Native Strains T. longibrachiatum UCF17-M4 and Trichoderma sp. UCPF2 Reduce Cd Uptake in Cacao CCN51 Under Controlled Conditions
Abstract
:1. Introduction
2. Methods
2.1. Biological Material and Strain Reactivation
2.2. In Vitro Cadmium Removal and Biomass Accumulation Assay
2.3. Inoculum Preparation
2.4. In Vivo Cd Reduction Assay in CCN51 Cacao Plants
2.5. Growth Variables
2.6. Cadmium Determination in Cacao Plants
2.7. Data Analysis
3. Results
3.1. Cadmium Removal Efficiency and Biomass Accumulation Under In Vitro Conditions
3.2. In Vivo Determination of Cadmium-Reducing Capacity in CCN51 Cacao Plants
3.3. Promotive Effect on Cacao Plants Under Heavy Metal Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zarrillo, S.; Gaikwad, N.; Lanaud, C.; Powis, T.; Viot, C.; Lesur, I.; Fouet, O.; Argout, X.; Guichoux, E.; Salin, F.; et al. The Use and Domestication of Theobroma cacao during the Mid-Holocene in the Upper Amazon. Nat. Ecol. Evol. 2018, 2, 1879–1888. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Desarrollo Agrario y Riego. Análisis de La Cadena Productiva Del Cacao Con Enfoque En Los Pequeños Productores de Limitado Acceso Al Mercado; Ministerio de Agricultura y Riego: Lima, Peru, 2018.
- Cámara Peruana de Café y Cacao Cacao Peruano, Datos Generales de Comercio. Available online: https://camcafeperu.com.pe/ES/cacao-peruano.php (accessed on 20 February 2025).
- MERCOSUR. Reglamento Técnico Mercosur Sobre Límites Máximos de Contaminantes Inorgánicos En Alimentos (Derogación De Las Res. GMC N° 102/94 y N° 36/96). 2011. Available online: https://normas.mercosur.int/public/normativas/2474 (accessed on 20 February 2025).
- European Food Safety Authority Commission Regulation (EU) N° 488/2014. 2014. Available online: https://eur-lex.europa.eu/eli/reg/2014/488/oj/eng (accessed on 20 February 2025).
- Smolders, E.; Mertens, J. Chapter 3: Cadmium. In Heavy Metals in Soils; Springer: Dordrecht, The Netherlands, 2013; pp. 283–311. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil Contamination with Cadmium, Consequences and Remediation Using Organic Amendments. Sci. Total Environ. 2017, 601–602, 1591–1605. [Google Scholar] [CrossRef] [PubMed]
- Maddela, N.R.; Kakarla, D.; García, L.C.; Chakraborty, S.; Venkateswarlu, K.; Megharaj, M. Cocoa-Laden Cadmium Threatens Human Health and Cacao Economy: A Critical View. Sci. Total Environ. 2020, 720, 137645. [Google Scholar] [CrossRef] [PubMed]
- USDA. Foreign Agricultural Service China Releases the Standard for Maximum Levels of Contaminants in Foods; USDA: Beijing, China, 2018. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2021-02/GB-2762-2017.pdf (accessed on 20 February 2025).
