Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = TiO2 nanowire

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12700 KiB  
Article
Optimization of Developed TiO2 NWs-Fe2O3 Modified PES Membranes for Efficient NBB Dye Removal
by Mouna Mansor Hussein, Qusay F. Alsalhy, Mohamed Gar Alalm and M. M. El-Halwany
ChemEngineering 2025, 9(4), 82; https://doi.org/10.3390/chemengineering9040082 (registering DOI) - 1 Aug 2025
Viewed by 165
Abstract
Current work investigates the fabrication and performance of nanocomposite membranes, modified with varying concentrations of hybrid nanostructures comprising titanium nanowires coated with iron nanoparticles (TiO2 NWs-Fe2O3), for the removal of Naphthol Blue Black (NBB) dye from industrial wastewater. [...] Read more.
Current work investigates the fabrication and performance of nanocomposite membranes, modified with varying concentrations of hybrid nanostructures comprising titanium nanowires coated with iron nanoparticles (TiO2 NWs-Fe2O3), for the removal of Naphthol Blue Black (NBB) dye from industrial wastewater. A series of analytical tools were employed to confirm the successful modification including scanning electron microscopy and EDX analysis, porosity and hydrophilicity measurements, Fourier-transform infrared spectroscopy, and X-Ray Diffraction. The incorporation of TiO2 NWs-Fe2O3 has enhanced membrane performance significantly by increasing the PWF and improving dye retention rates of nanocomposite membranes. At 0.7 g of nanostructure content, the modified membrane (M8) achieved a PWF of 93 L/m2·h and NBB dye rejection of over 98%. The flux recovery ratio (FRR) analysis disclosed improved antifouling properties, with the M8 membrane demonstrating a 73.4% FRR. This study confirms the potential of TiO2 NWs-Fe2O3-modified membranes in enhancing water treatment processes, offering a promising solution for industrial wastewater treatment. These outstanding results highlight the potential of the novel PES-TiO2 NWs-Fe2O3 membranes for dye removal and present adequate guidance for the modification of membrane physical properties in the field of wastewater treatment. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

25 pages, 18692 KiB  
Article
Hydrothermally Synthesized TiO2 Nanostructures for Electrochemical Detection of H2O2 in Barley (Hordeum vulgare) Under Salt Stress and Remediation with Fe3O4 Nanoparticles
by Irena Mihailova, Marina Krasovska, Eriks Sledevskis, Vjaceslavs Gerbreders, Jans Keviss, Valdis Mizers, Inese Kokina, Ilona Plaksenkova, Marija Jermalonoka and Aleksandra Mosenoka
Chemosensors 2025, 13(7), 256; https://doi.org/10.3390/chemosensors13070256 - 14 Jul 2025
Viewed by 419
Abstract
This study presents the development of a TiO2 nanowire-based electrochemical sensor for the selective and sensitive detection of hydrogen peroxide (H2O2) under neutral pH conditions, with a particular focus on its application in analyzing plant stress. The sensor [...] Read more.
This study presents the development of a TiO2 nanowire-based electrochemical sensor for the selective and sensitive detection of hydrogen peroxide (H2O2) under neutral pH conditions, with a particular focus on its application in analyzing plant stress. The sensor exhibited a linear detection range of 0–0.5 mM, a sensitivity of 0.0393 mA · mM−1, and a detection limit of 2.8 μM in phosphate-buffered saline solution (PBS, pH 7.4). This work’s main novelty lies in the systematic investigation of the relationship between TiO2 nanostructure morphology, which is controlled by hydrothermal synthesis parameters, and the resulting sensor performance. Interference studies confirmed excellent selectivity in the presence of common electroactive species found in plant samples, such as NaCl, KNO3, glucose, citric acid, and ascorbic acid. Real sample analysis using barley plant extracts grown under salt stress and treated with Fe3O4 nanoparticles confirmed the sensor’s applicability in complex biological matrices, enabling accurate quantification of endogenously produced H2O2. Endogenous H2O2 concentrations were found to range from near-zero levels in control and Fe3O4-only treated plants, to elevated levels of up to 0.36 mM in salt-stressed samples. These levels decreased to 0.25 and 0.15 mM upon Fe3O4 nanoparticle treatment, indicating a dose-dependent mitigation of stress. This finding was supported by genome template stability (GTS) analysis, which revealed improved DNA integrity in Fe3O4-treated plants. This study takes an integrated approach, combining the development of a nanostructured sensor with physiological and molecular stress assessment. The urgent need for tools to detect stress at an early stage and manage oxidative stress in sustainable agriculture underscores its relevance. Full article
(This article belongs to the Special Issue Electrochemical Sensors and Biosensors for Environmental Detection)
Show Figures

