Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (173)

Search Parameters:
Keywords = Trichoderma sp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2125 KiB  
Article
In Vitro Antagonism of Two Isolates of the Genus Trichoderma on Fusarium and Botryodiplodia sp., Pathogenic Fungi of Schizolobium parahyba in Ecuador
by Carlos Belezaca-Pinargote, Bélgica Intriago-Pinargote, Brithany Belezaca-Pinargote, Edison Solano-Apuntes, Ricardo Arturo Varela-Pardo and Paola Díaz-Navarrete
Int. J. Plant Biol. 2025, 16(3), 85; https://doi.org/10.3390/ijpb16030085 (registering DOI) - 1 Aug 2025
Abstract
A newly emerging disease affecting Schizolobium parahyba (commonly known as pachaco), termed “decline and dieback,” has been reported in association with the fungal pathogens Fusarium sp. and Botryodiplodia sp. This study assessed the antagonistic potential of two Trichoderma sp. isolates (CEP-01 and CEP-02) [...] Read more.
A newly emerging disease affecting Schizolobium parahyba (commonly known as pachaco), termed “decline and dieback,” has been reported in association with the fungal pathogens Fusarium sp. and Botryodiplodia sp. This study assessed the antagonistic potential of two Trichoderma sp. isolates (CEP-01 and CEP-02) against these phytopathogens under controlled laboratory conditions. The effects of three temperature regimes (5 ± 2 °C, 24 ± 2 °C, and 30 ± 2 °C) on the growth and inhibitory activity of two Trichoderma spp. isolates were evaluated using a completely randomized design. The first experiment included six treatments with five replicates, while the second comprised twelve treatments, also with five replicates. All assays were conducted on PDA medium. No fungal growth was observed at 5 ± 2 °C. However, at 24 ± 2 °C and 30 ± 2 °C, both isolates reached maximum growth within 72 h. At 24 ± 2 °C, both Trichoderma spp. isolates exhibited inhibitory activity against Fusarium sp. FE07 and FE08, with radial growth inhibition percentages (RGIP) ranging from 37.6% to 44.4% and 52,8% to 54.6%, respectively. When combined, the isolates achieved up to 60% inhibition against Fusarium sp., while Botryodiplodia sp. was inhibited by 40%. At 30 ± 2 °C, the antagonistic activity of Trichoderma sp. CEP-01 declined (25.6–32.4% RGIP), whereas Trichoderma sp. CEP-02 showed increased inhibition (60.3%–67.2%). The combination of isolates exhibited the highest inhibitory effect against Fusarium sp. FE07 and FE08 (68.4%–69.3%). Nonetheless, the inhibitory effect on Botryodiplodia sp. BIOT was reduced under elevated temperatures across all treatments. These findings reinforce the potential of Trichoderma spp. isolates as a viable and eco-friendly alternative for the biological control of pathogens affecting S. parahyba, contributing to more sustainable disease management practices. The observed inhibitory capacity of Trichoderma sp., especially under optimal temperature conditions, highlights its potential for application in integrated disease management programs, contributing to forest health and reducing reliance on chemical products. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

16 pages, 701 KiB  
Article
Use of Trichoderma, Aspergillus, and Rhizopus Fungi for the Biological Production of Hydrolytic Enzymes and Uronic Acids from Sargassum Biomass
by Cristina Agabo-García, Muhammad Nur Cahyanto, Widiastuti Setyaningsih, Luis I. Romero-García, Carlos J. Álvarez-Gallego and Ana Blandino
Fermentation 2025, 11(8), 430; https://doi.org/10.3390/fermentation11080430 - 27 Jul 2025
Viewed by 267
Abstract
The objective of this study was the evaluation of fungal solid-state fermentation (SSF) for the production of alginate lyase and extraction of uronic acids from Sargassum sp. For this purpose, the fungi Trichoderma asperellum, Aspergillus oryzae, and Rhizopus oryzae were applied [...] Read more.
The objective of this study was the evaluation of fungal solid-state fermentation (SSF) for the production of alginate lyase and extraction of uronic acids from Sargassum sp. For this purpose, the fungi Trichoderma asperellum, Aspergillus oryzae, and Rhizopus oryzae were applied (alone or combined) to Sargassum sp. biomass through SSF (107 spores gbiomass−1, 30 °C, and 7 days of treatment). In general, individual SSF with all three fungi degraded the biomass, achieving a marked synergy in the production of cellulase, laminarinase, and alginate lyase activities (especially for the last one). Trichoderma was the most efficient species in producing laminarinase, whereas Rhizophus was the best option for producing alginate lyase. However, when dual combinations were tested, the maximal values of alginate lyase activities were reached (13.4 ± 0.2 IU gbiomass−1 for Aspergillus oryzae and Rhizopus oryzae). Remarkably, uronic acids were the main monomeric units from algal biomass solubilization, achieving a maximum yield of 14.4 mguronic gbiomass−1, with the A + R condition being a feasible, eco-friendly alternative to chemical extraction of this monomer. Additionally, the application of all the fungal pretreatments drastically decreased the total phenolic content (TPC) in the biomass from 369 mg L−1 to values around 44–84 mg L−1, minimizing the inhibition for possible subsequent biological processes in which the residual solid can be used. Full article
Show Figures