- Huaraca-Fernandez, J.N.; Pérez-Sosa, L.; Bustinza-Cabala, L.S.; Pampa-Quispe, N.B. Enmiendas Orgánicas En La Inmovilización de Cadmio En Suelos Agrícolas Contaminados: Una Revisión. Inf. Tecnol. 2020, 31, 139–152. [Google Scholar] [CrossRef]
- Blommaert, H.; Aucour, A.M.; Wiggenhauser, M.; Moens, C.; Telouk, P.; Campillo, S.; Beauchêne, J.; Landrot, G.; Testemale, D.; Pin, S.; et al. From Soil to Cacao Bean: Unravelling the Pathways of Cadmium Translocation in a High Cd Accumulating Cultivar of Theobroma cacao L. Front. Plant Sci. 2022, 13, 1055912. [Google Scholar] [CrossRef]
- Vanderschueren, R.; De Mesmaeker, V.; Mounicou, S.; Isaure, M.P.; Doelsch, E.; Montalvo, D.; Delcour, J.A.; Chavez, E.; Smolders, E. The Impact of Fermentation on the Distribution of Cadmium in Cacao Beans. Food Res. Int. 2020, 127, 108743. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Castillo, L.; Aromatisi, A.; Milne, L.; Castillo, A.B.; Muñoz-Rojas, M. Soil, Site, and Management Factors Affecting Cadmium Concentrations in Cacao-Growing Soils. Agronomy 2020, 10, 806. [Google Scholar] [CrossRef]
- Lewis, C.; Lennon, A.M.; Eudoxie, G.; Umaharan, P. Genetic Variation in Bioaccumulation and Partitioning of Cadmium in Theobroma cacao L. Sci. Total Environ. 2018, 640–641, 696–703. [Google Scholar] [CrossRef]
- Arévalo-Gardini, E.; Arévalo-Hernández, C.O.; Baligar, V.C.; He, Z.L. Heavy Metal Accumulation in Leaves and Beans of Cacao (Theobroma cacao L.) in Major Cacao Growing Regions in Peru. Sci. Total Environ. 2017, 605–606, 792–800. [Google Scholar] [CrossRef]
- Gramlich, A.; Tandy, S.; Andres, C.; Chincheros Paniagua, J.; Armengot, L.; Schneider, M.; Schulin, R. Cadmium Uptake by Cocoa Trees in Agroforestry and Monoculture Systems under Conventional and Organic Management. Sci. Total Environ. 2017, 580, 677–686. [Google Scholar] [CrossRef]
- Manton, W.I. Chapter 6: Nonnutritive Constituents in Chocolate and Cocoa. In Chocolate in Health and Nutrition; Humana: Totowa, NJ, USA, 2013; pp. 1–553. [Google Scholar] [CrossRef]
- Vanderschueren, R.; Argüello, D.; Blommaert, H.; Montalvo, D.; Barraza, F.; Maurice, L.; Schreck, E.; Schulin, R.; Lewis, C.; Vazquez, J.L.; et al. Mitigating the Level of Cadmium in Cacao Products: Reviewing the Transfer of Cadmium from Soil to Chocolate Bar. Sci. Total Environ. 2021, 781, 146779. [Google Scholar] [CrossRef]
- Bertoldi, D.; Barbero, A.; Camin, F.; Caligiani, A.; Larcher, R. Multielemental Fingerprinting and Geographic Traceability of Theobroma cacao Beans and Cocoa Products. Food Control 2016, 65, 46–53. [Google Scholar] [CrossRef]
- Abt, E.; Fong Sam, J.; Gray, P.; Robin, L.P. Cadmium and Lead in Cocoa Powder and Chocolate Products in the US Market. Food Addit. Contam. Part B Surveill. 2018, 11, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Fechner, C.; Greiner, M.; Heseker, H.; Lindtner, O. Dietary Exposure Assessment of Aluminium and Cadmium from Cocoa in Relation to Cocoa Origin. PLoS ONE 2019, 14, e0217990. [Google Scholar] [CrossRef]