Figure 1

11 pages, 2446 KiB  
Article
Highly Stable, Flexible, Transparent Hybrid Strontium Titanate Conductive Thin Films with Embedded Cu Nanowires
by Ming Liu, Shihui Yu, Lijun Song, Jiesong Li and Jian Feng
Materials 2025, 18(10), 2398; https://doi.org/10.3390/ma18102398 - 21 May 2025
Viewed by 473
Abstract
To meet the stringent demands of next-generation flexible optoelectronic devices, a novel fabrication approach is employed that integrates the spray-coating of copper nanowires (Cu NWs) with the magnetron sputtering of SrTiO3 thin films, thereby yielding SrTiO3/Cu NWs/SrTiO3 hybrid thin [...] Read more.
To meet the stringent demands of next-generation flexible optoelectronic devices, a novel fabrication approach is employed that integrates the spray-coating of copper nanowires (Cu NWs) with the magnetron sputtering of SrTiO3 thin films, thereby yielding SrTiO3/Cu NWs/SrTiO3 hybrid thin films. The incorporation of the SrTiO3 layers results in improved optical performance, with the transmittance of the Cu NW network increasing from 83.5% to 84.2% and a concurrent reduction in sheet resistance from 16.9 Ω/sq to 14.5 Ω/sq. Moreover, after subjecting the hybrid thin films to 100 repeated tape-peeling tests and 2000 bending cycles with a bending radius of 5.0 mm, the resistance remains essentially unchanged, which underscores the films’ exceptional mechanical flexibility and robust adhesion. Additionally, the hybrid thin films are subjected to rigorous high-temperature, high-humidity, and oxidative conditions, where the resistance exhibits outstanding stability. These results substantiate the potential of the SrTiO3/Cu NWs/SrTiO3 hybrid thin films for integration into flexible and wearable electronic devices, delivering enhanced optoelectronic performance and long-term reliability under demanding conditions. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

23 pages, 2993 KiB  
Article
Ultra-Trace Monitoring of Methylene Blue Degradation via AgNW-Based SERS: Toward Sustainable Advanced Oxidation Water Treatment
by Isabela Horta, Nilton Francelosi Azevedo Neto, Letícia Terumi Kito, Felipe Miranda, Gilmar Thim, André Luis de Jesus Pereira and Rodrigo Pessoa
Sustainability 2025, 17(10), 4448; https://doi.org/10.3390/su17104448 - 14 May 2025
Viewed by 658
Abstract
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically [...] Read more.
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically failing to detect MB below ~10−7 M. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) platform based on silver nanowire (AgNW) substrates that enables MB detection over an unprecedented dynamic range—from 1.5 × 10−4 M down to 1.5 × 10−16 M. Raman mapping confirmed the presence of individual signal hot spots at the lowest concentration, consistent with the theoretical number of analyte molecules in the probed area, thereby demonstrating near-single-molecule detection capability. The calculated enhancement factors reached up to 1.90 × 1012, among the highest reported for SERS-based detection platforms. A semi-quantitative calibration curve was established spanning twelve orders of magnitude, and this platform was successfully applied to monitor MB degradation during two advanced oxidation processes (AOPs): TiO2 nanotube-mediated photocatalysis under UV irradiation and atmospheric-pressure dielectric barrier discharge (DBD) plasma treatment. While UV–Vis and fluorescence techniques rapidly lost sensitivity during the degradation process, the SERS platform continued to detect the characteristic MB Raman peak at ~1626 cm−1 throughout the entire treatment duration. These persistent SERS signals revealed the presence of residual MB or partially degraded aromatic intermediates that remained undetectable by conventional optical methods. The results underscore the ability of AgNW-based SERS to provide ultra-sensitive, molecular-level insights into pollutant transformation pathways, enabling time-resolved tracking of degradation kinetics and validating treatment efficiency. This work highlights the importance of integrating SERS with AOPs as a powerful complementary strategy for advanced environmental monitoring and water purification technologies. By delivering an ultra-sensitive, low-cost sensor (<USD 0.16 per test) and promoting reagent-free treatment methods, this study directly advances SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

