Development of a High-Performance Trichoderma Mutant for Enhanced Cellulase Production Through UV-Induced Random Mutagenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and UV Mutagenesis
2.2. Cultivation of Mutant Strains for Activity Screening
2.3. Enzyme Extraction and Activity Assays
2.3.1. Endoglucanase
2.3.2. β-Glucosidase
2.3.3. Cellobiohydrolase
2.3.4. Protein Concentration
2.4. Identification of the Optimally UV-Mutated Strain
2.5. 10-L Bioreactor for Cellulase Production
2.6. Statistical Analysis
3. Results
3.1. Effect of UV Light Exposure Distance on Cellulase Activity
3.2. Effect of UV Exposure Time on Cellulase Activity and Protein Concentration
3.3. Enzyme Activity and Protein Concentration in a 10-L Bioreactor
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UV | Ultraviolet |
EG | Endoglucanase |
BGL | β-Glucosidase |
CBH | Cellobiohydrolase |
MEA | Malt Extract Agar |
PDB | Potato Dextrose Broth |
CMC | Carboxymethyl Cellulose |
pNPG | p-Nitrophenyl-β-D-glucopyranoside |
pNPC | p-Nitrophenyl-β-D-cellobioside |
BSA | Bovine Serum Albumin |
ITS | Internal Transcribed Spacer |
NCBI | National Center for Biotechnology Information |
SSF | Solid-State Fermentation |
ANOVA | Analysis of Variance |
FPase | Filter Paper Activity |
Appendix A. Maximum Cellulase Activities and Protein Concentrations of Trichoderma Strains
EG Activity | BGL Activity | CBH Activity | Protein Concentration | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
U/mL | Std | Day (1) | U/mL | Std | Day | U/mL | Std | Day | mg/mL | Std | Day | |
Original (2) | 21.824 b | 1.406 | 21 | 1.926 c | 0.102 | 21 | 0.538 b | 0.017 | 21 | 0.341 c | 0.042 | 15 |
UV 4 cm (3) | 33.784 a | 4.757 | 18 | 2.432 a,b | 0.051 | 15 | 0.458 b | 0.012 | 18 | 0.936 a | 0.012 | 18 |
UV 9 cm | 28.593 a | 2.197 | 21 | 2.066 b,c | 0.130 | 21 | 0.651 a | 0.060 | 21 | 0.880 a | 0.008 | 21 |
UV 13 cm | 29.451 a | 1.874 | 21 | 2.626 a | 0.305 | 21 | 0.515 b | 0.072 | 21 | 0.803 b | 0.036 | 18 |
References
- Ejaz, U.; Sohail, M.; Ghanemi, A. Cellulases: From bioactivity to a variety of industrial applications. Biomimetics 2021, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Kuhad, R.C.; Gupta, R.; Singh, A. Microbial cellulases and their industrial applications. Enzym. Res. 2011, 2011, 280696. [Google Scholar] [CrossRef] [PubMed]
- Asgher, M.; Ahmad, Z.; Iqbal, H.M.N. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind. Crops Prod. 2013, 44, 488–495. [Google Scholar] [CrossRef]
- Iqbal, H.M.N.; Ahmed, I.; Zia, M.A.; Irfan, M. Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv. Biosci. Biotechnol. 2011, 2, 149–156. [Google Scholar] [CrossRef]
- Iqbal, H.M.N.; Kyazze, G.; Keshavarz, T. Advances in the valorization of lignocellulosic materials by biotechnology: An overview. BioResources 2013, 8, 3157–3176. [Google Scholar] [CrossRef]
- Elakkiya, P.; Muralikrishnan, V. Cellulase production and purification of mutant strain Trichoderma viride. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 720–727. [Google Scholar]
- Kant, S.; Das, S.; Roy, S.; Tripathy, S. Fungal cellulases: A comprehensive review. Nucleus 2024, 67, 1–17. [Google Scholar] [CrossRef]
- Siqueira, J.G.W.; Rodrigues, C.; de Souza Vandenberghe, L.P.; Woiciechowski, A.L.; Soccol, C.R. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass Bioenergy 2020, 132, 105419. [Google Scholar] [CrossRef]
- Xu, Q.; Singh, A.; Himmel, M.E. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol. 2009, 20, 364–371. [Google Scholar] [CrossRef]
