Synthesis, Photocatalytic and Bio Activity of ZnO-TiO2 Nanocomposites: A Review Study
Abstract
:1. Introduction
2. Synthesis
2.1. Zn-Doped TiO2 and Ti-Doped ZnO
2.2. ZnO-TiO2 Random Nanoparticles (ZT/r/NPs)
2.3. Hollow Spheres (or Almost), Yolk–Shell Microspheres and French Fries ZT NPs
2.4. ZnO-TiO2 Nanofibers (ZTNFs)
2.5. Core–Shell Nanostructures (cs NSs)
2.6. Hierarchical Structure
2.7. Films
2.8. Layered Films
2.9. Core–Shell Structures on Substrate
2.10. Hierarchical Films on Substrate
2.11. Composite on TNTs on Substrate
2.11.1. ZNPs and ZNRs on TNTs
2.11.2. ZnO on Lateral TNT Surface Composites
3. Photocatalysis
4. Bioactivity
5. Conclusions
Funding
Conflicts of Interest
Lists of Abbreviations
List of dye abbreviations | |
MB | Methylene blue |
MO | Methyl orange |
PCP | Pentachlorophenol, |
RhB | Rhodamine B |
TCE | trichloroethylene |
List of molecule abbreviations | |
AcA | acetic acid |
Acacetone | acetylacetone, |
BuOH | butyl alcohol |
CA | cellulose acetate |
CitrA | citric acid |
DBS | sodium dodecyl benzene sulfonate |
DEA | diethanolamine |
DMAA | N,N-dimethyl acetamide |
DMFA | N,N-dimethylformamide |
DW | distilled water |
EG | ethylene glycol |
EtOH | ethyl alcohol |
FA | Furfural alcohol |
HMTA | hexamethylenetetramine |
IPOH | isopropyl alcohol |
KTO | Potassium titanium oxide oxalate |
MEA | monoethanolamine |
MeOH | methyl alcohol |
MeOEtOH | 2 methoxy ethanol |
OxA | oxalic acid |
PCP | penta-chlorophenol |
PEG | poly(ethylene glycol) |
PEI | polyethanolimine |
PEO | poly(ethylene oxide) |
PG | polyglycol |
PMMA | poly(methyl methacrylate) |
PVA | polyvinyl alcohol |
PVAc | polyvinyl acetate |
PVP | polyvinyl pyrrolidone |
PS | polystyrene |
SDS | sodium dodecyl sulfonate |
TAA | thioacetamide |
TBT | tetrabutyl titanate |
TCE | trichloroethylene |
TEA | triethanolamine |
TEOS | tetraethylorthosilicate |
TEA | triethylamine |
Ti(Oi Pr)2(dpm)2 | Oi Pr: iso-propoxy; dpm: 2,2,6,6-tetramethyl3,5-heptanedionate |
TOSO | titanium oxosulphate |
TS | titanium sulphate |
TTIP | titanium tetraisopropoxide |
ZAc | zinc acetate |
ZAcAc | zinc acetylacetonate |
ZN | zinc nitrate |
Zn(hfa)2‚TMEDA | hfa: 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; and TMEDA: N,N,N′,N′-tetramethylethylenediamine |
ZS | zinc sulphate |
List of synthesis method abbreviations | |
ALD | Atomic layer deposition |
ALE | Atomic layer epitaxy |
CVD | Chemical vapor deposition |
DC | Direct current |
CBD | Chemical Bath deposition |
FAPO | Furfural alcohol-derived polymerization–oxidation |
LbL | Layer-by-layer |
MW | Microwave |
PLAL | Pulsed laser ablation in liquid |
PLD | Pulsed laser deposition |
RF | Radio Frequency |
RT | Room temperature |
SSR | Solid-state reaction |
List of structure abbreviations | |
ZT | ZnO-TiO2 |
Cs TZ | Core (TiO2)–shell (ZnO) |
Cs ZT | Core (ZnO)–shell (TiO2) |
IOS | Inverse opal structure |
NFls | Nanoflakes |
NFs | Nanofibers |
NPs | Nanoparticles |
NRs | Nanorods |
NTs | Nanotubes |
NWs | Nanowires |
T | TiO2 |
TNFs | TiO2 nanofibers |
TNPs | TiO2 nanoparticles |
TNTs | TiO2 nanotubes |
TNWs | TiO2 nanowires |
UTZs | Urchin-like TiO2/ZnO |
Z | ZnO |
ZTNCs | ZnO-TiO2 nanocomposites |
ZNFls | ZnO nanoflakes |
ZNPs | ZnO nanoparticles |
ZNRs | ZnO nanorods |
ZNWs | ZnO nanowires |
Z QDs | ZnO quantum dots |
ZTNFs | ZnO-TiO2 NFs |
ZNFls | ZnO nanoflakes |
ZTNTs | ZnO-TiO2 nanotubes |
ZT/r/NPs | ZnO-TiO2 random nanoparticles |
References
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoçd, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Lai, Q.; Fan, M. Review of the Progress in Preparing Nano TiO2: An Important Environmental Engineering Material. J. Environ. Sci. 2014, 26, 2139–2177. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-Induced Amphiphilic Surfaces. Nature 1997, 388, 431–432. [Google Scholar] [CrossRef]
- Dulin, F.H.; Rase, D.E. Phase Equilibria in the System ZnO-TiO2. J. Am. Ceram. Soc. 1960, 43, 125–131. [Google Scholar] [CrossRef]
- Bartram, S.F.; Slepetys, R.A. Compound Formation and Crystal Structure in the System ZnO-TiO2. J. Am. Ceram. Soc. 1961, 44, 493–499. [Google Scholar] [CrossRef]
- Yamaguchi, O.; Morimi, M.; Kawabata, H.; Shimizu, K. Formation and Transformation of ZnTiO3. J. Am. Ceram. Soc. 1987, 70, C97–C98. [Google Scholar] [CrossRef]
- Surendar, T.; Kumar, S.; Shanker, V. Influence of La Doping on Phase Transformation and Photocatalytic Properties of ZnTiO3 Nanoparticles Synthesized via Modified Sol-gel Method. Phys. Chem. Chem. Phys. 2014, 16, 728. [Google Scholar] [CrossRef]
- Munguti, L.; Dejene, F. Effects of Zn:Ti Molar Ratios on the Morphological, Optical and Photocatalytic Properties of ZnO-TiO2 Nanocomposites for Application in Dye Removal. Mater. Sci. Semicond. Process. 2021, 128, 105786. [Google Scholar] [CrossRef]
- Kolen’ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Meskin, P.E.; Churagulov, B.R.; Bouchard, M.; Colbeau-Justin, C.; Lebedev, O.I.; Van Tendeloo, G.; et al. Structural, Textural, and Electronic Properties of a Nanosized Mesoporous ZnxTi1-xO2-x Solid Solution Prepared by a Supercritical Drying Route. J. Phys. Chem. B 2005, 109, 20303–20309. [Google Scholar] [CrossRef]
- Bouchet, R.; Weibel, A.; Knauth, P.; Mountjoy, G.; Chadwick, A.V. EXAFS Study of Dopant Segregation (Zn, Nb) in Nanocrystalline Anatase (TiO2). Chem. Mater. 2003, 15, 4996–5002. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Liu, B.; Zhai, J.; Fan, H.; Wang, D.; Lin, Y.; Xie, T. Synthesis of Zn-Doped TiO2 Microspheres with Enhanced Photovoltaic Performance and Application for Dye-Sensitized Solar Cells. Electrochim. Acta 2011, 56, 6517–6523. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, P.; Wu, X.; Fu, L.; Zhang, J.; Xu, D. The Origin of Higher Open-Circuit Voltage in Zn-Doped TiO2 Nanoparticles-Based Dye Sensitized Solar Cells. Chem. Phys. Chem. 2012, 13, 3731–3737. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Li, Q.; Thorogood, G.J.; Cheng, Y.-B.; Caruso, R.A. Zn-Doped TiO2 Electrodes in Dye Sensitized Solar Cells Enhanced Photocurrent. J. Mater. Chem. 2012, 22, 17128. [Google Scholar] [CrossRef]
- Su, C.-Y.; Wang, C.-C.; Hsueh, Y.-C.; Gurylev, V.; Kei, C.-C.; Perng, T.-P. Enabling High Solubility of ZnO in TiO2 by Nanolamination of Atomic Layer Deposition. Nanoscale 2015, 7, 19222–19230. [Google Scholar] [CrossRef]
- Gandelman, H.; da Silvia, A.L.; Batista Caliman, L.; Gouvêa, D. Surface and Grain Boundary Excess of ZnO-Doped TiO2 Anatase Nanopowders. Ceram. Int. 2018, 44, 11390–11396. [Google Scholar] [CrossRef]
- Mazabuel-Collazos, A.; Daza Gómez, C.; Rodríguez-Páez, J.E. ZnO-TiO2 Nanocomposites Synthetized by Wet Chemical Route: Study of Their Structural and Optical Properties. Mater. Chem. Phys. 2019, 222, 230–245. [Google Scholar] [CrossRef]
- Lin, S.-S.; Huang, J.-L.; Šajgalik, P. The Properties of Ti-Doped ZnO Films Deposited by Simultaneous RF and DC Magnetron Sputtering. Surf. Coat. Technol. 2005, 191, 286–292. [Google Scholar] [CrossRef]
- Chung, J.-L.; Chen, J.-C.; Tseng, C.-J. Electrical and Optical Properties of TiO2-Doped ZnO Films Prepared by Radio-Frequency Magnetron Sputtering. J. Phys. Chem. Solids 2008, 69, 535–539. [Google Scholar] [CrossRef]
- Ye, Z.-Y.; Lu, H.-L.; Geng, Y.; Gu, Y.-Z.; Xie, Z.-Y.; Zhang, Y.; Sun, Q.-Q.; Ding, S.-J.; Zhang, D.W. Structural, Electrical, and Optical Properties of Ti-Doped ZnO Films Fabricated by Atomic Layer Deposition. Nanoscale Res. Lett. 2013, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Gu, L.; Sun, D.; Mo, X.L.; Chen, G. The Properties of Ethanol Gas Sensor Based on Ti Doped ZnO Nanotetrapods. Mater. Sci. Eng. B 2010, 166, 104–107. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Z.; Zhang, L.; Kang, P.; Xie, Y.; Lv, Y.; Xu, R.; Zhang, X. Sonocatalytic Degradation of Some Dyestuffs and Comparison of Catalytic Activities of Nano-Sized TiO2, Nanosized ZnO and Composite TiO2/ZnO Powders under Ultrasonic Irradiation. Ultrason. Sonochem. 2009, 16, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Meng, S.; Zhang, S.; Zheng, X.; Ye, X.; Fu, X.; Chen, S. Insight into the Transfer Mechanisms of Photogenerated Carriers for Heterojunction Photocatalysts with the Analogous Position of Valence Band and Conduction Band: A Case Study of ZnO/TiO2. J. Phys. Chem. C 2018, 122, 15409–15420. [Google Scholar] [CrossRef]
- Li, B.; Yuan, D.; Gao, C.; Zhang, H.; Li, Z. Synthesis and Characterization of TiO2/ZnO Heterostructural Composite for Ultraviolet Photocatalytic Degrading DOM in Landfill Leachate. Environ. Sci. Pollut. Res. 2022, 29, 85510–85524. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Chauhan, R.; Kumar, N.; Singh, V.; Srivastava, V.C.; Mohanty, P.; Mandal, T.K. Enhancing Photocatalytic Degradation of Quinoline by ZnO:TiO2 Mixed Oxide: Optimization of Operating Parameters and Mechanistic Study. J. Environ. Manag. 2020, 258, 110032. [Google Scholar] [CrossRef]