12 pages, 1618 KiB  
Article
Photocatalysis-Assisted Water Remediation Using Porous Nanowire Foams
by Bhupesh Pydiraju Yanda, Dharani Sathwik Ram Panchagnula, Terry J. Gentry and Sreeram Vaddiraju
Water 2025, 17(4), 462; https://doi.org/10.3390/w17040462 - 7 Feb 2025
Viewed by 1028
Abstract
Deployment of photocatalysis for water disinfection necessitates engineering the process kinetics and achieving the complete recovery of the photocatalyst following the remediation of water. The recovery of the photocatalysts, especially nanostructured photocatalysts, remains a challenge, as indicated by a previous study by our [...] Read more.
Deployment of photocatalysis for water disinfection necessitates engineering the process kinetics and achieving the complete recovery of the photocatalyst following the remediation of water. The recovery of the photocatalysts, especially nanostructured photocatalysts, remains a challenge, as indicated by a previous study by our group where only 57% of TiO2 nanowires were recovered by gravity-assisted settling and sedimentation from water after its photocatalysis-assisted E. coli inactivation. To overcome this challenge, a novel method involving the use of photocatalysts in the form of porous foams is developed and presented. Use of TiO2 nanowire foams led to a 2–3-log reduction of E. coli in a span of 180 min when ultraviolet-A (UV-A) light was employed for photoactivation, similar to that observed previously by our group. More importantly, the photocatalyst foams were easily recoverable from water via mechanical separation using tweezers, which in this study led to a recovery of 98–99% of the TiO2 nanowire photocatalysts. This strategy allows for further optimization of both the process kinetics and the total amount of photocatalysts needed for water remediation through optimization of the porosities and the geometries of the foams and ensuring that all the photocatalyst surfaces remain accessible to both the pollutants and light. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 5047 KiB  
Article
Electrospun WO3/TiO2 Core–Shell Nanowires for Triethylamine Gas Sensing
by Wenhao Li, Bo Zhang, Xiangrui Dong, Qi Lu, Hao Shen, Yi Ni, Yuechen Liu and Haitao Song
Chemosensors 2025, 13(2), 45; https://doi.org/10.3390/chemosensors13020045 - 2 Feb 2025
Cited by 3 | Viewed by 1249
Abstract
In this work, WO3/TiO2 core–shell (C-S) nanowires (NWs) were successfully synthesized by the coaxial electrospinning method and subsequent high-temperature calcination treatment. After some microscopic structural characterizations, although the prepared WO3–TiO2 and TiO2–WO3 C-S NWs [...] Read more.
In this work, WO3/TiO2 core–shell (C-S) nanowires (NWs) were successfully synthesized by the coaxial electrospinning method and subsequent high-temperature calcination treatment. After some microscopic structural characterizations, although the prepared WO3–TiO2 and TiO2–WO3 C-S NWs displayed quite different surface morphologies, both of the shell coatings were uniform and their typical shell thicknesses were extremely close, with mean values of 22 and 20 nm, respectively. In gas sensing tests, WO3/TiO2 C-S NWs exhibited good selectivity towards triethylamine (TEA) without significant interfering gases. Compared with bare WO3 and TiO2 NWs, WO3/TiO2 C-S NWs showed better gas sensing performance. Specifically, the optimal operating temperature and response of TiO2–WO3 C-S NWs to 100 ppm TEA were 130 °C and 106, which were reduced by 70 °C and increased by 5.73 times compared to bare WO3, respectively. Obviously, the C-S nanostructures contributed to improving the gas sensing performance of materials towards TEA. Finally, some hypothetical sensing mechanisms were proposed, which were expected to have important reference significance for the design of target products applied to TEA sensing. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Figure 1