Figure 1

20 pages, 1836 KiB  
Article
Advancing Semiochemical Tools for Mountain Pine Beetle Management: Dendroctonus ponderosae Responses to Saprophytic Fungal Volatiles
by Leah Crandall, Rashaduz Zaman, Guncha Ishangulyyeva and Nadir Erbilgin
Metabolites 2025, 15(7), 488; https://doi.org/10.3390/metabo15070488 - 20 Jul 2025
Viewed by 355
Abstract
Background/Objectives: Within their host trees, mountain pine beetles (MPBs, Dendroctonus ponderosae) interact with many fungal species, each releasing a unique profile of volatile organic compounds (VOCs). The FVOCs released by the two primary symbionts of MPBs, Grosmannia clavigera and Ophiostoma montium, [...] Read more.
Background/Objectives: Within their host trees, mountain pine beetles (MPBs, Dendroctonus ponderosae) interact with many fungal species, each releasing a unique profile of volatile organic compounds (VOCs). The FVOCs released by the two primary symbionts of MPBs, Grosmannia clavigera and Ophiostoma montium, have been found to enhance MPB attraction in the field and laboratory studies. Opportunistic, saprophytic fungal species, such as Aspergillus sp. and Trichoderma atroviride, are also common in MPB galleries and can negatively impact MPB fitness. However, little is known about the FVOCs produced by these fungal species and how they may impact MPB feeding and attraction. Methods: To address this knowledge gap, we characterized the FVOC profile of T. atroviride, and performed bioassays to test the effects of its FVOCs on MPB attraction and feeding activity. Results: Our chemical analysis revealed several FVOCs from T. atroviride known to inhibit the growth of competing fungal species and impact subcortical-beetle attraction. Conclusions: From those FVOCs, we recommended four compounds—2-pentanone, 2-heptanone, 2-pentanol, and phenylethyl alcohol—for use in future field tests as anti-attraction lures for MPBs. In bioassays, we also observed strong MPB repellency from FVOCs released by T. atroviride, as well as the mild effects of FVOCs on MPB feeding activity. Our findings highlight the potential for these FVOCs to be utilized in the development of more effective MPB anti-attractant lures, which are crucial for the monitoring and management of low-density MPB populations. Full article
(This article belongs to the Special Issue Dysbiosis and Metabolic Disorders of the Microbiota)
Show Figures