- Habib, M.A.; Shahadat, M.T.; Bahadur, N.M.; Ismail, I.M.I.; Mahmood, A.J. Synthesis and Characterization of ZnO-TiO2 Nanocomposites and Their Application as Photocatalysts. Int. Nano Lett. 2013, 3, 5. [Google Scholar] [CrossRef]
- Marcì, G.; Augugliaro, V.; López-Muñoz, M.J.; Martín, C.; Palmisano, L.; Rives, V.; Schiavello, M.; Tilley, R.J.D.; Venezia, A.M. Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems. 1. Surface and Bulk Characterization. J. Phys. Chem. B 2001, 105, 1026–1032. [Google Scholar] [CrossRef]
- Ahmad, W.; Mehmood, U.; Al-Ahmed, A.; Al-Sulaiman, F.A.; Aslam, M.Z.; Kamal, M.S.; Shawabkeh, R.A. Synthesis of Zinc Oxide/Titanium Dioxide (ZnO/TiO2) Nanocomposites by Wetness Impregnation Method and Preparation of ZnO/TiO2 Paste Using Poly(vinylpyrrolidone) for Efficient Dye-Sensitized Solar Cells. Elecrochim. Acta 2016, 222, 473–480. [Google Scholar] [CrossRef]
- Ku, Y.; Huang, Y.-H.; Chou, Y.-C. Preparation and Characterization of ZnO/TiO2 for the Photocatalytic Reduction of Cr (VI) in Aqueous Solution. J. Mol. Catal. A Chem. 2011, 342–343, 18–22. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Y.; Liu, H.; Zhu, F.; Yin, H. Solar Photocatalytic Decolorization of CI Basic Blue 41 in an Aqueous Suspension of TiO2-ZnO. Dyes Pigm. 2008, 78, 77–83. [Google Scholar] [CrossRef]
- Karunakaran, C.; Abiramasundari, G.; Gomathisankar, P.; Manikandan, G.; Anandi, V. Preparation and Characterization of ZnO-TiO2 Nanocomposite for Photocatalytic Disinfection of Bacteria and Detoxification of Cyanide under Visible Light. Mater. Res. Bull. 2011, 46, 1586–1592. [Google Scholar] [CrossRef]
- Arin, J.; Thongtem, S.; Thongtem, T. Single-Step Synthesis of ZnO/TiO2 Nanocomposites by Microwave Radiation and Their Photocatalytic Activities. Mater. Lett. 2013, 96, 78–81. [Google Scholar] [CrossRef]
- Lachom, V.; Poolcharuansin, P.; Laokul, P. Preparation, Characterizations and Photocatalytic Activity of a ZnO/TiO2 Nanocomposite. Mater. Res. Express 2017, 4, 035006. [Google Scholar] [CrossRef]
- She, M.; Li, X.; Xiong, P.; Tian, Y.; Song, S.; Ding, T.; Li, X. Assembly of Hydrolysis, Activation and Reforming Sites Boosting Steam Reforming of DME over ZnO/TiO2 catalysts. Mater. Today Chem. 2023, 33, 101688. [Google Scholar] [CrossRef]
- Houšková, V.; Štengl, V.; Bakardjieva, S.; Murafa, N. Photoactive Materials Prepared by Homogeneous Hydrolysis with Thioacetamide: Part 2—TiO2/ZnO Nanocomposites. J. Phys. Chem. Solids 2008, 69, 1623–1631. [Google Scholar] [CrossRef]
- Upadhyay, G.K.; Rajput, J.K.; Pathaka, T.K.; Kumara, V.; Purohit, L.P. Synthesis of ZnO:TiO2 Nanocomposites for Photocatalyst Application in Visible Light. Vacuum 2019, 160, 154–163. [Google Scholar] [CrossRef]
- Kostedt, W.L.; Ismail, A.A.; Mazyck, D.W. Impact of Heat Treatment and Composition of ZnO-TiO2 Nanoparticles for Photocatalytic Oxidation of an Azo Dye. Ind. Eng. Chem. Res. 2008, 47, 1483–1487. [Google Scholar] [CrossRef]
- Zhang, M.; An, T.; Liu, X.; Hu, X.; Sheng, G.; Fu, J. Preparation of a High-Activity ZnO/TiO2 Photocatalyst via Homogeneous Hydrolysis Method with Low Temperature Crystallization. Mater. Lett. 2010, 64, 1883–1886. [Google Scholar] [CrossRef]
- Guo, S.-y.; Han, S.; Chi, B.; Pu, J.; Li, J. A Facile Low Temperature Approach to Designing Controlled Amorphous Based Titania Composite Photocatalysts with Excellent Noble-Metal-Free Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 2014, 6, 4743–4751. [Google Scholar] [CrossRef]
- Siwińska-Stefańska, K.; Kubiak, A.; Piasecki, A.; Dobrowolska, A.; Czaczyk, K.; Motylenko, M.; Rafaja, D.; Ehrlich, H.; Jesionowski, T. Hydrothermal Synthesis of Multifunctional TiO2-ZnO Oxide Systems with Desired Antibacterial and Photocatalytic Properties. Appl. Surf. Sci. 2019, 463, 791–801. [Google Scholar] [CrossRef]
- Pan, L.; Shen, G.-Q.; Zhang, J.-W.; Wei, X.-C.; Wang, L.; Zou, J.-J.; Zhang, X. TiO2−ZnO Composite Sphere Decorated with ZnO Clusters for Effective Charge Isolation in Photocatalysis. Ind. Eng. Chem. Res. 2015, 54, 7226–7232. [Google Scholar] [CrossRef]
- Liao, S.; Donggen, H.; Yu, D.; Su, Y.; Yuan, G. Preparation and Characterization of ZnO/TiO2, /ZnO/TiO2 Photocatalyst and their Photocatalysis. J. Photochem. Photobiol. A Chem. 2004, 168, 7–13. [Google Scholar] [CrossRef]
- Liao, D.L.; Badour, C.A.; Liao, B.Q. Preparation of Nanosized TiO2/ZnO Composite Catalyst and its Photocatalytic Activity for Degradation of Methyl Orange. J. Photochem. Photobiol. A Chem. 2008, 194, 11–19. [Google Scholar] [CrossRef]
- Rajbongshi, B.M.; Samdarshi, S.K.; Boro, B. Multiphasic Bi-Component TiO2-ZnO Nanocomposite: Synthesis, Characterization and Investigation of Photocatalytic Activity under Different Wavelengths of Light Irradiaion. J. Mater. Sci. Mater. Electron. 2015, 26, 377–384. [Google Scholar] [CrossRef]
- Janitabar-Darzi, S.; Mahjoub, A.R. Investigation of Phase Transformations and Photocatalytic Properties of Sol-Gel Prepared Nanostructured ZnO/TiO2 Composites. J. Alloys Compd. 2009, 486, 805–808. [Google Scholar] [CrossRef]
- Sridevi, K.P.; Guru Prasad, L.; Sangeetha, B.; Sivakumar, S. Structural and Optical Study of ZnO-TiO2 Nanocomposites. J. Ovonic Res. 2022, 18, 453–464. [Google Scholar] [CrossRef]
- El Mragui, A.; Daou, I.; Zegaoui, O. Influence of the Preparation Method and ZnO/(ZnO+TiOP) Weight Ratio on the Physicochemical and Photocatalytic Properties of ZnO-TiO2. Catal. Today 2019, 321–322, 41–51. [Google Scholar] [CrossRef]
- Suo, H.; Peng, C.; Jing, F.; Yu, S.; Cui, S.; Shen, X. Facile Preparation of TiO2/ZnO Composite Aerogel with Excellent Antibacterial Activities. Mater. Lett. 2019, 234, 253–256. [Google Scholar] [CrossRef]
- Ilkhechi, N.N.; Mozammel, M.; Khosroushahi, A.Y. Antifungal Effects of ZnO, TiO2 and ZnO-TiO2 nanostructures on Aspergillus flavus. Pestic. Biochem. Phys. 2021, 176, 104869. [Google Scholar] [CrossRef]
- Hussein, A.M.; Mahoney, L.; Peng, R.; Kibombo, H.; Wu, C.-M.; Koodali, R.T.; Shende, R. Mesoporous Coupled ZnO/TiO2 Photocatalyst Nanocomposites for Hydrogen Generation. J. Renew. Sustain. Energy 2013, 5, 033118. [Google Scholar] [CrossRef]
- Rusman, E.; Heryanto, H.; Fahri, A.N.; Rahmat, R.; Mutmainna, I.; Tahir, D. Green Synthesis ZnO/TiO2 for High Recyclability Rapid Sunlight Photodegradation Wastewater. MRS Adv. 2022, 7, 444–449. [Google Scholar] [CrossRef]
- Roy, D.; Yadav, A.K. Green TiO2-ZnO Nanocomposite Stimulator for the Growth of Solanum Lycopersicum in Aquaculture. Appl. Nanosci. 2022, 12, 1403–1423. [Google Scholar] [CrossRef]
- Umar, K.; Adnan, R. Biomass Mediated Green Synthesis of ZnO/TiO2 Nanocomposite and Enhanced Photocatalytic Activity for the Decolorization of Rhodamine B under Visible Light. KEM 2022, 920, 36–42. [Google Scholar] [CrossRef]
- Menazea, A.A.; Awwad, N.S. Antibacterial Activity of TiO2 Doped ZnO Composite Synthesized via Laser Ablation Route for Antimicrobial Application. J. Mater. Res. Technol. 2020, 9, 9434–9441. [Google Scholar] [CrossRef]
- Gondal, M.A.; Ilyas, A.M.; Baig, U. Pulsed Laser Ablation in Liquid Synthesis of ZnO/TiO2 Nanocomposite Catalyst with Enhanced Photovoltaic and Photocatalytic Performance. Ceram. Int. 2016, 42, 13151–13160. [Google Scholar] [CrossRef]
- Madhuvilakku, R.; Piraman, S. Biodiesel Synthesis by TiO2-ZnO Mixed Oxide Nanocatalyst Catalyzed Palm Oil Transesterification Process. Bioresour. Technol. 2013, 150, 55–59. [Google Scholar] [CrossRef]
- Mousa, H.M.; Fares Alenezi, J.; Mohamed, I.M.A.; Yasin, A.S.; Hashem, A.-F.M.; Abdal-hay, A. Synthesis of TiO2@ZnO Heterojunction for Dye Photodegradation and Wastewater Treatment. J. Alloys Compd. 2021, 886, 161169. [Google Scholar] [CrossRef]
- Sirotkin, N.; Khlyustova, A.; Costerin, D.; Naumova, I.; Titov, V.; Agafonov, A. Applications of Plasma Synthesized ZnO, TiO2, and Zn/TiOx Nanoparticles for Making Antimicrobial Wound-Healing Viscose Patches. Plasma Process Polym. 2022, 19, e2100093. [Google Scholar] [CrossRef]
- Lee, J.H.; Jung, K.Y.; Park, S.B. Modification of Titania Particles by Ultrasonic Spray Pyrolysis of Colloid. J. Mater. Sci. 1999, 34, 4089–4093. [Google Scholar] [CrossRef]
- Ohshima, K.; Tsuto, K.; Okuyama, K.; Tohge, N. Preparation of ZnO-TiO2 Composite Fine Particles Using the Ultrasonic Spray Pyrolysis Method and Their Characteristics on Ultraviolet Cutoff. Aerosol Sci. Technol. 1993, 19, 468–477. [Google Scholar] [CrossRef]
- Lü, X.; Huang, F.; Mou, X.; Wang, Y.; Xu, F. A General Preparation Strategy for Hybrid TiO2 Hierarchical Spheres and Their Enhanced Solar Energy Utilization Efficiency. Adv. Mater. 2010, 22, 3719–3722. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.; Ding, S.; Zhao, C.; Wang, C.; Yu, F.; Fang, J.; Yang, Y. Growth and Photocatalytic Activities of Porous ZnO/TiO2 Composite Microspheres with Crystalline–Amorphous Phase Boundary. Catal. Lett. 2021, 151, 1937–1947. [Google Scholar] [CrossRef]