19 pages, 2712 KiB  
Article
Implementing an Analytical Model to Elucidate the Impacts of Nanostructure Size and Topology of Morphologically Diverse Zinc Oxide on Gas Sensing
by Sanju Gupta and Haiyang Zou
Chemosensors 2025, 13(2), 38; https://doi.org/10.3390/chemosensors13020038 - 26 Jan 2025
Cited by 3 | Viewed by 3023
Abstract
The development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly [...] Read more.
The development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly influenced the gas sensors by means of surface catalytic activities. This work examines the impact of morphological and topological networked assembly of zinc oxide (ZnO) nanostructures, including microparticles and nanoparticles (0D), nanowires and nanorods (1D), nanodisks (2D), and hierarchical networks of tetrapods (3D). Gas sensors consisting of vertically aligned ZnO nanorods (ZnO–NR) and topologically interconnected tetrapods (T–ZnO) of varying diameter and arm thickness synthesized using aqueous phase deposition and flame transport method on interdigitated Pt electrodes are evaluated for methane detection. Smaller-diameter nanorods and tetrapod arms (nanowire-like), having higher surface-to-volume ratios with reasonable porosity, exhibit improved sensing behavior. Interestingly, when the nanorods’ diameter and interconnected tetrapod arm thickness were comparable to the width of the depletion layer, a significant increase in sensitivity (from 2 to 30) and reduction in response/recovery time (from 58 s to 5.9 s) resulted, ascribed to rapid desorption of analyte species. Additionally, nanoparticles surface-catalyzed with Pd (~50 nm) accelerated gas sensing and lowered operating temperature (from 200 °C to 50 °C) when combined with UV photoactivation. We modeled the experimental findings using a modified general formula for ZnO methane sensors derived from the catalytic chemical reaction between methane molecules and oxygen ions and considered the structural surface-to-volume ratios (S/V) and electronic depletion region width (Ld) applicable to other gas sensors (e.g., SnO2, TiO2, MoO3, and WO3). Finally, the effects of UV light excitation reducing detection temperature help to break through the bottleneck of ZnO-based materials as energy-saving chemiresistors and promote applications relevant to environmental and industrial harmful gas detection. Full article
Show Figures

Figure 1

17 pages, 19149 KiB  
Article
Heterostructure Based of Ti-TiO2(NW)/rGO Hybrid Materials for Electrochemical Applications
by Mina-Ionela Morariu (Popescu), Mircea Nicolaescu, Corina Orha, Carmen Lăzău, Narcis Duteanu and Cornelia Bandas
Inorganics 2025, 13(2), 31; https://doi.org/10.3390/inorganics13020031 - 22 Jan 2025
Viewed by 865
Abstract
This study investigated a hybrid electrode based on titanium/titanium dioxide nanowires/reduced graphene oxide (Ti-TiO2(NW)/rGO) that was developed in two stages. The Ti-TiO2(NW)/rGO was obtained by hydrothermal treatment in a mixed solution of H2O2 and melamine for [...] Read more.
This study investigated a hybrid electrode based on titanium/titanium dioxide nanowires/reduced graphene oxide (Ti-TiO2(NW)/rGO) that was developed in two stages. The Ti-TiO2(NW)/rGO was obtained by hydrothermal treatment in a mixed solution of H2O2 and melamine for Ti-TiO2 support, followed by a simple spin-coating deposition method and thermal oxidation in a controlled atmosphere of nitrogen gas (99%). The as-prepared structures of electrodes were characterized using ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). In addition, the electrochemical behavior was assessed by cyclic voltammetry (CV) in a 1M HNO3-supporting electrolyte and in the presence of 4 mM K4Fe(CN)6 3H2O to determine the electroactive surface area and apparent diffusion coefficient of the hybrid electrode. The development of the Ti-TiO2(NW)/rGO hybrid electrode provides a sensitive method for photo-electrooxidation of doxorubicin due to exploiting the synergistic and remarkable properties of the nanowires of TiO2 and of reduced graphene oxide (rGO) layer on the electrode surface. Full article
Show Figures