Figure 1

15 pages, 2159 KiB  
Article
Selection and Evaluation of Phosphate-Solubilizing Fungal Consortia Inoculated into Three Varieties of Coffea arabica Under Greenhouse Conditions
by Yamel del Carmen Perea-Rojas, Rosa María Arias and Rosario Medel-Ortíz
Microbiol. Res. 2025, 16(7), 162; https://doi.org/10.3390/microbiolres16070162 - 17 Jul 2025
Viewed by 458
Abstract
Phosphorus-solubilizing fungi represent a viable alternative to traditional fertilizers for use in coffee cultivation. The aim of this work was to select fungal consortia with a high phosphorus-solubilizing capacity for application to three varieties of coffee plants under greenhouse conditions. The research comprised [...] Read more.
Phosphorus-solubilizing fungi represent a viable alternative to traditional fertilizers for use in coffee cultivation. The aim of this work was to select fungal consortia with a high phosphorus-solubilizing capacity for application to three varieties of coffee plants under greenhouse conditions. The research comprised three phases: Firstly, solubilizing strains were identified morphologically and molecularly. Secondly, compatibility tests were carried out to select combinations of phosphorus-solubilizing fungi. The selection of the consortia was evaluated based on their phosphorus-solubilizing capacity, and the consortia with the solubilizing activity were chosen for application to coffee plants. In the greenhouse phase, three coffee varieties were inoculated; the treatments involved single, dual, and triple inoculation, as well as a control without fungi. Five species were identified: Fusarium crassum, F. irregulare, Leptobacillium leptobactrum, Penicillium brevicompactum, and Trichoderma spirale, plus one strain of Absidia sp. The in vitro phase of the study revealed that 11 consortia demonstrated compatibility, and their phosphorus solubilization capacity and phosphatase activity were evaluated. As a result, four consortia with high phosphorus solubilization capacity were selected for inoculation on coffee plants. The greenhouse phase results showed that the three coffee varieties inoculated in consortia showed higher phosphorus availability in the substrate and significant growth. Full article
Show Figures

Graphical abstract

18 pages, 457 KiB  
Article
Application of Trichoderma spp. to Control Colletotrichum sp. and Pseudopestalotiopsis spp., Causing Agents of Fruit Rot in Pomelo (Citrus maxima (Burm.) Merr.)
by Nguyen Quoc Khuong, Le Ba Duy, Vo Minh Thuan, Nguyen Thanh Ngan, Phan Chan Hiep, Le Thanh Quang, Nguyen Duc Trong, Ha Ngoc Thu, Do Thi Xuan, Le Thi My Thu, Tran Trong Khoi Nguyen, Ly Ngoc Thanh Xuan and Ngo Thanh Phong
Appl. Microbiol. 2025, 5(3), 66; https://doi.org/10.3390/applmicrobiol5030066 - 6 Jul 2025
Viewed by 342
Abstract
Fruit rot seriously damages pomelo production. Given concerns regarding the safety of chemical agents, biological alternatives are becoming more preferable. Therefore, the experiment aimed to (i) identify the pathogens causing pomelo fruit rot disease and (ii) select Trichoderma spp. strains controlling the determined [...] Read more.
Fruit rot seriously damages pomelo production. Given concerns regarding the safety of chemical agents, biological alternatives are becoming more preferable. Therefore, the experiment aimed to (i) identify the pathogens causing pomelo fruit rot disease and (ii) select Trichoderma spp. strains controlling the determined pathogens in Ben Tre, Vietnam. Three pathogenic fungal strains isolated from diseased pomelo fruits were selected. The three pathogenic fungal strains were randomly injected into 9 healthy pomelo fruits. The strain PCP-B02-A2 led to a completely rotten fruit on day 17 after infection, while strains PCP-B02-B2 and PCP-B03-A1 had infected spots whose lengths were 17.5 and 28.1 mm, became larger, and eventually led to the whole fruit rot. The pathogens were identified by the internal transcribed spacer (ITS) technique as Colletotrichum gloeosporioides PCP-B02-A2, Pseudopestalotiopsis camelliae sinensis PCP-B03-A1, and P. chinensis PCP-B02-B2. Twenty-five Trichoderma spp. strains were isolated. The ITS technique identified four strains, including Trichoderma asperellum TP-B01, T. harzianum TP-B08, T. harzianum TP-B09, and T. asperellum TP-C25. The PCP-B02-A2 strain had antagonism at 66.7–68.7%, while those of PCP-B02-B2 and PCP-B03-A1 were 64.2–71.1% and 55.7–57.4%, respectively. Full article
Show Figures