- Xi, G.; Ouyang, S.; Ye, J. General Synthesis of Hybrid TiO2 Mesoporous “French Fries” Toward Improved Photocatalytic Conversion of CO2 into Hydrocarbon Fuel: A Case of TiO2/ZnO. Chem. Eur. J. 2011, 17, 9057–9061. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Ye, H.; Xiong, X.; Liu, H. Fabrication of TiO2/ZnO Nanofibers by Electrospinning and Their Photocatalytic Property. Mater. Chem. Phys. 2010, 121, 432–439. [Google Scholar] [CrossRef]
- Hwang, S.H.; Song, J.; Jung, Y.; Kweon, O.Y.; Song, H.; Jang, J. Electrospun ZnO/TiO2 composite Nanofibers as a Bactericidal Agent. Chem. Commun. 2011, 47, 9164–9166. [Google Scholar] [CrossRef]
- Pei, C.C.; Leung, W.W.-F. Enhanced Photocatalytic Activity of Electrospun TiO2/ZnO Nanofibers with Optimal Anatase/Rutile Ratio. Catal. Commun. 2013, 37, 100–104. [Google Scholar] [CrossRef]
- Murugan, R.; Babu, V.J.; Khin, M.M.; Nair, A.S.; Ramakrishna, S. Synthesis and Photocatalytic Applications of Flower Shaped Electrospun ZnO–TiO2 Mesostructures. Mater. Lett. 2013, 97, 47–51. [Google Scholar] [CrossRef]
- Kim, S.-S.; Yum, J.-H.; Sung, Y.-E. Flexible Dye-Sensitized Solar Cells Using ZnO Coated TiO2 Nanoparticles. J. Photochem. Photobiol. A Chem. 2005, 171, 269–273. [Google Scholar] [CrossRef]
- Byun, K.-T.; Seo, K.W.; Shim, I.-W.; Kwak, H.-Y. Synthesis of ZnO and ZnO-Coated TiO2 Nanoparticles in Various Alcohol Solutions at Multibubble Sonoluminescence (MBLS) Condition. Chem. Eng. J. 2008, 135, 168–173. [Google Scholar] [CrossRef]
- Bahadur, N.M.; Furusawa, T.; Sato, M.; Kurayama, F.; Suzuki, N. Rapid Synthesis, Characterization and Optical Propertis of TiO2 Coated ZnO Nanocomposite Particles by a Novel Microwave Irradiation Method. Mater. Res. Bull. 2010, 45, 1383–1388. [Google Scholar] [CrossRef]
- Ajay Rakkesh, R.; Balakumar, S. Facile Synthesis of ZnO/TiO2 Core–Shell Nanostructures and Their Photocatalytic Activities. JNN 2013, 13, 370–376. [Google Scholar] [CrossRef]
- Haghighatzadeh, A.; Hosseini, M.; Mazinani, B.; Shokouhimehr, M. Improved Photocatalytic Activity of ZnO-TiO2 Nanocomposite Catalysts by Modulating TiO2 thickness. Mater. Res. Express 2019, 6, 115060. [Google Scholar] [CrossRef]
- Ramírez-Ortega, D.; Meléndez, A.M.; Acevedo-Peña, P.; González, I.; Arroyo, R. Semiconducting Properties of ZnO/TiO2 Composites by Electrochemical Measurements and Their Relationship with Photocatalytic Activity. Electrochim. Acta 2014, 140, 541–554. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, W.; Gao, L. Anatase TiO2 Nanoparticles Immobilized on ZnO tetrapods as a Highly Efficient and Easily Recyclable Photocatalyst. Appl. Catal. B 2007, 76, 168–173. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, L.; Yang, C.; Zheng, W.; Liu, X.; Zhang, J. Chemiresistive Sensors Based on Core-Shell ZnO@TiO2 Nanorods Designed by Atomic Layer Deposition for n-Butanol Detection. Sens. Actuators B Chem. 2020, 310, 127846. [Google Scholar] [CrossRef]
- Zhou, M.; Wu, B.; Zhang, X.; Cao, S.; Ma, P.; Wang, K.; Fan, Z.; Su, M. Preparation and UV Photoelectric Properties of Aligned ZnO-TiO2 and TiO2-ZnO Core-Shell Structured Heterojunction Nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 38490–38498. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, H.; Hu, S.; Li, J. Preparation and Enhanced Photoelectrochemical Performances of Coupled Bicomponent ZnO-TiO2 Nanocomposites. J. Phys. Chem. 2008, 112, 117–122. [Google Scholar] [CrossRef]
- Sun, C.; Xu, Q.; Xie, Y.; Ling, Y.; Hou, Y. Designed Synthesis of Anatase–TiO2 (B) Biphase Nanowire/ZnO Nanoparticle Heterojunction for Enhanced Photocatalysis. J. Mater. Chem. A 2018, 6, 8289–8298. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, Y.; Xu, L.; Sun, P.; Su, Z.; Jin, F.; Liu, F.; Sun, Y.; Lu, G. High Specific Surface Area Urchin-like Hierarchical ZnO-TiO2 Architectures: Hydrothermal Synthesis and Photocatalytic Properties. Mater. Lett. 2016, 175, 52–55. [Google Scholar] [CrossRef]
- Yang, H.G.; Zeng, H.C. Synthetic architectures of TiO2/H2T5O11*H2O, ZnO/H2T5O11*H2O, ZnO/TiO2/H2T5 O11*H2O and ZnO/TiO2 nanocomposites. J. Am. Chem. Soc. 2005, 127, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Meng, F.; Khan, M.W.; Yu, B.; Li, H.; Fan, Z.; Gong, J. Fabrication and Enhanced Potocatalytic Property of TiO2-ZnO Composite Photocatalysts. Mater. Lett. 2019, 240, 84–87. [Google Scholar] [CrossRef]
- Athauda, T.J.; Neff, J.G.; Sutherlin, L.; Butt, U.; Ozer, R.R. Systematic Study of the Structure-Property Relationships of Branched Hierarchical TiO2/ZnO Nanostructures. ACS Appl. Mater. Interfaces 2012, 4, 6917–6926. [Google Scholar] [CrossRef]
- Deng, J.; Yu, B.; Lou, Z.; Wang, L.; Wang, R.; Zhang, T. Facile Synthesis and Enhanced Ethanol Sensing Properties of the Brush-like ZnO–TiO2 Heterojunctions Nanofibers. Sens. Actuators B Chem. 2013, 184, 21–26. [Google Scholar] [CrossRef]
- Zheng, X.; Li, D.; Li, X.; Chen, J.; Cao, C.; Fang, J.; Wang, J.; He, Y.; Zheng, Y. Construction of ZnO/TiO2 Photonic Crystal Heterostructures for Enhanced Photocatalytic Properties. Appl. Catal. B Environ. 2015, 168–169, 408–415. [Google Scholar] [CrossRef]
- Zalfani, M.; van der Schueren, B.; Mahdouani, M.; Bourguiga, R.; Yu, W.-B.; Wu, M.; Deparis, O.; Li, Y.; Su, B.-L. ZnO Quantum Dots Decorated 3DOM TiO2 Nanocomposites: Symbiose of Quantum Size Effects and Photonic Structure for Highly Enhanced Photocatalytic Degradation of Organic Pollutants. Appl. Catal. B 2016, 199, 187–198. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, S.; Rishikesh; Manna, A.K.; Soni, R.K. Fabrication of ZnO–TiO2 Nanohybrids for Rapid Sunlight Driven Photodegradation of Textile Dyes and Antibiotic Residue Molecules. Opt. Mater. 2020, 107, 110138. [Google Scholar] [CrossRef]
- Chen, M.; Kang, Z.; Wu, J.; Qin, N.; Bao, D. Significantly Enhanced Piezo-Photocatalytic Properties of Recyclable Nanocomposite Films by Growing ZnO Nanorods on Inverse Opal Structured TiO2 framework. J. Alloys Compd. 2024, 985, 174032. [Google Scholar] [CrossRef]
- Yuan, Z.-H.; Tang, C.-C.; Fan, S.-S. Optical Absorption of Sol-Gel Derived ZnO-TiO2 Nanocomposite Films. Chin. Phys. Lett. 2001, 18, 1520–1522. [Google Scholar] [CrossRef]
- Shaogui, Y.; Xie, Q.; Xinyong, L.; Yazi, L.; Shuo, C.; Guohua, C. Preparation, Characterization and Photoelectrocatalytic Properties of Nanocrystalline Fe2O3/TiO2, ZnO/TiO2 and Fe2O3/ZnO/TiO2 Composite Film Electrodes Towards Pentachlorophenol Degradation. Phys. Chem. Chem. Phys. 2004, 6, 659–664. [Google Scholar] [CrossRef]
- Vaezi, M.R. Two-Steps Solochemical Synthesis of ZnO/TiO2 Nano-Composite Materials. J. Mater. Process. Technol. 2008, 205, 332–337. [Google Scholar] [CrossRef]
- Tian, J.; Chen, L.; Yin, Y.; Wang, X.; Dai, J.; Zhu, Z.; Liu, X.; Wu, P. Photocatalyst of TiO2/ZnO Nano Composite Film: Preparation, Characterization and Photodegradation Activity of Methyl Orange. Surf. Coat. Technol. 2009, 204, 205–214. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Huang, W.; Yang, C.; Huang, T.; Situ, Y.; Huang, H. Synthesis of Porous ZnO/TiO2 Thin Films with Superhydrophilicity and Photocatalytic Activity via a Template-Free Sol-Gel Method. Surf. Coat. Technol. 2014, 258, 531–538. [Google Scholar] [CrossRef]
- Firdaus, C.M.; Shah Rizam, M.S.B.; Rusop, M.; Rahmatul Hidayah, S. Characterization of ZnO and ZnO: TiO2 Thin Films Prepared by Sol-Gel Spray-Spin Coating Technique. Procedia Eng. 2012, 41, 1367–1373. [Google Scholar] [CrossRef]
- Barreca, D.; Comini, E.; Ferrucci, A.P.; Gasparotto, A.; Maccato, C.; Maragno, C.; Sberveglieri, G.; Tondello, E. First Example of ZnO-TiO2 Nanocomposites by Chemical Vapor Deposition: Structure, Morphology, Composition, and Gas Sensing Performances. Chem. Mater. 2007, 19, 5642–5649. [Google Scholar] [CrossRef]
- Mane, R.S.; Lee, W.J.; Pathan, H.M.; Han, S.-H. Nanocrystalline TiO2/ZnO Thin Films: Fabrication and Application to Dye-Sensitized Solar Cells. J. Phys. Chem. B 2005, 109, 24254–24259. [Google Scholar] [CrossRef]
- Roh, S.-J.; Mane, R.S.; Min, S.-K.; Lee, W.-J.; Lokhande, C.D.; Han, S.-H. Achievement of 4.51% Conversion Efficiency using ZnO Recombination Barrier Layer in TiO2 Based Dye-Sensitized Solar Cells. Appl. Phys. Lett. 2006, 89, 253512. [Google Scholar] [CrossRef]
- Kim, K.E.; Jang, S.-R.; Park, J.; Vittal, R.; Kim, K.-J. Enhancement in the Performance of Dye-Sensitized Solar Cells Containing ZnO-Covered TiO2 Electrodes Prepared by Thermal Chemical Vapor Deposition. Sol. Energy Mater. Sol. Cells 2007, 91, 366–370. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, Y.; Fang, Y.; Liang, L.; Ding, H.; Jin, L. Preparation of Photocatalytic Nano-ZnO/TiO2 Film and Application for Determination of Chemical Oxygen Demand. Talanta 2007, 73, 523–528. [Google Scholar] [CrossRef]