- Pribowo, A.Y.; Hu, J.; Arantes, V.; Saddler, J.N. The development and use of an ELISA-based method to follow the distribution of cellulase monocomponents during the hydrolysis of pretreated corn stover. Biotechnol. Biofuels 2013, 6, 142. [Google Scholar] [CrossRef]
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef] [PubMed]
- Horn, S.J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 2012, 5, 45. [Google Scholar] [CrossRef]
- Ellilä, S.; Fonseca, L.; Uchima, C.; Cota, J.; Goldman, G.H.; Saloheimo, M.; Sacon, V.; Siika-aho, M. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol. Biofuels 2017, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Klein-Marcuschamer, D.; Oleskowicz-Popiel, P.; Simmons, B.A.; Blanch, H.W. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. 2012, 109, 1083–1087. [Google Scholar] [CrossRef]
- Liu, P.; Lin, A.; Zhang, G.; Zhang, J.; Chen, Y.; Shen, T.; Zhao, J.; Wei, D.; Wang, W. Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening. Microb. Cell Fact. 2019, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Parekh, S.; Vinci, V.A.; Strobel, R.J. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biot. 2000, 54, 287–301. [Google Scholar] [CrossRef]
- Fang, K.; Ma, J.; Wang, X.; Xu, Z.; Zhang, Z.; Li, P.; Wang, R.; Wang, J.; Sun, C.; Dong, Z. Flow-cytometric cell sorting coupled with UV mutagenesis for improving pectin lyase expression. Front. Bioeng. Biotechnol. 2023, 11, 1251342. [Google Scholar] [CrossRef]
- Shahbazi, S.; Shams, G.; Tabandeh, F.; Nahvi, I. Gamma and UV radiation induced mutagenesis in Trichoderma reesei to enhance cellulases enzyme activity. Int. J. Farming Allied Sci. 2014, 3, 543–554. [Google Scholar]
- Awad, Y.M.; Lee, S.S.; Kim, K.-H.; Ok, Y.S.; Kuzyakov, Y. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers. Chemosphere 2018, 198, 40–48. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Feng, Y. The effects of biochar addition on soil physicochemical properties: A review. CATENA 2021, 202, 105284. [Google Scholar] [CrossRef]
- Myeong, S.; Yun, J. Culture of Trichoderma Sp. with biochar to produce high-activity cellulase in a laboratory. BioResources 2024, 19, 2029–2044. [Google Scholar] [CrossRef]
- Niu, S.; Li, C.; Gao, S.; Tian, J.; Zhang, C.; Li, L.; Huang, Y.; Lyu, H. Biochar, microbes, and biochar-microbe synergistic treatment of chlorinated hydrocarbons in groundwater: A review. Front. Microbiol. 2024, 15, 1443682. [Google Scholar] [CrossRef]
- Kim, Y.; Park, S.; Kim, Y. Trichoderma sp., KMF006 Strain Producing Cellulase with High Activity. Korea Patent No. KR102155046B1, 18 June 2018. [Google Scholar]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Joo, A.-R.; Jeya, M.; Lee, K.-M.; Sim, W.-I.; Kim, J.-S.; Kim, I.-W.; Kim, Y.-S.; Oh, D.-K.; Gunasekaran, P.; Lee, J.-K. Purification and characterization of a β-1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Appl. Microbiol. Biot. 2009, 83, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Kredics, L.; Antal, Z.; Doczi, I.; Manczinger, L.; Kevei, F.; Nagy, E. Clinical importance of the genus Trichoderma. Acta Microbiol. Immunol. Hung. 2003, 50, 105–117. [Google Scholar] [CrossRef]
- Pérez, J.; Muñoz-Dorado, J.; de la Rubia, T.; Martínez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef]
- Rana, V. Optimization of Enzymatic Hydrolysis of Lignocellulosic Biomass. Ph.D. Thesis, Washington State University, Pullman, WA, USA, 2014. [Google Scholar]
- Zhang, X.; Yao, Y.; Madzak, C.; Du, G.; Zhou, J.; Chen, J. TlSWO, a novel swollenin from Talaromyces leycettanus JCM12802, enhances enzymatic hydrolysis of lignocellulose. Biotechnol. Biofuels 2020, 13, 86. [Google Scholar]