Figure 1

11 pages, 2505 KiB  
Article
Enhanced Photocatalytic Oxidative Coupling of Methane over Metal-Loaded TiO2 Nanowires
by Shuang Song, Jiongcan Xiang, Hui Kang and Fengming Yang
Molecules 2025, 30(2), 206; https://doi.org/10.3390/molecules30020206 - 7 Jan 2025
Viewed by 1169
Abstract
The photocatalytic oxidative coupling of methane (OCM) on metal-loaded one-dimensional TiO2 nanowires (TiO2 NWs) was performed. With metal loading, the electric and optical properties of TiO2 NWs were adjusted, contributing to the improvement of the activity and selectivity of the [...] Read more.
The photocatalytic oxidative coupling of methane (OCM) on metal-loaded one-dimensional TiO2 nanowires (TiO2 NWs) was performed. With metal loading, the electric and optical properties of TiO2 NWs were adjusted, contributing to the improvement of the activity and selectivity of the OCM reaction. In the photocatalytic OCM reaction, the 1.0 Au/TiO2 NW catalyst exhibits an outstanding C2H6 production rate (4901 μmol g−1 h−1) and selectivity (70%), alongside the minor production of C3H8 and C2H4, achieving a total C2–C3 hydrocarbon selectivity of 75%. In contrast, catalysts loaded with Ag, Pd, and Pt show significantly lower activity, with Pt/TiO2 NWs producing only CO2, indicating a propensity for the deep oxidation of methane. The O2-TPD analyses reveal that Au facilitates mild O2 adsorption and activation, whereas Pt triggers excessive oxidation. Spectroscopic and kinetic studies demonstrate that Au loading not only enhances the separation efficiency of photogenerated electron–hole pairs, but also promotes the generation of active oxygen species in moderate amounts, which facilitates the formation of methyl radicals and their coupling into C2H6 while suppressing over-oxidation to CO2. This work provides novel insights and design strategies for developing efficient photocatalysts. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Storage and Conversion)
Show Figures

Figure 1

60 pages, 1160 KiB  
Review
Synthesis, Photocatalytic and Bio Activity of ZnO-TiO2 Nanocomposites: A Review Study
by Fulvia Pinzari
Reactions 2024, 5(4), 680-739; https://doi.org/10.3390/reactions5040035 - 2 Oct 2024
Cited by 2 | Viewed by 2855
Abstract
Zinc oxide and titanium dioxide are materials with strong photocatalytic and antimicrobial activity. This activity is greater when the material is in nanocrystalline form. It has been seen that these properties are also present in the ZnO-TiO2 nanocomposite material, and the extent [...] Read more.
Zinc oxide and titanium dioxide are materials with strong photocatalytic and antimicrobial activity. This activity is greater when the material is in nanocrystalline form. It has been seen that these properties are also present in the ZnO-TiO2 nanocomposite material, and the extent depends on multiple factors, such as crystallinity, structural composition, crystallite size, and morphology. These structural properties can be varied by acting on the synthesis of the material, obtaining a wide variety of composites: random nanoparticles, nanorods, nanowires, nanotubes, nanofibers, tetrapods, core–shell, hollow spheres, inverse opal structures (IOSs), hierarchical structures, and films. When an interface between nanocrystallites of the two oxides is created, the composite system manages to have photocatalytic activity greater than that of the two separate oxides, and in certain circumstances, even greater than P25. The antimicrobial activity results also improved for the composite system compared to the two separate oxides. These two aspects make these materials interesting in various fields, such as wastewater and air treatment, energy devices, solar filters, and pharmaceutical products and in the context of the restoration of monumental cultural assets, in which their use has a preventive purpose in the formation of biofilms. In this review we analyse the synthesis techniques of ZnO-TiO2 nanocomposites, correlating them to the shape obtained, as well as the photocatalytic and antimicrobial activity. It is also illustrated how ZnO-TiO2 nanocomposites can have a less negative impact on toxicity for humans and the environment compared to the more toxic ZnO nanoparticles or ZnO. Full article
(This article belongs to the Special Issue Nanoparticles: Synthesis, Properties, and Applications)
Show Figures

Scheme 1

14 pages, 3230 KiB  
Article
Excellent Electrochromic Properties of Ti4+-Induced Nanowires V2O5 Films
by Yufei Deng, Hua Li, Jian Liang, Jun Liao, Min Huang, Rui Chen, Yinggui Long, Jacques Robichaud and Yahia Djaoued
Materials 2024, 17(19), 4680; https://doi.org/10.3390/ma17194680 - 24 Sep 2024
Cited by 2 | Viewed by 870
Abstract
Ti4+-doped V2O5 films with nanowires on top and a dense, long nanorod layer on the bottom were successfully fabricated using the spin-coating route. During the electrochromic cycling, charge transfer resistance (Rct) decreases while ion-diffusion ability [...] Read more.
Ti4+-doped V2O5 films with nanowires on top and a dense, long nanorod layer on the bottom were successfully fabricated using the spin-coating route. During the electrochromic cycling, charge transfer resistance (Rct) decreases while ion-diffusion ability (KΩ) rapidly drops in the first ten cycles and then levels off. Low Rct and morphology of nanowires collaboratively improved the electrochromic behavior of Ti4+-doped V2O5 films by enhancing the charge transfer speed and minimizing polarization and dissolution. The obtained Ti4+-doped V2O5 film shows better electrochromic properties than the undoped V2O5 film, with a coloration efficiency (CE) of 34.15 cm2/C, coloration time of 9.00 s, and cyclic retention of 82.6% at cycle 100. In contrast, the corresponding values for the undoped V2O5 film were 23.57 cm2/C, 13.16 s, and 43.6%. Full article
Show Figures