Figure 1

15 pages, 3858 KiB  
Article
Lipotrichaibol A and Trichoderpeptides A–D: Five New Peptaibiotics from a Sponge-Derived Trichoderma sp. GXIMD 01001
by Weichan Yang, Zhenzhou Tang, Xiaowei Luo, Yuman Gan, Meng Bai, Houwen Lin, Chenghai Gao, Ling Chai and Xiao Lin
Mar. Drugs 2025, 23(7), 264; https://doi.org/10.3390/md23070264 - 24 Jun 2025
Viewed by 521
Abstract
Five previously undescribed peptaibiotics, including one 7-mer lipopeptaibol named lipotrichaibol A (1), and four 11-mer peptaibiotics named trichoderpeptides A-D (25) were isolated from the rice culture medium of the sponge-derived fungus Trichoderma sp. GXIMD 01001. Their structures [...] Read more.
Five previously undescribed peptaibiotics, including one 7-mer lipopeptaibol named lipotrichaibol A (1), and four 11-mer peptaibiotics named trichoderpeptides A-D (25) were isolated from the rice culture medium of the sponge-derived fungus Trichoderma sp. GXIMD 01001. Their structures and absolute configurations were unambiguously established by extensive spectroscopic data analysis and advanced Marfey’s method. All isolated compounds were evaluated via CCK8 bioassays to investigate their antiproliferative activity. Only compound 1 exerted potent cytotoxicity against HT-29 and DLD-1 cells with IC50 values at 10.3 ± 1.9 and 12.31 ± 1.5 μM, respectively. In further in vitro bioassay, compound 1 exhibited significant inhibition in colony formation assay, induced apoptosis and blocked the cell cycle in the G0/G1 phase. The mechanism may be related to the regulation of the Erk1/2 signaling pathway. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites of Marine Fungi, 3rd Edition)
Show Figures

Graphical abstract

35 pages, 1811 KiB  
Review
Microbial Metabolites: A Sustainable Approach to Combat Plant Pests
by Somasundaram Prabhu, Rajendran Poorniammal and Laurent Dufossé
Metabolites 2025, 15(6), 418; https://doi.org/10.3390/metabo15060418 - 19 Jun 2025
Cited by 1 | Viewed by 669
Abstract
With the sustainable increase in agricultural productivity, the need for safer, environmentally friendly pesticide alternatives is also growing. Metabolites of microorganisms (bacteria, fungi, actinomycetes) are emerging as potential bioactive compounds for integrated pest and disease management. These compounds comprise amino acids, carbohydrates, lipids, [...] Read more.
With the sustainable increase in agricultural productivity, the need for safer, environmentally friendly pesticide alternatives is also growing. Metabolites of microorganisms (bacteria, fungi, actinomycetes) are emerging as potential bioactive compounds for integrated pest and disease management. These compounds comprise amino acids, carbohydrates, lipids, organic acids, phenolics, peptides, alkaloids, polyketides, and volatile organic compounds. The majority of them have insecticidal, fungicidal, and nematicidal activities. In this review, the classifications, biosynthetic pathways, and ecological functions of primary and secondary metabolites produced by microorganisms are discussed, including their mechanisms of action, ranging from competition to systemic acquired resistance in host plants. The article highlights the importance of microbial genera (viz., Bacillus sp., Pseudomonas sp., Trichoderma sp., Streptomyces sp., etc.) in making chemicals and biopesticides for crop defense. We present the possible applications of microbial biosynthesis strategies and synthetic biology tools in bioprocess development, covering recent innovations in formulation, delivery, and pathway engineering to enhance metabolite production. This review emphasizes the significance of microbial metabolites in improving the plant immunity, yield performance, reduction in pesticide application, and the sustainability of an ecological, sustainable, and resilient agricultural system. Full article
(This article belongs to the Special Issue Bioactive Metabolites from Natural Sources (2nd Edition))
Show Figures