- Shi, L.; Shen, H.; Jiang, L.; Li, X. Co-Emission of UV, Violet and Green Photoluminescence of ZnO/TiO2 Thin Film. Mater. Lett. 2007, 64, 4735–4737. [Google Scholar] [CrossRef]
- Choi, W.S.; Kim, E.J.; Seong, S.G.; Kim, Y.S.; Park, C.; Hahn, S.H. Optical and Structural Properties of ZnO/TiO2/ZnO Multilayers Prepared via Electron Beam Evaporation. Vacuum 2009, 83, 878–882. [Google Scholar] [CrossRef]
- Widyastuti, E.; Chiu, C.-T.; Hsu, J.-L.; Lee, Y.C. Photocatalytic Antimicrobial and Photostability Studies of TiO2/ZnO Thin Films. Arab. J. Chem. 2023, 16, 105010. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Q.; Miao, C.; Bu, Z.; Guo, W. Enhanced Photovoltaic Performance of Dye-Sensitized Solar Cells Based on ZnO Microrod Aray/TiO2 Nanoparticle Hybrid Films. J. Mater. Chem. A 2013, 1, 3112. [Google Scholar] [CrossRef]
- Deng, J.; Wang, M.; Zhang, P.; Ye, W. Preparing ZnO Nanowires in Mesoporous TiO2 Photoanode by an in-Situ Hydrothermal Growth for Enhanced Light-Trapping in Quantum Dots-Sensitized Solar Cells. Electrochim. Acta 2016, 200, 12–20. [Google Scholar] [CrossRef]
- Kumagai, H.; Tanaka, Y.; Murata, M.; Masuda, Y.; Shinagawa, T. Novel TiO2/ZnO Multilayer Mirrors at ‘Water-Window’ Wavelengths Fabricated by Atomic Layer Epitaxy. J. Phys. Condens. Matter 2010, 22, 474008. [Google Scholar] [CrossRef]
- Law, M.; Greene, L.E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. ZnO-Al2O3 and ZnO-TiO2 Core-Shell Nanowire Dye Sensitized Solar Cells. J. Phys. Chem. B 2006, 110, 22652–22663. [Google Scholar] [CrossRef]
- Hernández, S.; Cauda, V.; Chiodoni, A.; Dallorto, S.; Sacco, A.; Hidalgo, D.; Celasco, E.; Pirri, C.F. Optimization of 1D ZnO@TiO2 Core−Shell Nanostructures for Enhanced Photoelectrochemical Water Splitting under Solar Light Illumination. ACS Appl. Mater. Interfaces 2014, 6, 12153–12167. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, T.; He, H.; Fu, Y.; Zhang, X.; Sun, J.; Xing, L.; Liu, B.; Zhang, Y.; Xue, X. Enhanced H2 Production of TiO2/ZnO Nanowires co-Using Solar and Mechanical Energy through Piezo-Photocatalytic Effect. ACS Sustain. Chem. Eng. 2018, 6, 10162–10172. [Google Scholar] [CrossRef]
- Jeong, K.; Deshmukh, P.R.; Park, J.; Sohn, Y.; Shin, W.G. ZnO-TiO2 Core−Shell Nanowires: A Sustainable Photoanode for Enhanced Photoelectrochemical Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 6518–6526. [Google Scholar] [CrossRef]
- Ramgir, N.; Bhusari, R.; Rawat, N.S.; Patil, S.J.; Debnath, A.K.; Gadkari, S.C.; Muthe, K.P. TiO2/ZnO Heterostrucure Nanowire Based NO2 Sensor. Mater. Sci. Semicond. Process. 2020, 106, 104770. [Google Scholar] [CrossRef]
- Greene, L.E.; Law, M.; Yuhas, B.D.; Yang, P. ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells. J. Phys. Chem. C 2007, 111, 18451–18456. [Google Scholar] [CrossRef]
- Guo, M.Y.; Fung, M.K.; Fang, F.; Chen, X.Y.; Ng, A.M.C.; Djurišić, A.B.; Chan, W.K. ZnO and TiO2 1D Nanostructures for Photocatalytic Applications. J. Alloys Compd. 2011, 509, 1328–1332. [Google Scholar] [CrossRef]
- Wang, M.; Huang, C.; Cao, Y.; Yu, Q.; Deng, Z.; Liu, Y.; Huang, Z.; Huang, J.; Huang, Q.; Guo, W.; et al. Dye-Sensitized Solar Cells Based on Nanoparticle-Decorated ZnO/TiO2 Core/Shell Nanorod Arrays. J. Phys. D Appl. Phys. 2009, 42, 155104. [Google Scholar] [CrossRef]
- Gu, L.; Zheng, K.; Zhou, Y.; Li, J.; Mo, X.; Patzke, G.R.; Chen, G. Humidity Sensors Based on ZnO/TiO2 Core/Shell Nanorod Arrays with Enhanced Sensitivity. Sens. Actuators B Chem. 2011, 159, 1–7. [Google Scholar] [CrossRef]
- Panigrahi, S.; Basak, D. Core–Shell TiO2@ZnO Nanorods for Efficient Ultraviolet Photodetection. Nanoscale 2011, 3, 2336–2341. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Bezverkhyy, I.; Skompska, M. ZnO Nanorods Covered with a TiO2 layer: Simple Sol–Gel Preparation, and Optical, Photocatalytic and Photoelectrochemical Properties. J. Mater. Chem. A 2015, 3, 12748. [Google Scholar] [CrossRef]
- Park, J.Y.; Choi, S.-W.; Lee, J.-W.; Lee, C.; Kim, S.S. Synthesis and Gas Sensing Properties of TiO2-ZnO Core-Shell Nanofibers. J. Am. Ceram. Soc. 2009, 92, 2551–2554. [Google Scholar] [CrossRef]
- Zou, C.W.; Yan, X.D.; Han, J.; Chen, R.Q.; Bian, J.M.; Haemmerle, E.; Gao, W. Preparation and Enhanced Photoluminescence Property or Ordered ZnO/TiO2 Bottlebrush Nanostructures. Chem. Phys. Lett. 2009, 476, 47684–47688. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Xia, N.; Jiang, M.; Liu, R.; Huang, J.; Li, Q.; Luo, Z.; Liu, L.; Xu, W.; et al. Novel ZnO-TiO2 Nanocomposite Arrays on Ti Fabric for Enhanced Photocatalytic Application. J. Mol. Struct. 2017, 1148, 347–355. [Google Scholar] [CrossRef]
- Shi, L.; Sun, X.; Li, H.; Weng, D. Hydrothermal Growth of Novel Radiolarian-like Porous ZnO Microspheres on Compact TiO2 Substrate. Mater. Lett. 2006, 60, 210–213. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, M.; Wu, X.; Sun, Y.; Yin, H. Low-Temperature Hydrothermal Synthesis of Flower-like ZnO Microstructure and Nanorod Array on Nanoporous TiO2 Film. Mater. Lett. 2009, 63, 275–278. [Google Scholar] [CrossRef]
- Wang, N.; Li, X.; Wang, Y.; Hou, Y.; Zou, X.; Chen, G. Synthesis of ZnO/TiO2 Nanotube Composite Film by a Two-Step Route. Mater. Lett. 2008, 62, 3691–3693. [Google Scholar] [CrossRef]
- Çırak, B.B.; Caglar, B.; Kılınç, T.; Karadeniz, S.M.; Erdoğan, Y.; Kılıç, S.; Kahveci, E.; Ekinci, A.E.; Çırak, Ç. Synthesis and Characterization of ZnO Nanorice Decorated TiO2 Nanotubes for Enhanced Photocatalytic Activity. Mater. Res. Bull. 2019, 109, 160–167. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, Y.; Liang, L.; Cheng, Y.; Shi, G.; Jin, L. Preparation and Photoelectrocatalytic Activity of ZnO Nanorods Embedded in Highly Ordered TiO2 Nanotube Arrays Electrode for Azo Dye Degradation. J. Hazard. Mater. 2008, 158, 517–522. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, G.; Liu, M.; Zhang, Z.; Tong, X.; Cao, T. Fabrication, Characterization and Photoelectrocatalytic Application of ZnO Nanorods Grafted on Vertically Aligned TiO2 Nanotubes. J. Phys. Chem. C 2009, 113, 19067–19076. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Chang, S.-Y.; Lin, C.-F.; Tseng, W.J. Synthesis of ZnO Nanorod Grafted TiO2 Nanotube 3-D Arrayed Heterostructure as Supporting Platform for Nanoparticle Deposition. J. Mater. Chem. 2011, 21, 14056. [Google Scholar] [CrossRef]
- Yang, H.Y.; Yu, S.F.; Lau, S.P.; Zhang, X.; Sun, D.D.; Jun, G. Direct Growth of ZnO Nanocrystals onto the Surface of Porous TiO2 Nanotube Arays for Highly Efficient and Recyclable Photocatalysts. Small 2009, 5, 2260–2264. [Google Scholar] [CrossRef]
- Xie, Y.-L.; Li, Z.-X.; Xu, Z.-G.; Zhang, H.-L. Preparation of Coaxial TiO2/ZnO Nanotube Arrays for High Efficiency Photo-Energy Conversion Application. Electrochem. Commun. 2011, 13, 788–791. [Google Scholar] [CrossRef]
- Xiao, F.-X. Construction of Highly Ordered ZnO−TiO2 Nanotube Arrays (ZnO/TNTs) Heterostructure for Photocatalytic Application. ACS Appl. Mater. Interfaces 2012, 4, 7055–7063. [Google Scholar] [CrossRef]
- Liu, W.; Su, P.; Chen, S.; Wang, N.; Ma, Y.; Liu, Y.; Wang, J.; Zhang, Z.; Li, H.; Webster, T.J. Synthesis of TiO2 Nanotubes with ZnO Nanoparticles to Achieve Antibacterial Properties and Stem Cell Compatibility. Nanoscale 2014, 6, 9050–9062. [Google Scholar] [CrossRef]
- Gouvêa, C.A.K.; Wypych, F.; Moraes, S.G.; Durán, N.; Nagata, N.; Peralta-Zamora, P. Semiconductor-Assisted Photocatalytic Degradation of Reactive Dyes in Aqueous Solution. Chemosphere 2000, 40, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Cifre-Herrando, M.; Roselló-Márquez, G.; Navarro-Gázquez, P.J.; Muñoz-Portero, M.J.; Blasco-Tamarit, E.; García-Antón, J. Characterization and Comparison of WO3/WO3-MoO3 and TiO2/TiO2-ZnO Nanostructures for Photoelectrocatalytic Degradation of the Pesticide Imazalil. Nanomaterials 2023, 13, 2584. [Google Scholar] [CrossRef] [PubMed]
- Naimi-Joubani, M.; Shirzad-Siboni, M.; Yang, J.-K.; Gholami, M.; Farzadki, M. Photocatalytic Reduction of Hexavalent Chromium with Illuminated ZnO/TiO2 composite. J. Ind. Eng. Chem. 2015, 22, 317–323. [Google Scholar] [CrossRef]
- Li, M.; Zhang, R.; Zou, Z.; Zhang, L.; Ma, H. Optimizing Physico-Chemical Properties of Hierarchical ZnO/TiO2 Nano-Film by the Novel Heating Method for Photocatalytic Degradation of Antibiotics and Dye. Chemosphere 2024, 346, 140392. [Google Scholar] [CrossRef]
- Mancuso, A.; Mottola, S.; Sacco, O.; Vaiano, V.; De Marco, I. Photocatalytic Degradation of Ceftriaxone Using TiO2 Coupled with ZnO Micronized by Supercritical Antisolvent Route. Nanomaterials 2023, 13, 3130. [Google Scholar] [CrossRef]
- Vaizoğullar, A.İ. TiO2/ZnO Supported on Sepiolite Preparation, Structural Characterization and Photocatalytic Degradation of Flumequine Antibiotic in Aqueous Solution. Chem. Eng. Commun. 2017, 204, 695–703. [Google Scholar] [CrossRef]