- Oliva, M.; Rubio, K.; Epquin, M.; Marlo, G.; Leiva, S. Cadmium Uptake in Native Cacao Trees in Agricultural Lands of Bagua, Peru. Agronomy 2020, 10, 1551. [Google Scholar] [CrossRef]
- Rojas-Briceño, N.B.; Oliva-Cruz, M.; Rascón, J. Idoneidad Del Territorio Para El Cultivo Sostenible de Cacao (Theobroma cacao L.) Según Presencia de Cadmio En Suelos de Amazonas. Rev. Investig. Agroproducción Sustentable 2021, 5, 77. [Google Scholar] [CrossRef]
- Bailey, B.A.; Strem, M.D.; Wood, D. Trichoderma Species Form Endophytic Associations within Theobroma cacao Trichomes. Mycol. Res. 2009, 113, 1365–1376. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma Species—Opportunistic, Avirulent Plant Symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Abdul-Halim, A.M.A.A.; Shivanand, P.; Krishnamoorthy, S.; Taha, H. A Review on the Biological Properties of Trichoderma spp. as a Prospective Biocontrol Agent and Biofertilizer. J. Appl. Biol. Biotechnol. 2023, 11, 34–46. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Horwitz, B.A.; Herrera-Estrella, A.; Schmoll, M.; Kenerley, C.M. Trichoderma Research in the Genome Era. Annu. Rev. Phytopathol. 2013, 51, 105–129. [Google Scholar] [CrossRef]
- Chakroun, H.; Mechichi, T.; Martinez, M.J.; Dhouib, A.; Sayadi, S. Purification and Characterization of a Novel Laccase from the Ascomycete Trichoderma atroviride: Application on Bioremediation of Phenolic Compounds. Process Biochem. 2010, 45, 507–513. [Google Scholar] [CrossRef]
- Mejía, L.C.; Rojas, E.I.; Maynard, Z.; Van Bael, S.; Arnold, A.E.; Hebbar, P.; Samuels, G.J.; Robbins, N.; Herre, E.A. Endophytic Fungi as Biocontrol Agents of Theobroma cacao Pathogens. Biol. Control 2008, 46, 4–14. [Google Scholar] [CrossRef]
- Rubini, M.R.; Silva-Ribeiro, R.T.; Pomella, A.W.V.; Maki, C.S.; Araújo, W.L.; Dos Santos, D.R.; Azevedo, J.L. Diversity of Endophytic Fungal Community of Cacao (Theobroma cacao L.) and Biological Control of Crinipellis perniciosa, Causal Agent of Witches’ Broom Disease. Int. J. Biol. Sci. 2005, 1, 24–33. [Google Scholar] [CrossRef]
- López-Errasquín, E.; Vázquez, C. Tolerance and Uptake of Heavy Metals by Trichoderma atroviride Isolated from Sludge. Chemosphere 2003, 50, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Mandal, A.; Thakur, J.; Manna, M.C.; Rao, A.S. Exploring Bioaccumulation Efficacy of Trichoderma viride: An Alternative Bioremediation of Cadmium and Lead. Natl. Acad. Sci. Lett. 2012, 35, 299–302. [Google Scholar] [CrossRef]
- Mohsenzadeh, F.; Shahrokhi, F. Biological Removing of Cadmium from Contaminated Media by Fungal Biomass of Trichoderma Species. J. Environ. Heal. Sci. Eng. 2014, 12, 102. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Zarei, A.A.; Mostafapour, F.K. Biosorption of Cadmium from Aqueous Solutions by Trichoderma Fungus: Kinetic, Thermodynamic, and Equilibrium Study. Desalin. Water Treat. 2016, 57, 14598–14608. [Google Scholar] [CrossRef]