Figure 1

21 pages, 1894 KiB  
Article
Optimizing Cocoa Productivity Through Soil Health and Microbiome Enhancement: Insights from Organic Amendments and a Locally Derived Biofertilizer
by Jennifer E. Schmidt, Julia Flores, Luigy Barragan, Freddy Amores and Sat Darshan S. Khalsa
Microorganisms 2025, 13(6), 1408; https://doi.org/10.3390/microorganisms13061408 - 17 Jun 2025
Viewed by 632
Abstract
Despite growing interest in improving soil health on cocoa farms, applied research on the impacts of specific amendments on soil and plant outcomes is lacking. An integrated assessment of the impacts of two different organic amendments (compost and vermicompost) and a microbial biofertilizer [...] Read more.
Despite growing interest in improving soil health on cocoa farms, applied research on the impacts of specific amendments on soil and plant outcomes is lacking. An integrated assessment of the impacts of two different organic amendments (compost and vermicompost) and a microbial biofertilizer on soil physical, chemical, and biological properties, as well as cocoa flowering, fruit set, and yield, was conducted in Guayaquil, Ecuador. Complementary culture-dependent and culture-independent methods were used to assess the impacts of amendments on microbial diversity, community composition, and specific taxa. Compost or vermicompost application affected soil chemical properties, including potassium, phosphorus, and sodium, and had small but significant effects on fungal beta diversity. Biofertilizer application slightly lowered soil pH and altered the total abundance of specific taxonomic groups including Azotobacter sp. and Trichoderma sp., with borderline significant effects on Azospirillum sp., Lactobacillus sp., Pseudomonas sp., calcium-solubilizing bacteria, and phosphorus-solubilizing bacteria. Amplicon sequencing (16S, ITS) identified 15 prokaryotic and 68 fungal taxa whose relative abundance was influenced by organic amendments or biofertilizer. Biofertilizer application increased cherelle formation by 19% and monthly harvestable pod counts by 11% despite no impact on flowering index or annual pod totals. This study highlights the tangible potential of microbiome optimization to simultaneously improve on-farm yield and achieve soil health goals on cocoa farms. Full article
Show Figures

Figure 1

15 pages, 2272 KiB  
Article
Native Strains T. longibrachiatum UCF17-M4 and Trichoderma sp. UCPF2 Reduce Cd Uptake in Cacao CCN51 Under Controlled Conditions
by Rozana Yanina Malca-Cerna, Cortez-Lazaro Anthony Apolinario, Chavez-Castillo Jeremy Israel, Arce-Inga Marielita and Cumpa-Velasquez Liz Marjory
Microbiol. Res. 2025, 16(6), 130; https://doi.org/10.3390/microbiolres16060130 - 17 Jun 2025
Viewed by 433
Abstract
The cacao trade and export industry has been impacted by cadmium (Cd2+) accumulation in soils, as the metal is absorbed by plants and transferred to the tissues. Consequently, cacao beans and their derivatives can become contaminated, sometimes exceeding permissible limits. In [...] Read more.
The cacao trade and export industry has been impacted by cadmium (Cd2+) accumulation in soils, as the metal is absorbed by plants and transferred to the tissues. Consequently, cacao beans and their derivatives can become contaminated, sometimes exceeding permissible limits. In this study, the capacity of native Trichoderma strains to reduce Cd accumulation in cacao was evaluated. Twelve Trichoderma strains were analyzed to assess their cadmium removal capacity through in vitro assays and their ability to reduce Cd concentration in cacao plants under controlled in vivo conditions. The in vitro results showed that several Trichoderma strains could remove cadmium and accumulate it in their biomass. However, this process is complex as it depends on metal concentration and environmental conditions. Notably, T. afroharzianum UCF18-M1 and CP24-6 exhibited high removal efficiencies at 100 ppm (61.79 ± 2.98% and 57.93 ± 4.14%, respectively). In contrast, the in vivo assays revealed that, contrary to expectations, some strains—including those with the highest removal efficiency—stimulated Cd uptake in plants, even at toxic levels, such as T. orientale BLPF1-C1. However, T. longibrachiatum UCF17-M4 and Trichoderma sp. UCPF2-C1 significantly reduced Cd accumulation in the stem. These findings highlight the potential of these strains to mitigate Cd contamination in cacao. Full article
Show Figures