- Gholami, M.; Shirzad-Siboni, M.; Farzadkia, M.; Yang, J.-K. Synthesis, Characterization, and Application of ZnO/TiO2 Nanocomposite for Photocatalysis of a Herbicide (Bentazon). Desalin. Water. Treat. 2015, 57, 13632–13644. [Google Scholar] [CrossRef]
- Kansal, S.K.; Singh, M.; Sud, D. Studies on TiO2/ZnO Photocatalysed Degradation of Lignin. J. Hazard. Mater. 2008, 153, 412–417. [Google Scholar] [CrossRef]
- Muzikova, B.; Martiniakova, I.; Mikyskova, E.; Mergl, M.; Kalbac, M.; Zouzelka, R.; Rathousky, J. Composite TiO2-Based Photocatalyst with Enhanced Performance. Photochem. Photobiol. Sci. 2023, 22, 73–86. [Google Scholar] [CrossRef]
- Ramadhika, L.N.; Suryaningsih, S.; Aprilia, A. Photocactivity Enhancement of TiO2 Nanoparticle-Decorated ZnO as a Photocatalyst in Methylene Blue Degradation. J. Phys. Conf. Ser. 2022, 2376, 012003. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, S.; Jung, H.S.; Kim, J.Y.; Shin, H.; Hong, K.S. Effects of Heterojunction on Photoelectrocatalytic Properties of ZnO–TiO2 films. Int. J. Hydrogen Energy 2007, 32, 3137. [Google Scholar] [CrossRef]
- Hidalgo-Jimenez, J.; Wang, Q.; Edalati, K.; Cubero-Sesin, J.M.; Razavi-Khosroshahi, H.; Ikoma, Y.; Gutiérrez-Fallas, D.; Dittel-Meza, F.A.; Rodríguez-Rufino, J.C.; Fuji, M.; et al. Phase Transformations, Vacancy Formation and Variations of Optical and Photocatalytic Properties in TiO2-ZnO Composites by High-Pressure Torsion. Int. J. Plast. 2020, 124, 170–175. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Mohsin, M.; Ahmad, T.; Sardar, M. Alpha Amylase Assisted Synthesis of TiO2 Nanoparticles: Structural Characterization and Application as Antibacterial Agents. J. Hazard. Mater. 2015, 283, 171–177. [Google Scholar] [CrossRef]
- Xiong, D.; Fang, T.; Yu, L.; Sima, X.; Zhu, W. Effects of Nano-Scale TiO2, ZnO and Their Bulk Counterparts on Zebrfish: Acute Toxicity, Oxidative Stress and Oxidative Damage. Sci. Total. Environ. 2011, 409, 1444–1452. [Google Scholar] [CrossRef]
- Stoyanova, A.; Hitkova, H.; Bachvarova-Nedelcheva, A. Synthesis and Antibacterial Activity of TiO2/ZnO Nanocomposites Prepared via Nonhydrolytic Route. J. Chem. Technol. Metall. 2013, 48, 154–161. [Google Scholar]
- Chakra, C.H.S.; Rajendar, V.; Rao, K.V.; Kumar, M. Enhanced Antimicrobial and Anticancer Properties of ZnO and TiO2 Nanocomposites. 3 Biotech 2017, 7, 89. [Google Scholar] [CrossRef]
- Ren, D.; Li, J.; Bao, Y.; Wu, Z.; He, S.; Wang, A.; Guo, F.; Chen, Y. Low-Temperature Synthesis of Flower-Like ZnO Microstructure Supported on TiO2 Thin Films as Efficient Antifungal Coatings for Bamboo Protection under Dark Conditions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 381–388. [Google Scholar] [CrossRef]
- Soria, R.B.; Zhu, J.; Gonza, I.; Van der Bruggen, B.; Luis, P. Effect of (TiO2: ZnO) Ratio on the Anti-fouling Properties of Bio-inspired Nanofiltration Membranes. Sep. Purif. Technol. 2020, 251, 1117280. [Google Scholar] [CrossRef]
- Halfadji, A.; Bennabi, L.; Giannakis, S.; Marrani, A.G.; Bellucci, S. Sono-synthesis and Characterization of Next-generation Antimicrobial ZnO/TiO2 Fe3O4/TiO2 bi-nanocomposites, for Antibacterial and Antifungal Applications. Ceram. Int. 2024, 50, 39097–39108. [Google Scholar] [CrossRef]
- Wang, C.; Abidin, S.Z.; Toyong, N.M.P.; Zhu, W.; Zhang, Y. Mildew Resistance and Antibacterial Activity of Plywood Decorated with ZnO/TiO2 Nanoparticle. J. Saudi Chem. Soc. 2024, 28, 101877. [Google Scholar] [CrossRef]
- Pourhajibaghera, M.; Bahador, A. Synergistic Biocidal Effects of Metal Oxide Nanoparticles-assisted Ultrasound Irradiation: Antimicrobial Sonodynamic Therapy against Streptococcus Mutans Biofilms. Photodiagn. Photodyn. 2021, 35, 102432. [Google Scholar] [CrossRef] [PubMed]
- Parvin, N.; Nallapureddy, R.R.; Mandal, T.K.; Joo, S.W. Construction of Bimetallic Hybrid Multishell Hollow Spheres via Sequential Template Approach for Less Cytotoxic Antimicrobial Effect. IEEE Trans. Nanobiosci. 2023, 22, 447. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium Dioxide Nanoparticles: A Review of Current Toxicological Data. Part. Fibre Toxicol. 2013, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Vandebriel, R.J.; De Jong, W.H. A review of Mammalian Toxicity of ZnO Nanoparticles. Nanotechnol. Sci. Appl. 2012, 5, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Kocbek, P.; Teskač, K.; Kreft, M.E.; Kristl, J. Toxicological Aspects of Long-Term Treatment of Keratinocytes with ZnO and TiO2 Nanoparticles. Small 2010, 6, 1908. [Google Scholar] [CrossRef] [PubMed]
- Monteiro-Riviere, N.A.; Wiench, K.; Landsiedel, R.; Schulte, S.; Inman, A.O.; Riviere, J.E. Safety Evaluation of Sunscreen Formulations Containing Titanium Dioxide and Zinc Oxide Nanoparticles in UVB Sunburned Skin: An In Vitro and In Vivo Study. Toxicol. Sci. 2011, 123, 264–280. [Google Scholar] [CrossRef]
- Liang, Y.; Simaiti, A.; Xu, M.; Lv, S.; Jiang, H.; He, X.; Fan, Y.; Zhu, S.; Du, B.; Yang, W.; et al. Antagonistic Skin Toxicity of Co-Exposure to Physical Sunscreen Ingredients Zinc Oxide and Titanium Dioxide Nanoparticles. Nanomaterials 2022, 12, 2769. [Google Scholar] [CrossRef]
- Kim, I.-S.; Baek, M.; Choi, S.-J. Comparative Cytotoxicity of Al2O3, CeO2, TiO2 and ZnO Nanoparticles to Human Lung Cells. J. Nanosci. Nanotechnol. 2010, 10, 3453–3458. [Google Scholar] [CrossRef]
- Larsen, S.T.; Jackson, P.; Poulsen, S.S.; Levin, M.; Jensen, K.A.; Wallin, H.; Nielsen, G.D.; Koponen, I.K. Airway Irritation, Inflammation, and Toxicity in Mice Following Inhalation of Metal Oxide Nanoparticles. Nanotoxicology 2016, 10, 1254–1262. [Google Scholar] [CrossRef]
- Simón-Vázquez, R.; Lozano-Fernández, T.; Dávila-Grana, A.; González-Fernández, Á. Analysis of the Activation Routes Induced by Different Metal Oxide Nanoparticles on Human Lung Epithelial Cells. Future Sci. OA 2016, 2, FSO118. [Google Scholar] [CrossRef] [PubMed]
- Remzova, M.; Zouzelka, R.; Brzicova, T.; Vrbova, K.; Pinkas, D.; Rőssner, P.; Topinka, J.; Rathousky, J. Toxicity of TiO2, ZnO, and SiO2 Nanoparticles in Human Lung Cells: Safe-by-Design Development of Construction Materials. Nanomaterials 2019, 9, 968. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, I.-L.; Huang, Y.-J. Effects of Various Physicochemical Characteristics on the Toxicities of ZnO and TiO2 Nanoparticles Toward Human Lung Epithelial Cells. Sci. Total Environ. 2011, 409, 1219. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, I.-L.; Huang, Y.-J. Titanium Oxide Shell Coatings Decrease the Cytotoxicity of ZnO Nanoparticles. Chem. Res. Toxicol. 2011, 24, 303–313. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.-X. Significance of Physicochemical and Uptake Kinetics in Controlling the Toxicity of Metallic Nanomaterials to Aquatic Organisms. J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.) 2014, 15, 573–592. [Google Scholar] [CrossRef]
- Tong, T.; Fang, K.; Thomas, S.A.; Kelly, J.J.; Gray, K.A.; Gaillard, J.-F. Chemical Interactions between Nano-ZnO and Nano-TiO2 in a Natural Aqueous Medium, Environ. Sci. Technol. 2014, 48, 7924–7932. [Google Scholar] [CrossRef]
- Hua, J.; Peijnenburg, W.J.G.M.; Vijver, M.-G. TiO2 Nanoparticles Reduce the Effects of ZnO Nanoparticles and Zn Ions on Zebrafish Embryos (Danio rerio). NanoImpact 2016, 2, 45–53. [Google Scholar] [CrossRef]
- Sezer, S.; Yücel, A.; Turhan, D.Ö.; Emre, F.B.; Sarikaya, M. Comparison of ZnO Doped Different Phases TiO2 Nanoparticles in Terms of Toxicity Using Zebrafish (Danio rerio). Chemosphere 2023, 325, 138342. [Google Scholar] [CrossRef]
- Speziale, A.; González-Sánchez, J.F.; Taşcı, B.; Pastor, A.; Sánchez, L.; Fernández-Acevedo, C.; Oroz-Mateo, T.; Salazar, C.; Navarro-Blasco, I.; Fernández, J.M.; et al. Development of Multifunctional Coatings for Protecting Stones and Lime Mortars of the Architectural Heritage. Int. J. Archit. Herit. 2020, 14, 1008–1029. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, X.; Xiong, Z.; Huang, Q.; Yang, X.; Yan, H.; Ma, J.; Feng, Q.; Shen, Z. Novel Micro/Nanostructured TiO2/ZnO Coating with Antibacterial Capacity and Cytocompatibility. Ceram. Int. 2018, 44, 9711–9719. [Google Scholar] [CrossRef]
Shape and Particle Size (PS) | Synthesis Method | Starting Materials | Composition | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | Surface Area (SA) and E Gap | Ref. |
---|---|---|---|---|---|---|---|
Nanosized mesoporous NPs | Sol–gel method | TTIP, EtOH DW, ZN, HNO3 | Zn mol.% = 0, 0.1, 0.2, 0.3, 0.5, 1, 2, 5, 10% | Drying: supercritical conditions: Tc = 235.1 °C, Pc = 47.6 bar, ρc = 0.273 gcm−3; calcination: 500 °C. 10 h, air | CP: anatase. CS: 17–13 nm, decreases with increasing Zn content. c dimension decreases (9.509–9.493 Å) with increasing Zn content | SA = 77–94 m2 g−1, increases with increasing Zn content. E gap: 2.96–3.02 eV, increases with increasing Zn content | [11] |
