-tumor M2 phenotype to anti-tumor M1 phenotype in macrophages, reduces MDSCs [97]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turner, L.M.; Terhaar, H.; Jiminez, V.; Anderson, B.J.; Grant, E.; Yusuf, N. Tumor Microenvironmental Dynamics in Shaping Resistance to Therapeutic Interventions in Melanoma: A Narrative Review. Pharmaceuticals 2025, 18, 1082. https://doi.org/10.3390/ph18081082
Turner LM, Terhaar H, Jiminez V, Anderson BJ, Grant E, Yusuf N. Tumor Microenvironmental Dynamics in Shaping Resistance to Therapeutic Interventions in Melanoma: A Narrative Review. Pharmaceuticals. 2025; 18(8):1082. https://doi.org/10.3390/ph18081082
Chicago/Turabian StyleTurner, Laci M., Hanna Terhaar, Victoria Jiminez, Bailey J. Anderson, Emily Grant, and Nabiha Yusuf. 2025. "Tumor Microenvironmental Dynamics in Shaping Resistance to Therapeutic Interventions in Melanoma: A Narrative Review" Pharmaceuticals 18, no. 8: 1082. https://doi.org/10.3390/ph18081082
APA StyleTurner, L. M., Terhaar, H., Jiminez, V., Anderson, B. J., Grant, E., & Yusuf, N. (2025). Tumor Microenvironmental Dynamics in Shaping Resistance to Therapeutic Interventions in Melanoma: A Narrative Review. Pharmaceuticals, 18(8), 1082. https://doi.org/10.3390/ph18081082