Figure 1

24 pages, 8248 KiB  
Article
Genome-Guided Metabolomic Profiling of Peptaibol-Producing Trichoderma
by Arseniy A. Sinichich, Danil V. Krivonos, Anna A. Baranova, Mikhail Y. Zhitlov, Olga A. Belozerova, Vladislav A. Lushpa, Andrey V. Vvedensky, Marina V. Serebryakova, Anastasia I. Kalganova, Arsen M. Kudzhaev, Yuri A. Prokopenko, Sofia S. Sinelnikova, Ekaterina A. Trusova, Sergey I. Kovalchuk, Elena N. Ilina, Stanislav S. Terekhov and Vera A. Alferova
Int. J. Mol. Sci. 2025, 26(12), 5599; https://doi.org/10.3390/ijms26125599 - 11 Jun 2025
Viewed by 622
Abstract
Peptaibols are linear fungal peptides featuring α,α-dialkylated amino acids (e.g., α-aminoisobutyric acid (Aib), isovaline (Iva)) and characteristic C-terminal alcohol groups. Despite their promising antibacterial and antiplasmodial activities, detailed biosynthetic studies remain limited. A genome-guided study of the fungus Trichodema sp. SK1-7, isolated from [...] Read more.
Peptaibols are linear fungal peptides featuring α,α-dialkylated amino acids (e.g., α-aminoisobutyric acid (Aib), isovaline (Iva)) and characteristic C-terminal alcohol groups. Despite their promising antibacterial and antiplasmodial activities, detailed biosynthetic studies remain limited. A genome-guided study of the fungus Trichodema sp. SK1-7, isolated from decaying wood, revealed the production of previously described trichorozin IV (1), along with novel SF4-type peptaibol 2 (trichorozin V). The structures of these compounds were elucidated through MS analysis, NMR study and advanced Marfey’s method. The genome of Trichoderma sp. SK1-7 harbors two PKS-NRPS hybrid gene clusters containing 14 and 18 adenylation domains. Analysis of the modular architecture suggested that trichorozins are synthesized by a 14-module protein via a module skipping mechanism. Genome mining revealed several types of short peptaibol synthase architectures (10–14 adenylation domains) across various Trichoderma species, accompanied by similar long peptaibol synthases. Furthermore, putative Aib/Iva biosynthesis machinery in Trichoderma was identified, showing specific architectures potentially involved in regulating peptaibol biosynthesis. Feeding experiments demonstrated that peptaibol production depends on the ratio of Iva/Aib. The isolated compounds exhibited moderate antibacterial and cytotoxic activities along with a synergistic effect when combined with membrane-targeting antibiotics. Our findings suggest that genome-guided approaches hold promise for further development of peptabiotics with a wide range of applications, including antibiotic adjuvants. Full article
Show Figures

Figure 1

17 pages, 1924 KiB  
Article
Development of a High-Performance Trichoderma Mutant for Enhanced Cellulase Production Through UV-Induced Random Mutagenesis
by Seungjun Kim, Iksu Ha, Yun-Yeong Lee, Junseo Lee and Jeonghee Yun
J. Fungi 2025, 11(6), 439; https://doi.org/10.3390/jof11060439 - 9 Jun 2025
Viewed by 886
Abstract
Ultraviolet (UV)-induced mutagenesis is a cost-effective and straightforward technique for introducing random genetic variations without the use of chemical reagents or genetic engineering. It is commonly employed to enhance enzyme activity in industrial trains. In this study, Trichoderma sp. was exposed to UV [...] Read more.
Ultraviolet (UV)-induced mutagenesis is a cost-effective and straightforward technique for introducing random genetic variations without the use of chemical reagents or genetic engineering. It is commonly employed to enhance enzyme activity in industrial trains. In this study, Trichoderma sp. was exposed to UV radiation at varying distances (4, 9, and 13 cm) and durations (2, 4, 6, and 8 min) to induce mutations. The activities of endoglucanase (EG), β-glucosidase (BGL), and cellobiohydrolase (CBH) were assessed following treatment. The 4 cm exposure distance yielded the highest enhancement, with EG, BGL, and CBH activities increasing 1.5-, 1.3-, and 0.9-fold, respectively. When the distance was fixed at 4 cm, the optimal exposure time was identified as 4 min, yielding further enhancements of 1.9-, 1.6-, and 1.4-fold, respectively. The resulting mutant, designated Mut-4, was scaled up in a 10-L bioreactor to assess its industrial applicability. Mut-4 retained its enhanced performance, achieving 1.9-, 2.0-, and 1.4-fold enhancements in EG, BGL, and CBH activities, respectively, compared with the original strain. These findings indicate that combining UV-induced mutagenesis with basic screening is an effective strategy for enhancing cellulolytic enzyme production, representing a promising approach for lignocellulosic biomass conversion. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Graphical abstract