Microspheres. PS: decreases with increasing Zn content | precipitation method | ZN, EG, TTIP, acetone, DW | Zn/Ti at. ratio = 0, 0.25, 0.5, 1% | Annealing: 450 °C, 2 h | CP: anatase. CS: 15–25 nm decreases with increasing Zn content | SA = 19–53 m2 g−1 increases with increasing Zn content | [13] |
<001> elongated NPs | hydrothermal method | TBT, ZAc, TEA, DW | Zn/Ti at. ratio = 0, 3.5, 8, 13.5 | Autoclave: 180 °C, 16 h | CP: anatase and wurtzite (W only in ZnO mol% = 13.5%) | SA = 43 m2 g−1 | [14] |
Mesoporous nanosized NPs | Hydrolysis condensation in agarose gel template | ZAc, TTIP, DW, MeOH, agarose gel | Zn at.% = 0, 0.5, 1, 2, 4, 6, 8 | Drying: 60 °C, 5 h; calcination: 450 °C, 10 h | CP: anatase. CS: 15–11 nm, decreases with increasing Zn content up to 2% then remains constant. c dimension: 9.490–9.465 Å decreases for Zn(%at.) 0–2, then remains constant | SA = 60–70 m2 g−1 | [15] |
TNTs inner ∅TNTs ~100 nm, wall thickness ~50–100 nm, lengthNTs = 10–15 μm | ALD (400 cycles) on polycarbonate (Millipore) template | TiCl4, ZnEt2, DW, N2 | Zn at.% = 1, 2, 3, 8% | 450 °C, 2 h | CP: anatase CS: 20–15 nm, decreases with increasing Zn content | [16] | |
Agglomerated NPs | Polymeric precursor method (sol–gel Pechini) | TTIP, EG, CitrA (citric acid), ZN, DW | Zn mol.% = 0, 0.39, 0.85, 4.25, 8.55% | Calcination: 450 °C, 5 h + 500 °C, 15′ | CP: anatase. CS: 25–10 nm, decreases with increasing Zn content | SA = 27–46 m2 g−1, increases with Zn content from 0 up to 5% and then decreases | [17] |
Shape and Particle Size | Synthesis Method | Starting Materials | Composition | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | SA and E Gap | Ref. |
---|---|---|---|---|---|---|---|
Agglomerated spherical NPs PS = 100 nm | Pechini sol–gel | ZAc, TBT, EG, CitrA, NH4OH | Ti wt.% = 0, 1, 3, 5% | Drying: 120 °C; calcination: 300 °C, 3 h, 500 °C, 4 h | CP: Wurtzite. CS: 25–15 nm, decreases with increasing Ti content | [18] | |
Film on glass | Simultaneous RF (ZnO) and DC (Ti doping) magnetron sputtering | ZnO, Ti | Zn/O/Ti at. ratio = 89.3/9.6/1.1, 88.3/10.0/1.7, 86.6/10.6/2.8, 81.9/14.1/4.0 | CP: amorphous (Ti at.% ˃ 2%), (002) oriented wurtzite (Ti at.% =< 2%); | E gap = 3.39–3.92 eV | [19] | |
Film on corning glass | Magnetron sputtering | sintered (1000–1300 °C) targets from ZnO and TiO2 powder | Ti/Zn/O at. Ratio = 0.7/46.2/531, 1.4/44.5/54.1, 2.0/43.7/54.3, 2.8/42.5/54.7, 3.4/41.0/55.6 | Annealing: 700 °C, in Ar | CP: amorphous (Ti at.% ˃ 2%), (002) oriented wurtzite (Ti at.% < 2%); | E-gap = 3.33–4.33 eV, increases with increasing Ti content | [20] |
film on quartz glass, film thickness = 100 nm | ALD | TTIP, ZnEt2, DW | Zn/Ti at. ratio = 20, 10, 5, 2, 1 | CP: amorphous (Zn/Ti = 1, 2); wurtzite (Zn/Ti ≥ 5), | E gap = 3.26–3.99 eV, increases with increasing Ti content | [21] | |
Ti-doped ZnO nanotetrapods with hexagonal branches. branch Ø = 200–300 nm | (1) ZnO tetrapods by direct thermal evaporation; (2) Ti doping by solid-state reaction | (1) Zn, O2, Ar; (2) ZnO tetrapods, TiO2 | TiO2 wt.% = 10% | CP: anatase (traces), wurtzite | [22] |
Shape and Particle Size | Synthesis Method | Starting Materials | Composition | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | SA and E Gap | Ref. |
---|---|---|---|---|---|---|---|
irregular (anatase) and rod-like (wurtzite) NPs. PS = 0.1–0.3 μm (TiO2); ∅ZnO = 0.1–0.3 μm, lengthZnO: 0.3–1.5 μm | mixing in methanol dispersion | ZnO, TiO2, KOH, MeOH | ZnO wt.% = 0, 1, 3, 5, 10, 15, 30, 50, 70, 90, 93, 95, 97, 99, 100 | drying: 80 °C, 3 h | CP: anatase (ZnO ≤ 99%), wurtzite (ZnO > 10%) | SA = 6–15 m2 g−1, decreases with increasing Zn content | [24] |
agglomerated NPs. PS = 75–100 nm (r = 4/1); 40–70 nm (r = 1/0); 50–80 nm (r = 0/1) | u.s. treatment on water-dispersed starting materials, followed by SSR | Nano-sized TiO2, nano-sized ZnO, DW | r = TiO2/ZnO (mol. ratio) = 1/0, 4/1, 3/2, 2/3, 1/4, 0/1 | drying: 100 °C,10 h; calcination: 500 °C, 40′ | CP: anatase, wurtzite. CS = 80 nm (r = 4/1); 50 nm (r = 1/0); 60 (r = 0/1) | [23] | |
PS = 500 nm | 2 steps: (1) TiO2·xH2O by spray drying; (2) mixing and SSR | SM: (1) H2TiO3, NH4OH, (2) TiO2· xH2O (from 1), ZnCO3 | r = ZnO/TiO2 (mol. ratio) = 1, 2, 3, 4, 5 | (2) calcination: 600 °C, 1 h | CP: anatase, wurtzite | [27] | |
rod-like shape (r = 0/1); agglomerated spherical NPs (r = 1/0); agglomerated TNPs on rod-like ZNPs (r = 1/1). PS: Ø = 470 nm (r = 0/1); 10 nm (r = 1/0) | 2 steps: (1) TiO2 and ZnO by hydrothermal method; (2) mixing and SSR | (1) ZAc, DW, NH4OH (ZnO); TBT, EtOH, DW (TiO2); (2) ZnO (from 1), TiO2 (from (1)), PVA | r = TiO2/ZnO (wt. ratio) = 1/0, 3/2, 1/1, 2/3, 0/1 | (2) calcination: 500 °C, 2 h | CP: anatase, wurtzite | SA = 9 m2 g−1 (r = 0/1); 141 m2 g−1 (r = 1/0); 54 m2 g−1 (r = 1/1) E gap = 3.31 eV (r = 0/1); 3.26 eV (r = 1/0), 3.16 eV (r = 1/1) | [25] |
mixing and SSR | ZnO, TiO2 | r = ZnO/TiO2 (mol. ratio) = 1/3, 1/2, 1/1, 2/1, 3/1 | TT: 400 °C | CP: anatase, wurtzite. CS = 18 nm (r = 1/1) | SA = : 58 m2 g−1 (r = 1/1) | [26] | |
2 steps: (1) TiO2 by precipitation method (2) composite by wetness impregnation method | TiCl3, NH4OH, DW: (2) ZAc or ZN, DW, TiO2 (from 1) | ZnO mol:% = 0.1, 0.5, 2, 5, 10, 50, 60, 67 | (1) drying: 100 °C, 24 h; calcination: 550 °C, 48 h, air (anatase), calcination: 800 °C 24 h air (rutile); (2) 400 °C, 24 h | Anatase (Tcalc = 550 °C) or rutile (Tcalc = 800 °C), wurtzite | SA <10 m2 g−1 (impregnated on rutile TiO2), 10–60 m2 g−1 (impregnated on anatase TiO2) | [28] | |
Wetness impregnation method | ZS, TiO2 (P25), DW | ZnO mol.% = 0.5, 2, 4, 10 | drying: 80 °C, 12 h; calcination: 400 °C, 3 h | CP: Anatase, rutile | SA = 49–53 m2 g−1 | [30] | |
Irregular spherical shape. PS = 200 nm | Wetness impregnation method | ZN, TiO2, DW | Zn% (unspecified measure units): 1, 3, 5, 10% | Drying: 110 °C, 24 h; calcination: 400 °C, 5 h. | CP: anatase | SA = 8–10 m2 g−1, decreases with increasing Zn content | [29] |
u.s. assisted precipitation method | H2TiO3/TiO2 (2 wt.%), ZAc, NaOH, DW | r = TiO2/ZnO (molar ratio) = 0/1, 1/1, 2/1, 3/1, 4/1, 1/0 | Drying: 80 °C, 3–4 h; calcination: 300 °C, 2 h | CP: anatase (except r = 0/1), wurtzite (r ≤ 3/1). CS = 44 nm (r = 1/1) | SA = 125 m2 g−1 (r = 1/1) | [31] | |
Agglomerated spherical-like NPs. PS = 2 μm | Homogeneous hydrolysis method | TOSO, ZS, TAA, DW, H2SO4 | Ti wt.% = 44–56; Zn wt.% = 0.5–1.4 | Drying: 105 °C; annealing 600 °C, 1 h in O2 | CP: anatase; wurtzite in pristine ZnO CS = 6–15 nm (anatase), 63 nm (wurtzite) | SA = 38–110 m2 g−1, decreases with increasing Zn content; 6 m2 g−1 in pristine ZnO | [36] |
hexagonal shaped NPs PS = 22–23 nm | Modified ammonia evaporation-induced synthetic method | TiO2 (P25), ZN, NH4OH, DW | Zn% (unspecified measure units) = 7.5% | Calcination: 450 °C, 4 h | CP: anatase, rutile, wurtzite CS = 23 nm | SA = 65 m2 g−1 E gap = 2.87 eV | [32] |
PS < 10 nm | MW (180 W) assisted precipitation method | ZN, DW, NH4OH, KTO | r = TiO2/ZnO (molar ratio) = 1/1, 2/1 | Drying: 70 °C, 36 h | CP: anatase, wurtzite | [33] | |
polygonal NPs (r = 0/1); polygonal NPs (r = 1/0); fine Ps (A), polygonal and rod-like NPs (W) (r = 3/1). PS = 11 nm (r = 0/1); 65 nm (r = 1/0): 11 nm and 69 nm (r = 3/1, polygonal), 65 nm (r = 3/1, rod-like) | 3 steps: (1) TiO2 by precipitation method (hydrolysis); (2) oleic acid-coated TiO2 by adsorption; (3) ZnO/TiO2 by impregnation method | (1) TTIP, EtOH, DW; (2) TiO2 NPs (from 1), DW, oleic acid, NH4OH; (3) oleic acid-coated TiO2 NPs (from 2), n-hexane, ZnCl2, NH4OH, DW | r = ZnO/TiO2 (molar ratio) = 1/0, 3/1, 0/1 | (1) Drying: 70 °C, 12 h; calcination: 400 °C, 2 h air; (2) drying: 70 °C, 24 h; calcination: 400 °C, 2 h, air | CP: anatase (r = 0/1); wurtzite (r = 1/0); anatase, wurtzite (r = 3/1) CS = 11 nm (r = 0/1:); 42 nm (r = 1/0:); 10.3 nm (anatase in r = 3/1), 30.2 nm (wurtzite in r = 3/1) | [34] | |
Rod-like NPs (r = 1/0), agglomerated NPs (r = 0/1), spherical NPs (r = 3/2, 1/1, 2/3). PS: ∅ = 44 nm; length = 1.8 μm (r = 1/0); 18 nm (r = 0/1), 32 nm (r = 3/2, 1/1, 2/3) | precipitation method | ZAc, DW, TBT, MeOEtO, NaOH | r = ZnO/TiO2 (volume ratio) = 1/0, 3/2, 1/1, 2/3, 0/1 | Drying: 100 °C, 15 h; calcination: 500 °C, 4 h | CP: wurtzite (r > 0), anatase (r = 0), rutile (r = 0), traces of ZnTiO3. CS = 20–45 nm, increases with increasing Zn content | E gap = 3.1–3.3 eV, increases with increasing Zn content | [37] |
Deposition–precipitation method | TiO2 (P25), ZN, Na2CO3, DW | [ZnO wt.%] = 0.5, 2, 5, 20 | Drying: 60 °C, overnight; calcination: 400 °C, 3 h | CP: anatase, rutile, wurtzite (wurtzite only ZnO wt.% = 20%) | SA = 50 m2 g−1 | [35] | |