- Rahman, N.N.N.A.; Shahadat, M.; Omar, F.M.; Chew, A.W.; Kadir, M.O.A. Dry Trichoderma Biomass: Biosorption Behavior for the Treatment of Toxic Heavy Metal Ions. Desalin. Water Treat. 2016, 57, 13106–13112. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Shahabivand, S.; Aliloo, A.A. Toxic Metals Accumulation in Trichoderma asperellum and T. harzianum. Microbiology 2017, 86, 728–736. [Google Scholar] [CrossRef]
- Altaf, M.; Ilyas, T.; Shahid, M.; Shafi, Z.; Tyagi, A.; Ali, S. Trichoderma Inoculation Alleviates Cd and Pb-Induced Toxicity and Improves Growth and Physiology of Vigna radiata (L.). ACS Omega 2023, 9, 8557–8573. [Google Scholar] [CrossRef]
- Syed, A.; Elgorban, A.M.; Bahkali, A.H.; Eswaramoorthy, R.; Iqbal, R.K.; Danish, S. Metal-Tolerant and Siderophore Producing Pseudomonas Fluorescence and Trichoderma spp. Improved the Growth, Biochemical Features and Yield Attributes of Chickpea by Lowering Cd Uptake. Sci. Rep. 2023, 13, 4471. [Google Scholar] [CrossRef] [PubMed]
- Leiva, S.; Oliva, M.; Hernández, E.; Chuquibala, B.; Rubio, K.; García, F.; de la Cruz, M.T.M.T.; Torres de la Cruz, M.; de la Cruz, M.T.M.T. Assessment of the Potential of Trichoderma spp. Strains Native to Bagua (Amazonas, Peru) in the Biocontrol of Frosty Pod Rot (Moniliophthora roreri). Agronomy 2020, 10, 1376. [Google Scholar] [CrossRef]
- Leiva, S.; Rubio, K.; Díaz-Valderrama, J.R.; Granda-Santos, M.; Mattos, L. Phylogenetic Affinity in the Potential Antagonism of Trichoderma spp. against Moniliophthora Roreri. Agronomy 2022, 12, 2052. [Google Scholar] [CrossRef]
- Yaghoubian, Y.; Siadat, S.A.; Moradi Telavat, M.R.; Pirdashti, H.; Yaghoubian, I. Bio-Removal of Cadmium from Aqueous Solutions by Filamentous Fungi: Trichoderma spp. and Piriformospora indica. Environ. Sci. Pollut. Res. 2019, 26, 7863–7872. [Google Scholar] [CrossRef]
- Servicio Nacional de Meteorología e Hidrología del Perú Datos Hidrometeorológicos a Nivel Nacional. Available online: https://www.senamhi.gob.pe/?p=estaciones (accessed on 4 June 2025).
- Arce-Inga, M.; González-Pérez, A.R.; Hernandez-Diaz, E.; Chuquibala-Checan, B.; Chavez-Jalk, A.; Llanos-Gomez, K.J.; Leiva-Espinoza, S.T.; Oliva-Cruz, S.M.; Cumpa-Velasquez, L.M. Bioremediation Potential of Native Bacillus sp. Strains as a Sustainable Strategy for Cadmium Accumulation of Theobroma Cacao in Amazonas Region. Microorganisms 2022, 10, 2108. [Google Scholar] [CrossRef]
- Yin, K.; Wang, Q.; Lv, M.; Chen, L. Microorganism Remediation Strategies towards Heavy Metals. Chem. Eng. J. 2019, 360, 1553–1563. [Google Scholar] [CrossRef]
- Gasch, A.P. Comparative Genomics of the Environmental Stress Response in Ascomycete Fungi. Yeast 2007, 24, 961–976. [Google Scholar] [CrossRef]