23 pages, 3459 KiB  
Article
Synergistic Effects of Trichoderma harzianum and Light Quality on Photosynthetic Carbon Metabolism and Growth in Tomato Plants
by Ningyu Wang, Qihui Xu, Congrui Qin, Lijiahong Geng, Zhenglin Yan, Haolong Li, Golam Jalal Ahammed and Shuangchen Chen
Agronomy 2025, 15(6), 1362; https://doi.org/10.3390/agronomy15061362 - 31 May 2025
Viewed by 708
Abstract
The genus Trichoderma comprises a group of fungi known for their beneficial effects on plant growth and stress tolerance. Light is a key environmental factor affecting many plant physiological processes. However, a significant research gap remains regarding the interaction between light quality and [...] Read more.
The genus Trichoderma comprises a group of fungi known for their beneficial effects on plant growth and stress tolerance. Light is a key environmental factor affecting many plant physiological processes. However, a significant research gap remains regarding the interaction between light quality and Trichoderma harzianum inoculation, particularly their combined effects on tomato plant growth and photosynthetic efficiency. Here, we showed that T. harzianum inoculation effectively alleviated the growth inhibition caused by monochromatic red light or blue light in tomato plants. Combined red and blue light treatment with T. harzianum inoculation (RBT) promoted root development by regulating the rational distribution of carbon assimilation products. Specifically, the RBT treatment upregulated the expression of photosynthesis-related genes, including key Calvin cycle enzyme genes such as FBPase, FBPA, TPI, and SBPase, as well as the light signal transduction factor HY5. In addition, T. harzianum inoculation increased the maximal photochemical efficiency of PSII (Fv/Fm), and the net photosynthetic rate (Pn). The activity of sucrose synthetase (SS) and sucrose phosphate synthetase (SPS) was also enhanced, promoting photosynthetic product accumulation in leaves and roots. Among all treatment groups, RBT performed the best in the above indexes. Full article
Show Figures

Figure 1

20 pages, 2081 KiB  
Article
Application of a Synthetic Microbial Community to Enhance Pepper Resistance Against Phytophthora capsici
by Tino Flory Bashizi, Min-Ji Kim, Kyeongmo Lim, GyuDae Lee, Setu Bazie Tagele and Jae-Ho Shin
Plants 2025, 14(11), 1625; https://doi.org/10.3390/plants14111625 - 26 May 2025
Viewed by 824
Abstract
Pepper (Capsicum annuum) production faces significant challenges from soil-borne pathogens, particularly Phytophthora capsici, which induces root rot and damping-off diseases. Management of this pathogen remains challenging owing to the scarcity of resistant cultivars and the ineffectiveness of chemical control methods. [...] Read more.
Pepper (Capsicum annuum) production faces significant challenges from soil-borne pathogens, particularly Phytophthora capsici, which induces root rot and damping-off diseases. Management of this pathogen remains challenging owing to the scarcity of resistant cultivars and the ineffectiveness of chemical control methods. A single strain has been used to prevent pathogenic disease, and this approach limits the exploration of consortia comprising different genera. In this study, we isolated five bacterial strains (Bacillus sp. T3, Flavobacterium anhuiense T4, Cytobacillus firmus T8, Streptomyces roseicoloratus T14, and Pseudomonas frederiksbergensis A6) from the rhizosphere of healthy pepper plants. We then applied this 5-isolate synthetic microbial community (SynCom) to Capsicum annuum to evaluate its efficacy in improving pepper resilience against P. capsici. The SynCom members exhibited phosphate solubilization, indole-3-acetic acid production, catalase activity, siderophore synthesis, and strong antagonism against P. capsici. The SynCom reduced disease severity and enhanced the growth of pepper plants. Furthermore, the beneficial genera such as Bacillus, Fusicolla, and Trichoderma, significantly increased in the rhizosphere of pepper after the application of the SynCom. Microbial functional prediction analysis revealed that these microbial shifts were associated with nitrogen cycling and pathogen suppression. Our SynCom approach demonstrates the effectiveness of microbial consortia in promoting the growth of pathogen-infected plants by reprogramming the microbial community in the rhizosphere. Full article
Show Figures