Precipitation method: compares calcination (C) with autoclave thermal treatment (H) | ZN, TiCl4, NH4OH, DW | TiO2% (unspecified units) = 5, 10, 20, 50, 70, 90, 100% | Drying: 110 °C, overnight; calcination: 500 °C, 5 h (C); autoclave: 150 °C, 10 h, drying: 110 °C, 24 h (H) | CP: anatase, wurtzite (wurtzite not in all catalysts). CS: 21 nm (calcinated catalysts), 16 nm (autoclave-treated catalysts) | SA: ZnO: close to 0 m2 g−1; TiO2: 50 m2 g−1 (C), 100 (H); 225 m2 g−1 (H, TiO2% = 75), 60 m2 g−1 (TiO2% = 90, C) E gap: 2.95–3.15 eV in calcinated catalysts, lower values for intermediate composition; 3.05–3.45 eV in autoclave-treated catalysts, higher values for intermediate composition (H) | [38] | |
PS = 10–20 nm | Homogeneous hydrolysis method | TBT, ZAc, AcA, EG | Autoclave: 120 °C, 6 h; autoclave: 180–200 °C; drying: 60 °C, in vacuum | CP: anatase, wurtzite (TT = 190/200 °C); amorphous (TT = 180 °C) CS = 10 nm (W), 17 nm (A) | SA = 206 m2 g−1 (180 °C), 97 m2 g−1 (200 °C) | [39] | |
Hydrothermal method | TBT, EtOH, ZAc, DW | r = TiO2/ZnO (molar ratio) = 1/1 (pH = 12), 3/1 (pH = 12), 5/1 (pH = 12); (3/1 pH = 4, 6, 8, 10, 12) | Autoclave: 120 °C, 12 h | CP: anatase (except r = 1/1), amorphous (r = 1/1 and pH = 12, r = 3/1 and pH = 12, r = 3/1 pH = 8, 10) | SA = 120–360 m2 g−1, the higher values for anatase and amorphous phase coexistence | [40] | |
Spherical shape PS = 900 nm; 20 (ZnO); 800 nm (TiO2) | Hydrothermal method | TBT, ZAc, EtOH | Autoclave: 150 °C, 24 h; calcination: 500 °C, 1 h, air | CP: anatase, wurtzite CS = 5–9 nm | SA = 8–10 m2 g−1 | [42] | |
Hydrothermal method | TTIP, ZAc, NaOH, DW, IPOH | r = ZnO/TiO2 (molar ratio) = 9/1, 7/3, 3/7, 1/9 | Autoclave: 160 °C, 6 or 12 or 24 h, drying: 60 °C 6 h | CP: anatase, rutile (r = 9/1); anatase, amorphous (r = 7/3); rutile (r = 3/7, 1/9) | SA = 77–375 m2 g−1. Increases and then decreases with increasing Zn content. Increases and then decrease with increasing hydrothermal-time treatment. Maximum value for r = 7/3, and time = 24 h. | [41] | |
Sol–gel method Post treatment: H2SO4 0.5M | SM: TBT, ZX, EtOH, AcA, polyglycol (PG); X = SO4, Cl, NO3. | r = ZnO/(TiO2 + ZnO) (molar ratio) = 1, 2, 4, 6, 8, 10% | Gelation conditions: RT, 24 h; drying: 80 °C, 48 h; 200 °C, 1 h; Calcination: 400 °C | CP: anatase, rutile (rutile absent if r = 1%) | SA = 32 m2 g−1(r = 10%) | [43] | |
Irregular-shape aggregated NPs (no surfactant); spherical shape (DBS 600 °C); cubic shape to hexagonal nanorods to nanobelts with decreasing Zn/Ti content (SDS 700 °C). PS = 200–300 nm (no surfactant); 300 nm (DBS 600 °C); 0.5–1 μm (cubic), ∅ = 500 nm, length = 1.5 μm (nanorods), 500 × 50 × 8 (nm) (nanobelts) (SDS 700 °C) | Sol–gel method | TBT, ZN, EtOH, DW, HCl, DBS (or SDS) | r = ZnO/TiO2 (molar ratio) = 0/1, 0.1/1, 0.17/1, 0.25/1, 0.5/1 | Gelation conditions: 24 h RT; drying: 70 °C; calcination: 600–700 °C | CP: anatase, rutile: (DBS/600 °C/r = 0/1, SDS); wurtzite (r ˃ 0/1) | [44] | |
Granular shape | Sol–gel method | ZAc, IPOH, DEA, TiCl4, HCl, H2O | Drying: 60° C; calcination: 220 °C or 420 °C | CP: anatase, wurtzite | SA = 51 m2 g−1 (Tcalc = 220 °C), 45 m2 g−1 (Tcalc = 420 °C) | [46] | |
Spherical shape PS = 6–14 nm | Sol–gel method | TBT, ZN, EtOH, P123, HCl, DW | ZnO wt.% = 0, 10, 30, 50, 70, 90, 100 and | Gelation conditions: RT, a few hours; drying: 80 °C, 12 h; calcination: 500 °C, 5 h, air | CP: anatase (ZnO wt.% ˂ 100), wurtzite (ZnO wt.% = 50–100) CS = 4–10 nm (measured at low Zn content) | SA = 20–120 m2 g−1, increases and then decreases with increasing zinc content. Maximum value for ZnO wt.% = 50% E gap = 3.25–3.37 eV. Minimum value for ZnO wt.% = 70%. | [51] |
Sol–gel method | TTIP, IPOH, HNO3, ZAc, MeOH, KOH, DW | 10% ZnO (unspecified measure units) | Gelation conditions: RT, 12 h. Drying: 45 °C; calcination: 500 °C, 2 h | CP: anatase, rutile, wurtzite CS = 15.3 nm (ZTNPs), 5 nm (TNPs); 10.1 (ZNPs) | E gap = 2.91; eV (ZTNPs), 3.00 eV (TNPs), 3.1 eV (ZNPs) | [45] | |
agglomerated NPs (ZT NPs); irregular shape (ZNPs by sol–gel method); hexagonal shape (ZNPs by precipitation method) PS: SG: 8–20 nm (TNPs), 30–40 nm (ZNPs), 400 nm (ZT NPs); P: 40 nm (ZnO) | Compares sol–gel method (SG) and precipitation method(P) | ZAc, NaOH, EtOH, TTIP, IPOH, DW | ZnO wt.% = 10, 20, 33, 50, 67, 80, 90, 100% | Gelation conditions: 0 °C + ageing: 3 days, RT. Drying: 100 °C, overnight; calcination: 500 °C, 3 h | CP: anatase (SG: r ≤ 10, P: r ≤ 33), wurtzite (SG: r ≥ 67; P: r ≥ 80), amorphous (SG: 20 ≤ r ≤ 50, P: 0.67 ≤ r ≤ 0.5) | SA = 40–120 m2 g−1 (sol–gel); 110–130 m2 g−1 (precipitation); decreases with increasing Zn content, 270 m2 g−1 (TNPs); 8–9 m2 g−1 (ZNPs) E gap: 3.5–3.26 eV (sol–gel); 3.23–347 eV (precipitation); increases and then decreases with increasing ZnO content. 3.32 eV (TiO2); 3.21 eV (ZnO) | [48] |
PS [nm]: 15–20 (after drying) | Sol–gel method | SM: ZN, EtOH, HNO3, TBT | r = Zn/Ti (molar ratio) = 0.5, 1, 1.5 | Gelation conditions: RT 1 day. Drying in supercritical conditions (270 °C, 10 Mpa), 2 h; calcination: 450 °C | CP: anatase, wurtzite | SA = 140–180 m2 g−1 (after drying); 126–130 m2 g−1 (after calcination); increases with increasing Zn content | [49] |
Rod-like shape (ZNPs); more or less evident agglomeration (ZTNPs) | Sol–gel method | TTIP, ZAc, MEA, IPOH, HNO3, DW | r = Zn/Ti (molar ratio) = 0/1, 1/3, 1/1,2/1, 3/1, 1/0 | Gelation conditions: 48 h, RT. Drying: 100 °C, 4 h; annealing: 500 °C, 4 h + 600 °C, 4 h | CP: anatase (r = 0/1), rutile (r = 0/1, 1/3), wurtzite (r ˃ 0/1), traces of ZnTiO3 (r = 1/1, 2/1). CS = 21–38 nm | SA = 95 m2 g−1 (r = 1/1), 39 m2 g−1 (r = 0/1), 3 m2 g−1 (r = 1/0) E gap: direct 3.07–3.20 eV; indirect: 2.91–3.01 eV (Z/T = 1 the lowest value) | [10] |
spherical shape (TNPs); hexagonal–pyramidal shape (ZNPs); agglomerated spherical and hexagonal–pyramidal shape (ZT NPs) | Sol–gel method | r = Zn/Ti (molar ratio) = 0/1, 1/1, 1/0 | Gelation conditions: 24 h stirring. Drying: 100 °C; calcination: 500 °C, 2.5 h | CP: anatase, wurtzite. CS = 19 nm (wurtzite, 33 in ZnO), 8 nm (anatase, 18 in TiO2) | SA = 132 m2 g−1 (ZT NPs), 32 m2 g−1 (ZNPs), 98 m2 g−1 (TNPs) | [50] | |
Spherical-like NPs. PS = 17–21 nm | Sol–gel method | SM: ZnCl2, EtOH, BenzylOH, TiCl4 | Gelation conditions: 60 °C, 8 h. Calcination: 200 °C, 2 h | CP: anatase, wurtzite CS = 18–24 nm | E gap [eV]: 3.05 eV (ZTNPs), 3.48 (ZNPs) | [47] | |
Green synthesis | Calopogonium mucunoides leaves (reducing and stabilizing agent), DW, ZAc, TiO2, NaOH | Drying: 80 °C, 10 h; calcination: 500, 600, 700, 800 °C | CP: anatase, wurtzite. CS = 8–20 nm, decreases with increasing calcination temperature and decreasing titanium content | [52] | |||
Agglomerated spherical shape. PS = 4–13 nm | Green synthesis | TiCl4, ZN, EtOH, Allium sativum leaves (capping and reducing agent), NH4OH | O/Ti/Zn (at. ratio) = 84.2/15.6/0.2 | Drying: 3 days, annealing: 450 °C, 6 h | CP: anatase CS = 4 nm | SA = 134 m2 g−1 | [53] |
Agglomerated NPs | Green synthesis | TiClx, ZS, lignin (soda pulping process), NaOH, DW | 300 °C, 80 min | CP: anatase, wurtzite | E gap = 2.95 eV (ZT NPs), 3.18 eV (ZNPs), 3.08 eV (TNPs) | [54] | |
Agglomerated irregular spherical NPs. PS = 87 nm | Glycerol nitrate combustion | SM: TTIP, ZN, urea, Glycerol syrup | Ignition: 250 °C, 1 h; calcination: 450 °C, 3 h | CP: rutile, wurtzite CS = 34 nm | [57] | ||
PS = 37 nm | 2 steps: (1) TNFs by electrospinning; (2) ZnO NP deposition by u.s. treatment/mixing | (1) CA, AcA, acetone, TNPs, TBT, AcA, EtOH; (2) TNF (from 1), ZAc, DW | (2) drying: 130 °C, 1 h; calcination: 700 °C, 4 h | CP: anatase, wurtzite CS = 22 nm | E gap = 1.17 eV | [58] | |
PS = 100 nm | Plasma discharge in water medium | Metal Zn and Ti | Anatase, wurtzite | [59] |
Shape and Particle Size | Synthesis Method | Starting Materials | Composition | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | SA and E Gap | Ref. |
---|---|---|---|---|---|---|---|
Almost hollow spheres or aggregate of ultrafine particles (10–100 nm). PS = 360–500 nm | Spray pyrolysis | ZN, DW, TiO2, N2. N2, as carrier gas, (N2 flow rate: 8.3 × 10−6–3.3 × 10−5 m3s−1) | r = Zn/Ti (mol. ratio) = 10/10, 10/7, 10/5, 10/3, 10/0.1 | Treactor = 700–900 °C | CP: anatase, amorphous, wurtzite. CS = 20 nm (anatase); 20–90 nm (wurtzite) | [61] | |
Almost hollow spheres with spherical shape, and micro porous aggregate. PS = 100–500 nm | Spray pyrolysis | TiO2 (P25), ZN, DW, N2. N2, as carrier gas (N2 flow rate: 5 l min−1) | Zn/(Zn + Ti) at. ratio: 0, 5, 16, 33, 66, 100 (%) | Treactor = 550 °C | CP: anatase, rutile, wurtzite. CS = 5–20 nm | [60] | |
Hollow spheres with hierarchical structure: interconnected TNPs, with smaller ZnO crystals. PS = several μm | Solvothermal synthesis | ZS, EtOH, TBT | Zn at.% = 1.1% | Autoclave: 210 °C, 24 h, drying: 80 °C | CP: anatase CS = 8.5 nm | SA 150 m2 g−1 | [62] |