- Santos, C.A.; Morais, M.A.; Terrett, O.M.; Lyczakowski, J.J.; Zanphorlin, L.M.; Ferreira-Filho, J.A.; Tonoli, C.C.; Murakami, M.T.; Dupree, P.; Souza, A.P. An engineered GH5 endoglucanase from Trichoderma harzianum and its synergistic action with a swollenin. Biotechnol. Biofuels 2017, 10, 251. [Google Scholar]
- Yao, G.; Wu, R.; Kan, Q.; Gao, L.; Yang, J.; Huang, J.; Zhou, J.; Chen, J.; Du, G. A strategy for enhancing the production of cellulolytic enzymes in Trichoderma reesei by overexpression of the global transcription factor ACE3. J. Ind. Microbiol. Biotechnol. 2016, 43, 617–626. [Google Scholar]
- Qin, Y.; Wei, X.; Song, X.; Wang, L.; Zhang, L.; Li, X.; Peng, Y.; Jiang, Z.; Li, H. Engineering a cellulase cocktail based on Swollenin addition to enhance lignocellulose saccharification. Bioresour. Technol. 2020, 296, 122294. [Google Scholar]
- Upton, D.J.; McQueen-Mason, S.J.; Wood, A.J. In silico evolution of Aspergillus niger organic acid production suggests strategies for switching acid output. Biotechnol. Biofuels 2020, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Jafari, N.; Jafarizadeh-Malmiri, H.; Hamzeh-Mivehroud, M.; Adibpour, M. Optimization of UV irradiation mutation conditions for cellulase production by mutant fungal strains of Aspergillus niger through solid state fermentation. Green Process. Synth. 2017, 6, 333–340. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Yang, Y.; Rojas, O.J. Development of Trichoderma reesei mutant SEU-7 for enhanced cellulase production using lactose in fed-batch fermentation. Biotechnol. Biofuels 2017, 10, 30. [Google Scholar] [CrossRef]
- Adsul, M.G.; Dixit, P.; Saini, J.K.; Gupta, R.P.; Ramakumar, S.S.V.; Mathur, A.S. Morphologically favorable mutant of Trichoderma reesei for low viscosity cellulase production. Biotechnol. Bioeng. 2022, 119, 2167–2181. [Google Scholar] [CrossRef]
EG Activity | BGL Activity | CBH Activity | Protein Concentration | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
U/mL | Std | Day (1) | U/mL | Std | Day | U/mL | Std | Day | mg/mL | Std | Day | |
Original (2) | 34.750 c | 0.558 | 18 | 1.970 c | 0.249 | 21 | 0.593 b | 0.025 | 18 | 0.942 b | 0.021 | 21 |
UV 2 min (3) | 49.789 b | 1.716 | 15 | 3.309 a | 0.424 | 21 | 0.856 a | 0.043 | 21 | 1.234 a | 0.063 | 15 |
UV 4 min | 64.599 a | 3.225 | 18 | 3.217 a,b | 0.911 | 21 | 0.823 a | 0.054 | 18 | 1.199 a | 0.057 | 21 |
UV 6 min | 37.143 c | 7.222 | 18 | 2.462 b,c | 0.169 | 21 | 0.623 b | 0.125 | 18 | 0.892 b | 0.072 | 21 |
UV 8 min | 63.251 a | 1.372 | 21 | 3.165 a,b | 0.009 | 21 | 0.804 a | 0.040 | 15 | 0.966 b | 0.010 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Ha, I.; Lee, Y.-Y.; Lee, J.; Yun, J. Development of a High-Performance Trichoderma Mutant for Enhanced Cellulase Production Through UV-Induced Random Mutagenesis. J. Fungi 2025, 11, 439. https://doi.org/10.3390/jof11060439
Kim S, Ha I, Lee Y-Y, Lee J, Yun J. Development of a High-Performance Trichoderma Mutant for Enhanced Cellulase Production Through UV-Induced Random Mutagenesis. Journal of Fungi. 2025; 11(6):439. https://doi.org/10.3390/jof11060439
Chicago/Turabian StyleKim, Seungjun, Iksu Ha, Yun-Yeong Lee, Junseo Lee, and Jeonghee Yun. 2025. "Development of a High-Performance Trichoderma Mutant for Enhanced Cellulase Production Through UV-Induced Random Mutagenesis" Journal of Fungi 11, no. 6: 439. https://doi.org/10.3390/jof11060439
APA StyleKim, S., Ha, I., Lee, Y.-Y., Lee, J., & Yun, J. (2025). Development of a High-Performance Trichoderma Mutant for Enhanced Cellulase Production Through UV-Induced Random Mutagenesis. Journal of Fungi, 11(6), 439. https://doi.org/10.3390/jof11060439