Graphical abstract

16 pages, 9972 KiB  
Article
Influence of the Structure of Hydrothermal-Synthesized TiO2 Nanowires Formed by Annealing on the Photocatalytic Reduction of CO2 in H2O Vapor
by Andrey M. Tarasov, Larisa I. Sorokina, Daria A. Dronova, Olga Volovlikova, Alexey Yu. Trifonov, Sergey S. Itskov, Aleksey V. Tregubov, Elena N. Shabaeva, Ekaterina S. Zhurina, Sergey V. Dubkov, Dmitry V. Kozlov and Dmitry Gromov
Nanomaterials 2024, 14(16), 1370; https://doi.org/10.3390/nano14161370 - 21 Aug 2024
Cited by 2 | Viewed by 1932
Abstract
The present study investigates the photocatalytic properties of hydrothermally synthesized TiO2 nanowires (NWs) for CO2 reduction in H2O vapor. It has been demonstrated that TiO2 NWs, thermally treated at 500–700 °C, demonstrate an almost tenfold higher yield of [...] Read more.
The present study investigates the photocatalytic properties of hydrothermally synthesized TiO2 nanowires (NWs) for CO2 reduction in H2O vapor. It has been demonstrated that TiO2 NWs, thermally treated at 500–700 °C, demonstrate an almost tenfold higher yield of products compared to the known commercial powder TiO2 P25. It has been found that the best material is a combination of anatase, TiO2-B and rutile. The product yield increases with increasing heat treatment temperature of TiO2 NWs. This is associated with an increase in the degree of crystallinity of the material. It is shown that the best product yield of the CO2 reduction in H2O vapor is achieved when the TiO2 NW photocatalyst is heated to 100 °C. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

15 pages, 8012 KiB  
Article
Bamboo-like MnO2/TiO2 Nanotube Arrays with Enhanced Photocatalytic Degradation
by Feng Liang, Yanxiong Xiang, Yunjiang Yu and Changwei Zou
Coatings 2024, 14(7), 894; https://doi.org/10.3390/coatings14070894 - 17 Jul 2024
Viewed by 1237
Abstract
In this paper, the photocatalytic degradation of methyl orange solution by MnO2/TiO2 nanotube arrays (NTAs) with different structure was studied. Initially, bamboo-like TiO2 NTAs with folded tube walls were synthesized using the anodic oxidation method. Subsequently, MnO2 nanowires/TiO [...] Read more.
In this paper, the photocatalytic degradation of methyl orange solution by MnO2/TiO2 nanotube arrays (NTAs) with different structure was studied. Initially, bamboo-like TiO2 NTAs with folded tube walls were synthesized using the anodic oxidation method. Subsequently, MnO2 nanowires/TiO2 NTAs and MnO2 nanoparticles/TiO2 NTAs were prepared via high-temperature and low-temperature hydrothermal methods, respectively. Photocurrent-time transient tests revealed that MnO2 nanoparticles/TiO2 NTAs produced by the low-temperature hydrothermal method exhibited a relatively good photocurrent response. All the deposited MnO2/TiO2 bamboo-like nanotube nanocomposites were tested for photocatalytic decomposition under different pH and light conditions. The results showed that MnO2 could adsorb and degrade methyl orange in the absence of light and acidity, and the degradation degree was proportional to the concentrations of Mn. MnO2 was stimulated to produce photogenic electrons, which migrated to the surface of the TiO2 and extended the life of photogenic charge carriers. Full article
(This article belongs to the Collection Advanced Surface Coating of Nanoparticles)
Show Figures