- Nikolaou, E.; Agrafioti, I.; Stumpf, M.; Quinn, J.; Stansfield, I.; Brown, A.J. Phylogenetic Diversity of Stress Signalling Pathways in Fungi. BMC Evol. Biol. 2009, 9, 44. [Google Scholar] [CrossRef]
- Naranjo-Ortiz, M.A.; Gabaldón, T. Fungal Evolution: Cellular, Genomic and Metabolic Complexity. Biol. Rev. 2020, 95, 1198–1232. [Google Scholar] [CrossRef]
- Bailey, B.A.; Bae, H.; Strem, M.D.; Crozier, J.; Thomas, S.E.; Samuels, G.J.; Vinyard, B.T.; Holmes, K.A. Antibiosis, Mycoparasitism, and Colonization Success for Endophytic Trichoderma Isolates with Biological Control Potential in Theobroma cacao. Biol. Control 2008, 46, 24–35. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Yu, C.; Dou, K.; Wang, M.; Li, Y.; Chen, J. Synergistic Effect of Trichoderma-Derived Antifungal Metabolites and Cell Wall Degrading Enzymes on Enhanced Biocontrol of Fusarium oxysporum f. sp. Cucumerinum. Biol. Control 2016, 94, 37–46. [Google Scholar] [CrossRef]
- Walid, N.; Al-Jaramany, L.; Elbenay, A.; Al-Mhethawi, R. Biological Control of Tomato Damping-off and Potato Black Scurf by Seed Treatment with Trichoderma harzianum. Jordan J. Biol. Sci. 2022, 15, 373–380. [Google Scholar] [CrossRef]
- Crisostomo-Panuera, J.S.; del Valle Nieva, A.S.; Ix-Balam, M.A.; Díaz-Valderrama, J.R.; Alviarez-Gutierrez, E.; Oliva-Cruz, S.M.; Cumpa-Velásquez, L.M. Diversity and Functional Assessment of Indigenous Culturable Bacteria Inhabiting Fine-Flavor Cacao Rhizosphere: Uncovering Antagonistic Potential against Moniliophthora roreri. Heliyon 2024, 10, e28453. [Google Scholar] [CrossRef] [PubMed]
- González-Reguero, D.; Robas-Mora, M.; Fernández-Pastrana, V.M.; Agustin Probanza-Lobo, P.J.-G. Reduced Antibiotic Resistance in the Rhizosphere of Lupinus albus in Mercury-Contaminated Soil Mediated by the Addition of PGPB. Biology 2023, 12, 801. [Google Scholar] [CrossRef]
- Kumar, S.; Choudhary, A.K.; Suyal, D.C.; Makarana, G.; Goel, R. Leveraging Arsenic Resistant Plant Growth-Promoting Rhizobacteria for Arsenic Abatement in Crops. J. Hazard. Mater. 2022, 425, 127965. [Google Scholar] [CrossRef]
- Liu, Y.R.; Delgado-Baquerizo, M.; Bi, L.; Zhu, J.; He, J.Z. Consistent Responses of Soil Microbial Taxonomic and Functional Attributes to Mercury Pollution across China. Microbiome 2018, 6, 183. [Google Scholar] [CrossRef]
- Cayotopa-Torres, J.; Arévalo-López, L.; Pichis-García, R.; Olivera-Cayotopa, D.; Rimachi-Valle, M.; Márquez-Dávila, K. New Cadmium Bioremediation Agents: Trichoderma species Native to the Rhizosphere of Cacao Trees. Sci. Agropecu. 2021, 24, 155–160. [Google Scholar] [CrossRef]
- Cordoba-Novoa, H.A.; Cáceres-Zambrano, J.; Torres-Rojas, E. Isolation of Native Cadmium-Tolerant Bacteria and Fungi from Cacao (Theobroma cacao L.)—Cultivated Soils in Central Colombia. Heliyon 2023, 9, e22489. [Google Scholar] [CrossRef]