Figure 1

20 pages, 1030 KiB  
Article
Optimization and Bioreactor Scale-Up of Cellulase Production in Trichoderma sp. KMF006 for Higher Yield and Performance
by Seongwoo Myeong, Yun-Yeong Lee and Jeonghee Yun
Int. J. Mol. Sci. 2025, 26(8), 3731; https://doi.org/10.3390/ijms26083731 - 15 Apr 2025
Viewed by 1006
Abstract
This study optimized operating parameters to enhance cellulase production and evaluated scale-up feasibility in submerged fermentation (SmF) using Trichoderma sp. KMF006. Flask-scale experiments assessed the effects of Avicel:cellulose ratios (4:0–0:4), agitation speeds (150–210 rpm), and turbulence (baffled vs. non-baffled flasks), with optimized conditions [...] Read more.
This study optimized operating parameters to enhance cellulase production and evaluated scale-up feasibility in submerged fermentation (SmF) using Trichoderma sp. KMF006. Flask-scale experiments assessed the effects of Avicel:cellulose ratios (4:0–0:4), agitation speeds (150–210 rpm), and turbulence (baffled vs. non-baffled flasks), with optimized conditions applied to a 10 L bioreactor. A 3:1 Avicel:cellulose ratio (A3C1) significantly accelerated cellulase production, reaching peak activity 6 days earlier than Avicel alone. An agitation speed of 180 rpm was optimal, balancing enzyme activity and energy efficiency. Turbulence enhanced cellulase yields, with baffled flasks increasing EG, BGL, and CBH activities 19.9-, 6.2-, and 8.9-fold, respectively, compared to the control. Biochar further improved cellulase production but only under turbulent conditions, demonstrating a synergistic effect. At the bioreactor scale, the A3-180_Imp (A3C1, 180 rpm, impeller-induced turbulence) achieved the highest enzymatic activity (33.60 U/mL EG, 3.46 U/mL BGL, and 0.63 U/mL CBH). The filter paper unit (FPU) was 84 FPU/mL, a two-fold increase compared to the control. However, excessive turbulence at 210 rpm reduced enzyme stability, emphasizing the importance of balancing shear stress. These findings provide a systematic framework for optimizing SmF conditions, highlighting the significance of balancing hydrodynamic conditions for efficient cellulase production at an industrial scale. Full article
(This article belongs to the Special Issue The Characterization and Application of Enzymes in Bioprocesses)
Show Figures

Figure 1

33 pages, 2117 KiB  
Systematic Review
Current Progress in Microbial Biocontrol of Banana Fusarium Wilt: A Systematic Review
by Richard Solórzano, Héctor Andrés Ramírez Maguiña, Luis Johnson, Cledy Ureta Sierra and Juancarlos Cruz
Agronomy 2025, 15(3), 619; https://doi.org/10.3390/agronomy15030619 - 28 Feb 2025
Viewed by 3191
Abstract
Fusarium oxysporum f. sp. cubense (Foc) poses a significant threat to global banana production. This systematic review updates current knowledge on the efficacy of various antagonistic microorganisms in controlling Foc, considering the recent spread of this disease to new regions. [...] Read more.
Fusarium oxysporum f. sp. cubense (Foc) poses a significant threat to global banana production. This systematic review updates current knowledge on the efficacy of various antagonistic microorganisms in controlling Foc, considering the recent spread of this disease to new regions. The studies were systematically analyzed, focusing on methodologies, results, and conclusions to provide a comprehensive overview of current research and its practical implications. A total of 118 studies were reviewed, covering the use of antagonistic microorganisms such as Trichoderma spp., Bacillus spp., Streptomyces spp., and Pseudomonas spp., both in pure cultures and in consortia. Most studies focused on controlling Foc TR4 in Cavendish subgroup bananas and originated from Asia. Microbial consortia demonstrated a higher control percentage with lower variability, particularly in genera such as Pseudomonas. In contrast, pure cultures were more commonly used for Streptomyces. The choice between consortia and pure cultures depends on the genus and the experimental context, as each approach has distinct advantages. Although the reviewed studies were generally of high quality, long-term research is still lacking. Antagonistic microorganisms represent a promising alternative for Foc control, although their efficacy depends on the specific strain and environmental conditions. It has been observed that inoculating these microorganisms onto seedlings before transplantation or in combination with organic matter enhances their effectiveness. Localized testing and formulation optimization are recommended to improve their application as preventive and suppressive tools in soil against infections. The review highlights a vast diversity of microbial agents with high efficacy rates, various modes of action, and additional benefits for plant development beyond Foc biocontrol. Furthermore, some studies achieved 100% control at the plant level under controlled conditions. These findings demonstrate that biological control is a viable alternative for integrated Foc management. Future research should prioritize new approaches that facilitate the widespread adoption of these methodologies, including microbial formulation, field application, and integration with other control methods. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

Back to TopTop