Figure 1

17 pages, 9800 KiB  
Article
Bioactive Hydroxyapatite Aerogels with Piezoelectric Particles
by Catarina Tavares, Tânia Vieira, Jorge C. Silva, João P. M. R. Borges and M. Carmo Lança
Biomimetics 2024, 9(3), 143; https://doi.org/10.3390/biomimetics9030143 - 27 Feb 2024
Cited by 1 | Viewed by 2042
Abstract
Open-cell foams based on hydroxyapatite (HAp) can mimic the extracellular matrix (ECM) to better replace damaged hard tissues and assist in their regeneration processes. Aerogels of HAp nanowires (NW) with barium titanate (BT) particles were produced and characterized regarding their physical and chemical [...] Read more.
Open-cell foams based on hydroxyapatite (HAp) can mimic the extracellular matrix (ECM) to better replace damaged hard tissues and assist in their regeneration processes. Aerogels of HAp nanowires (NW) with barium titanate (BT) particles were produced and characterized regarding their physical and chemical properties, bioactivity, and in vitro cytotoxicity. Considering the role of piezoelectricity (mainly due to collagen) and surface charges in bone remodeling, all BT particles, of size 280 nm and 2 and 3 µm, contained BaTiO3 in their piezoelectric tetragonal phase. The synthesized nanowires were verified to be AB-type carbonated hydroxyapatite. The aerogels showed high porosity and relatively homogeneous distribution of the BT particles. Barium titanate proved to be non-cytotoxic while all the aerogels produced were cytotoxic for an extract concentration of 1 mg/mL but became non-cytotoxic at concentrations of 0.5 mg/mL and below. It is possible that these results were affected by the higher surface area and quicker dissolution rate of the aerogels. In the bioactivity assays, SEM/EDS, it was not easy to differentiate between the apatite deposition and the surface of the HAp wires. However, a quantitative EDS analysis shows a possible CaP deposition/dissolution cycle taking place. Full article
(This article belongs to the Special Issue Biomimetic Scaffolds for Hard Tissue Surgery)
Show Figures

Figure 1

16 pages, 5808 KiB  
Article
Na2Ti3O7@RF@Ag Heterostructures as Efficient Substrates for SERS and Photocatalytic Applications
by Yu-Cheng Chang, I-Chun Lin, Ning-Chien Chin, Sin-Ei Juang and Chia-Man Chou
Molecules 2024, 29(1), 218; https://doi.org/10.3390/molecules29010218 - 30 Dec 2023
Cited by 1 | Viewed by 1881
Abstract
A multi-step procedure was effectively employed to synthesize innovative three-dimensional (3D) heterostructures encompassing sodium titanate (Na2Ti3O7) nanowire cores, an intermediate resorcinol–formaldehyde (RF) layer, and outer silver (Ag) nanoparticle sheaths, referred to as Na2Ti3O [...] Read more.
A multi-step procedure was effectively employed to synthesize innovative three-dimensional (3D) heterostructures encompassing sodium titanate (Na2Ti3O7) nanowire cores, an intermediate resorcinol–formaldehyde (RF) layer, and outer silver (Ag) nanoparticle sheaths, referred to as Na2Ti3O7@RF@Ag heterostructures. Initially, a one-step hydrothermal technique facilitated the direct growth of single-crystal Na2Ti3O7 nanowires onto a flexible Ti foil. Subsequently, a two-step wet chemical process facilitated the sequential deposition of an RF layer and Ag nanoparticles onto the Na2Ti3O7 nanowires at a low reaction temperature. Optimal concentrations of silver nitrate and L-ascorbic acid can lead to the cultivation of Na2Ti3O7@RF@Ag heterostructures exhibiting heightened surface-enhanced Raman scattering (SERS), which is particularly beneficial for the detection of rhodamine B (RhB) molecules. This phenomenon can be ascribed to the distinctive geometry of the Na2Ti3O7@RF@Ag heterostructures, which offer an increased number of hot spots and surface-active sites, thereby showcasing notable SERS enhancement, commendable reproducibility, and enduring stability over the long term. Furthermore, the Na2Ti3O7@RF@Ag heterostructures demonstrate remarkable follow-up as first-order chemical kinetic and recyclable photocatalysts for the photodecomposition of an RhB solution under UV light irradiation. This result can be attributed to the enhanced inhibition of electron–hole pair recombination and increased surface-active sites. Full article
(This article belongs to the Special Issue Applications of Nanoparticles in Catalysis, Sensing, and Biomedicine)
Show Figures

Graphical abstract

Back to TopTop