- Guerra Sierra, B.E.; Arteaga-Figueroa, L.A.; Sierra-Pelaéz, S.; Alvarez, J.C. Talaromyces Santanderensis: A New Cadmium-Tolerant Fungus from Cacao Soils in Colombia. J. Fungi 2022, 8, 1042. [Google Scholar] [CrossRef]
- Firincă, C.; Zamfir, L.G.; Constantin, M.; Răut, I.; Capră, L.; Popa, D.; Jinga, M.L.; Baroi, A.M.; Fierăscu, R.C.; Corneli, N.O.; et al. Microbial Removal of Heavy Metals from Contaminated Environments Using Metal-Resistant Indigenous Strains. J. Xenobiotics 2024, 14, 51–78. [Google Scholar] [CrossRef]
- Cheng, H.; Gao, M.; Yang, W.; Sun, H.; Kong, T.; Xu, H. Combined Application of Organic Wastes and Trichoderma longibraciatum to Promote Vegetation Restoration and Soil Quality on Mining Waste Dump Sites. Plant Soil 2024, 508, 567–588. [Google Scholar] [CrossRef]
- Qian, X.; Dong, Y.; Yu, D.; Cao, Y.; Sarsaiya, S.; Chen, J. Cobalt Stress Enhanced Dendrobine-Type Total Alkaloids Biosynthesis of Trichoderma longibrachiatum UN32 through Reactive Oxygen Species Formation. World J. Microbiol. Biotechnol. 2024, 40, 328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gan, Y.; Xu, B. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression. Front. Plant Sci. 2016, 7, 1405. [Google Scholar] [CrossRef] [PubMed]
- Azam, T.; Dai, X.; Chen, X.; Ali, I.; Chen, S.; Noor, F.; Haider, S.Z. Comparative Transcriptomic and Physiological Analysis of Extremophilic and Non-Extremophilic Fungi in Bioremediation of Cadmium (Cd) and Strontium (Sr). Environ. Pollut. 2025, 367, 125678. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, C.; Gao, Z.F.; Qiu, C.W.; Shi, S.H.; Chen, Z.H.; Ali, M.A.; Wang, F.; Wu, F. Integrated Physiological and Omics Analyses Reveal the Mechanism of Beneficial Fungal Trichoderma sp. Alleviating Cadmium Toxicity in Tobacco (Nicotiana tabacum L.). Ecotoxicol. Environ. Saf. 2023, 267. [Google Scholar] [CrossRef]
- Yao, S.; Zhou, B.; Duan, M.; Cao, T.; Wen, Z.; Chen, X.; Wang, H.; Wang, M.; Cheng, W.; Zhu, H.; et al. Combination of Biochar and Trichoderma harzianum Can Improve the Phytoremediation Efficiency of Brassica Juncea and the Rhizosphere Micro-Ecology in Cadmium and Arsenic Contaminated Soil. Plants 2023, 12, 2939. [Google Scholar] [CrossRef]
- Xiong, J.; Zou, D.; Kang, J.; Mo, Y.; Li, L.; Zhan, L.; Wu, Q.; Xiao, Z. Improving Peanut Growth and Cadmium Phytoextraction Capacity by Inoculating Bacillus megaterium and Trichoderma harzianum. J. Environ. Manag. 2024, 370, 122758. [Google Scholar] [CrossRef]
- Govarthanan, M.; Mythili, R.; Selvankumar, T.; Kamala-Kannan, S.; Kim, H. Myco-Phytoremediation of Arsenic- and Lead-Contaminated Soils by Helianthus annuus and Wood Rot Fungi, Trichoderma sp. Isolated from Decayed Wood. Ecotoxicol. Environ. Saf. 2018, 151, 279–284. [Google Scholar] [CrossRef]
- Chen, D.W.; Wang, Y.H.; Li, N.; Huang, Y.L.; Mao, Y.F.; Liu, X.J.; Du, Y.R.; Sun, K. Transcriptomic and Physiological Analyses of Trichoderma citrinoviride HT-1 Assisted Phytoremediation of Cd Contaminated Water by Phragmites australis. BMC Microbiol 2024, 24, 93. [Google Scholar] [CrossRef]
- Shanmugaraj, B.M.; Malla, A.; Ramalingam, S. Cadmium Stress and Toxicity in Plants: An Overview; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128148655. [Google Scholar]
- Castro, A.V.; de Almeida, A.A.F.; Pirovani, C.P.; Reis, G.S.M.; Almeida, N.M.; Mangabeira, P.A.O. Morphological, Biochemical, Molecular and Ultrastructural Changes Induced by Cd Toxicity in Seedlings of Theobroma cacao L. Ecotoxicol. Environ. Saf. 2015, 115, 174–186. [Google Scholar] [CrossRef]
- Fazli, M.M.; Soleimani, N.; Mehrasbi, M.; Darabian, S.; Mohammadi, J.; Ramazani, A. Highly Cadmium Tolerant Fungi: Their Tolerance and Removal Potential. J. Environ. Heal. Sci. Eng. 2015, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Singh, A.; Kumar, V. Recent Advancements in Cadmium-Microbe Interactive Relations and Their Application for Environmental Remediation: A Mechanistic Overview. Environ. Sci. Pollut. Res. 2023, 30, 17009–17038. [Google Scholar] [CrossRef] [PubMed]
- Ng, I.S.; Wu, X.; Yang, X.; Xie, Y.; Lu, Y.; Chen, C. Synergistic Effect of Trichoderma reesei Cellulases on Agricultural Tea Waste for Adsorption of Heavy Metal Cr(VI). Bioresour. Technol. 2013, 145, 297–301. [Google Scholar] [CrossRef] [PubMed]
Genus | Specie | Strain | Reference |
---|---|---|---|
Thichoderma | afroharzianum | CP24-6 | [39] |
UCF18-M1 | Unpublished | ||
UCF12-M3 | [40] | ||
longibrachiatum | UCF10A-C1 | [40] | |
UCF5A-C1 | |||
UCF17-M4 | |||
orientale | CRSF1-C1 | [40] | |
BM18-C1 | |||
BLPF1-C1 | Unpublished | ||
reesei | CNF20-C1 | [40] | |
BIF3-C1 | |||
sp. | UCPF2-C1 | [40] |
Genus/Specie | Strain | Removal Efficiency (%) | Biomass Accumulation (mg/g) | ||||||
---|---|---|---|---|---|---|---|---|---|
0 ppm | 100 ppm | 200 ppm | 300 ppm | 0 ppm | 100 ppm | 200 ppm | 300 ppm | ||
T. afroharzianum | CP24-6 | 0 | 57.93 ± 4.14 | 33.35 ± 3.22 | 52.02 ± 1.61 | 0 | 15.17±0.62 | 19.23±0.66 | 60.15±1.42 |
UCF18-M1 | 0 | 61.79 ± 2.98 | 33.93 ± 1.28 | 51.20 ± 6.95 | 0 | 14.25 ± 1.51 | 13.31 ± 0.53 | 33.90 ± 5.60 | |
UCF12-M3 | 0 | 10.20 ± 5.12 | 50.18 ± 17.49 | 13.55 ± 3.29 | 0 | 5.71 ± 0.57 | 44.26 ± 9.60 | 31.97 ± 3.29 | |
T. longibrachiatum | UCF10A-C1 | 0 | 8.26 ± 5.06 | 2.96 ± 1.32 | 3.69 ± 1.01 | 0 | 6.63 ± 2.78 | 2.85 ± 0.78 | 6.55 ± 1.33 |
UCF5A-C1 | 0 | 7.27 ± 0.87 | nd | 3.30 ± 2.36 | 0 | 5.09 ± 0.59 | nd | 5.41 ± 1.78 | |
UCF17-M4 | 0 | 0.88 ± 0.87 | nd | 6.75 ± 4.53 | 0 | 2.44 ± 2.02 | nd | 15.45 ± 5.75 | |
T. orientale | CRSF1-C1 | 0 | 20.21 ± 12.17 | 18.97 ± 5.61 | 16.13 ± 4.52 | 0 | 5.85 ± 2.10 | 21.31 ± 2.07 | 36.62 ± 7.45 |
BM18-C1 | 0 | 12.69 ± 2.29 | 16.09 ± 2.67 | 19.15 ± 4.27 | 0 | 9.24 ± 1.70 | 25.78 ± 3.09 | 76.74 ± 10.87 | |
BLPF1-C1 | 0 | 17.40 ± 2.62 | 11.41 ± 1.14 | 20.97 ± 6.96 | 0 | 10.78 ± 2.14 | 82.17 ± 8.23 | 111.65 ± 37.58 | |
T. reesei | CNF20-C1 | 0 | nd | nd | nd | 0 | nd | nd | nd |
BIF3-C1 | 0 | 7.30 ± 1.56 | 6.70 ± 4.35 | 10.24 ± 5.70 | 0 | 3.86 ± 0.19 | 6.72 ± 1.82 | 19.28 ± 5.68 | |
Trichoderma sp. | UCPF2-C1 | 0 | nd | nd | nd | 0 | nd | nd | nd |
Genus/Specie | Strain | Growth Variables | |||
---|---|---|---|---|---|
Height (mm) | Number of Leaves | Fresh Weight (g) | Dry Weight (mg) | ||
T. afroharzianum | UCF18-M1 | 190.99 ± 16.40 | 8 ± 0.91 | 3.37 ± 0.83 | 1.24 ± 0.31 |
UCF12-M3 | 192.71 ± 22.12 | 7.2 ± 0.74 | 3.17 ± 0.63 | 1.38 ± 0.28 | |
CP24-6 | 171.60 ± 8.59 | 6.40 ± 0.25 | 2.15 ± 0.34 | 0.86 ± 0.22 | |
T. longibrachiatum | UCF17-M4 | 216.95 ± 7.10 | 10.2 ± 0.92 | 4.26 ± 0.13 | 1.62 ± 0.04 |
UCF10A-C1 | 209.98 ± 24.08 | 8 ± 0.55 | 3.76 ± 0.55 | 1.45 ± 0.22 | |
UCF5A-C1 | 174.61 ± 24.75 | 7.50 ± 1.76 | 2.71 ± 0.87 | 1.07 ± 0.36 | |
T. orientale | CRSF1-C1 | 193.53 ± 20.94 | 9.2 ± 1.14 | 3.48 ± 0.64 | 1.41 ± 0.24 |
BM18-CI | 182.67 ± 19.64 | 9.2 ± 0.58 | 3.82 ± 0.62 | 1.60 ± 0.26 | |
BLPF1-C1 | 115.70 ± 16.15 | 5.4 ± 0.93 | 1.28 ± 0.34 *** | 0.42 ± 0.15 *** | |
T. reesei | CNF20-C1 | 162.90 ± 18.00 | 7.25 ± 0.75 | 3.46 ± 0.58 | 1.20 ± 0.20 |
BIF3-C1 | 147.93 ± 7.28 | 7.40 ± 0.40 | 4.04 ± 0.20 | 1.45 ± 0.07 | |
Trichoderma sp. | UCPF2-C1 | 156.03 ± 13.22 | 7.5 ± 0.29 | 2.40 ± 0.58 | 0.87 ± 0.17 |
Control + Cd | 172.1 ± 2.47 | 9 ± 1.35 | 4.31 ± 0.36 | 1.62 ± 0.16 | |
Control - Cd | 179 ± 21.07 | 9 ± 1.53 | 5.55 ± 0.66 | 1.88 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malca-Cerna, R.Y.; Apolinario, C.-L.A.; Israel, C.-C.J.; Marielita, A.-I.; Marjory, C.-V.L. Native Strains T. longibrachiatum UCF17-M4 and Trichoderma sp. UCPF2 Reduce Cd Uptake in Cacao CCN51 Under Controlled Conditions. Microbiol. Res. 2025, 16, 130. https://doi.org/10.3390/microbiolres16060130
Malca-Cerna RY, Apolinario C-LA, Israel C-CJ, Marielita A-I, Marjory C-VL. Native Strains T. longibrachiatum UCF17-M4 and Trichoderma sp. UCPF2 Reduce Cd Uptake in Cacao CCN51 Under Controlled Conditions. Microbiology Research. 2025; 16(6):130. https://doi.org/10.3390/microbiolres16060130
Chicago/Turabian StyleMalca-Cerna, Rozana Yanina, Cortez-Lazaro Anthony Apolinario, Chavez-Castillo Jeremy Israel, Arce-Inga Marielita, and Cumpa-Velasquez Liz Marjory. 2025. "Native Strains T. longibrachiatum UCF17-M4 and Trichoderma sp. UCPF2 Reduce Cd Uptake in Cacao CCN51 Under Controlled Conditions" Microbiology Research 16, no. 6: 130. https://doi.org/10.3390/microbiolres16060130
APA StyleMalca-Cerna, R. Y., Apolinario, C.-L. A., Israel, C.-C. J., Marielita, A.-I., & Marjory, C.-V. L. (2025). Native Strains T. longibrachiatum UCF17-M4 and Trichoderma sp. UCPF2 Reduce Cd Uptake in Cacao CCN51 Under Controlled Conditions. Microbiology Research, 16(6), 130. https://doi.org/10.3390/microbiolres16060130