Yolk–shell microspheres. PS = 1–1.3 μm (microsphere), 70 nm (shell thickness) | Solvothermal method | IPOH, Acacetone, TBT, ZAcAc, | r = Ti/Zn mol. Ratio = 10, 8, 5, 2 | Autoclave: 200 °C, 10 h | CP: anatase (r = 1/0, 5, 8, 10), amorphous (r = 2, 5) | SA = 214–290 m2 g−1, decreases with increasing Ti content | [63] |
mesoporous French fries. PS = 7–11 nm NPs agglomerated to French-fries shape, PS: Ø = 3–4 μm, length = 60 μm | FAPO (FA-derived polymerization–oxidation) reaction | TTIP, P123, ZnCl2, HNO3, EtOH, FA | Ti/Zn/O (at. ratio) = 31.2/0.7/65.1 | FAPO Reaction: 95 °C, 24 h air, calcination in air 500 °C 9 h | CP: anatase, rutile. CS = 9.5 nm | SA = 225 m2 g−1 | [64] |
Shape and Particle Size | Synthesis Method | Starting Materials | Composition | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | SA and E Gap | Ref. |
---|---|---|---|---|---|---|---|
NFs composed of grain- like NPs. PS: Ø = 85–200 nm | 2 steps: (1) electrospinning. flow rate: 10 μL min−1, distance collector-needle = 12 cm, V = 10 KV; (2) hydrolyzation performed at T = RT, t = 24 h; | (1) TTIP, ZAc, CA, AcA, DMFA, acetone; (2) NaOH, DW | ZnO wt.% = 0, 12.4, 15.8, 22.1. | Drying: 50 °C, 5 h; calcination: 500 °C, 5 h, in air | Anatase, rutile, wurtzite | [65] | |
NFs. PS: Ø = 100 nm, length = 50 μm | Electrospinning. flow rate: = 6 μL min−1, V = 10 KV | TTIP, ZAc, PMMA, DMFA, AcA | (Zn/Ti) at. Ratio = 0.17 | Calcination: 500 °C, 3 h | CP: anatase, rutile | [66] | |
NFs composed of NPs PS: Ø = 90 nm | Me: electrospinning distance collector-needle = 19 cm, V = 75 KV, electrode rotation speed = 30 Hz | TTIP, ZAc, AcA, PVP, EtOH | ZAc content: (0–0.6 wt.%) | Compares different calcination temperatures: 550, 650, 750, 850 °C, 2 h | CP: anatase (T calc = 550–750 °C), rutile (Tcalc ≥ 650 °C), wurtzite. CS = 10 nm (T calc = 550 °C), 150 (Tcalc = 850 °C) | SA = 42 m2 g−1. E gap = 2.97 eV (ZTNFs T calc = 550 °C), 2.96 eV (ZTNFs T calc = 650 °C), 2.96 eV (ZTNFs T calc = 750 °C), 2.96 eV (ZTNFs T calc = 850 °C), 3.13 eV (T NFs T calc = 550 °C) | [67] |
NFs (flower-like) PS: Øpetals = 80–147 nm | Electrospinning. flow rate = 1 mL h−1, distance collector-needle = 10 cm, V = 15 KV | TTIP, ZAc, PVAc, DMAc, AcA, EtOH | 500 °C, 4 h | CP: anatase, wurtzite | [68] |
Shape and Particle Size (PS) | Synthesis Method | Starting Materials | Composition | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | SA and E Gap | Ref. |
---|---|---|---|---|---|---|---|
cs TZ NPs PS = 20 nm, shell thickness = 0.5 nm | 2 steps: (1) impregnation; (2) freeze drying | (1) ZnCl2, EtOH, TiO2 (P25) | Sintering: 500 °C, 1 h | TiO2 (starting material), ZnO (XPS) | [69] | ||
cs TZ NPs. PS = 30 nm; uncoated TNPs = 21 nm | u.s. hydrolysis in the MBSL conditions | TiO2 (P25), ZAc, NaOH, DW, ROH | Drying: 12 h | CP: anatase, rutile, wurtzite CS = 7–8 nm (wurtzite), 21 nm (anatase) | [70] | ||
cs ZT NPs. PS = 30–50 nm, shell thickness = 6–10 nm | ZnO mw impregnation | ZnO (MZ500), EtOH, NH4OH, TBT, DW | Annealing: 500 °C | CP: anatase (only with thicker TiO2 shell), wurtzite CS = 16–22 nm (wurtzite) | [71] | ||
cs ZT NPs. PS = 40–50 nm, shell thickness = 2–6 nm | 2 steps: (1) ZNPs by precipitation; (2) TiO2 shell by chemical growth from TiO2 sol-gel | (1) ZAc, DW, OxA; (2) TTIP, AcA, ZNPs (from 1) Compares different shell thickness | (1) drying: 80 °C, 2h, calcination: 400 °C, 2 h; (2) drying: 80 °C, 12 h, calcination: unspecified temperature, 2 h | CP: anatase (detectable only with thicker shell), wurtzite CS = 20 nm (wurtzite) | [72] | ||
cs ZT NPs. PS = 24 nm (r = 1/15); 39 nm (r = 20); 42 nm (r = 1/25); shell thickness = 13 nm (r = 1/15); 15 nm (r = 1/20); 18 nm (r = 1/55) | 2 steps: (1) precipitation; (2) precipitation | (1) ZAc, NaOH, DW, (2) TTIP, IPOH, ZnO NPs (from 1), DW, HCl | r = ZnO/TiO2 (wt. ratio) = 1/15, 1/20, 1/25 | (1) 80 °C, 24 h; 350 °C, 2 h air; (2) 90 °C, 12 h; 350 °C, 3 h air | CP: anatase CS = 25 nm (r = 1/15); 32 nm (r = 1/20); 35 nm (r = 1/25) | E gap = 3.2–3.05 eV, decreases with increasing TiO2 thickness | [73] |
cs ZT NPs in agglomerated globular shape | 2 steps: (1) ZNRs by ZAc thermal decomposition; (2) TiO2 shell by chemical growth from TiO2 gel | (1) ZAc; (2) TTIP, IPOH, DW, ZNRs (from 1) | ZnO mol.% = 0.5–20% | (1) decomposition: 400 °C, 3 h, air; (2) drying: 70 °C, 24 h; calcination: 350 °C, 3 h, air | CP: anatase, wurtzite (wurtzite detectable only with higher ZnO content) CS = 8–18 nm, decreases with increasing ZnO content | SA = 80–180 m2 g−1, increases with increasing ZnO content. E gap = 3.13–3.25 eV | [74] |
cs ZT tetrapods PS: distance between adjacent arms = 30–50 μm, Øarm = 500 nm, TiO2 thickness = 50 nm | 2 steps: (1) ZnO tetrapods by direct thermal evaporation; (2) TiO2 coating by vapor phase treatment | (1) Zn pellets; (2) Z tetrapods (from 1), ZnO, TiO2, TBT, EtOH, DW | TiO2 wt.% = 7% | (1) 900 °C; (2) vapor phase treatment: 150 °C, 10 h; calcination: 450 °C, 2 h | CP: anatase, wurtzite | [75] | |
cs ZT NRs PS: TiO2 thickness = 4.2, 6.4, 8.5, 125 nm | 2 steps: (1) hydrothermal method; (2) ALD | (1) ZnCl2, Na2CO3, DW; (2) TTIP, N2, DW | (1) autoclave: 140 °C, 2 h, drying: 80 °C, overnight; calcination: 400 °C, 4 h; (2) Treactor = 150 °C, TTTIP bubbler = 80 °C, calcination: 400 °C 2 h | different TiO2 thickness | CP: anatase, wurtzite | [76] | |
cs TZ (or ZT) NTs with large area and horizontally aligned PS: ∅ NTs = 400–500 nm, shell thickness 60 nm (cs TZ NTs), 51 nm (cs ZT NTs) | 2 steps: (1) electrospinning; (2) PLD. (laser: Nd:Yag, λ = 1064 nm, distance target-sub = 70 mm, Tsub = 300 K, P = 6 · 10−3 Pa, laser energy = 470 mJ, f = 10 Hz, tdep = 5′) | (1) PVP, EtOH; (2) TiO2, Zn | calcination: 500 °C, 1 h air | CP: rutile, wurtzite | [77] |
Shape and Particle Size | Synthesis Method | Starting Materials | Composition | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | SA and E Gap | Ref. |
---|---|---|---|---|---|---|---|
TNPs on ZNRs PSTNPs = 10–20 nm (r = 0); ∅NRs = 20 nm, length NRs = a few 100 nm (r = 1/0) | Hydrothermal method | ZnCl2, TiCl4, EtOH, H2O, urea | r = Zn/Ti (molar ratio) = 0/1, 1/2, 1/1, 2/1, 1/0 | autoclave: 180 °C, 16 h; 450 °C, 2 h | CP: anatase, wurtzite | SA= 87 m2 g−1 (r = 1/2); 84 m2 g−1 (r = 1/1); 64 m2 g−1 (r = 2/1) | [78] |
ZNPs TNWs (ZnO-decorated TNWs) PS: ZNPs = 20 nm,: ØTNWs = 50 nm, lengthTNWs = 4 μm | 2 steps: (1) TNWs by hydrothermal method; (2) ZnO by reflux method | (1) TiO2 (P25), NaOH, DW; (2) MeOH, ZAc, TNWs (from 1), NaOH, DW | ZnO (wt.%) = 0, 10, 15, 20, 30, 50, 70% | (1) autoclave: 200 °C, 24 h; drying 80 °C, 24 h; calcination: 500 °C, 3 h; (2) reflux: 60 °C, 6 h; drying: 80 °C, 24 h | CP: anatase, TiO2 (B), wurtzite | SA = 22–23 m2 g−1 E gap = 2.99 eV (TNWs); 2.96 eV (ZNPs TNWs) | [79] |
ZnO nanospindles coating TiO2 nanosphere. PS: ∅nanospheres = 1.5–2.5 μm | 2 steps: (1) TiO2 nanospheres by hydrothermal synthesis; (2) ZnO nanospindles on TiO2 nanosphere by hydrothermal synthesis | (1) TiO2 (P25), NaOH, DW, H2O2; (2) ZN, HMTA, DW, TiO2 nanospheres (from 1) | (1) autoclave: 160 °C, 2 h, drying: 60 °C; calcination: 450 °C, 2 h, air; (2) autoclave: 100 °C, 3 h; drying: 60 °C | CP: anatase, wurtzite | SA = 187 m2 g−1 | [80] | |
ZNRs on TiO2 arrays PS: lengthTiO2 array = a few 100 μm, ØTiO2 array = a few hundred nm; ØZNRs = 80 nm | 4-step hydrothermal route | (1) TiF4, HCl, DW, NaOH; (2) gel (from 1), TiF4; DW; (3) product (from 2), DW; (4) product (from 3), ZS, NH4F, DW | (1) autoclave: 180° C, 48–50 h; (2) 50 °C, 3–20 h (3) 120 °C, 21 h; (4) 60 °C, 7–15 h | CP: anatase, wurtzite | [81] | ||
ZTNTs PS: ∅ = 4–5.5 μm | 2-step hydrothermal synthesis | (1) TS, EtOH, Et2O, glycerin, (2) ZnCl2, DW, NH4OH, TNTs (from 1) | (1) autoclave: 110 °C 48 h; drying 70 °C 12h; calcination: 450 °C 3 h; (2) autoclave: 95 °C, 3 h; drying: 40 °C, 24 h | CP: anatase, wurtzite | E gap = 3.24 eV (ZnO); 3.22 eV (TNTs); 3.12 eV (ZTNTs) | [82] | |
ZNRs branched-TNFs PS: ØTNFs = 150 nm; ØZNRs = 80 nm, lengthZNRs = 200–400 nm | 3 steps: (1) TNF growth by electrospinning on glass slide, using V = 10 V, distance Al collector -nozzle = 15 cm; flow = 20 μL/min; t = 20 min; (2) ZnO seeding by dip coating (3) ZNR growth by hydrothermal treatment | (1) PS, TTIP, DMFA; (2) ZAc, IPOH, TEA, TNFs (from 2); (3) ZN, HMTA, DW, seeded TNFs (from 3) | (1) 80 °C, hot-pressed; 120 °C; calcination: 500 °C, 1.5 h; (2) drying: 120 ° h, in air; (3) hydrothermal treatment; 90 °C, 8 h | [83] | |||
brush-like ZNRs on TNFs PS: ØTNFs = 100 nm; ØZNRs = 100–300 nm, lengthZNRs = 2 μm | 2 steps: (1) TNFs by electrospinning using V = 20 KV; (2) ZNRs by hydrothermal synthesis | (1) TBT, AcA, EtOH, PVP; (2) TNF (from 1 after calcination), ZAc, DW, HMTA | (1) calcination: 500 °C, 2 h, air; (2) autoclave: 100 °C, 3 h; drying: 60 °C | CP: anatase, wurtzite | [84] | ||
self-standing ZT IOS membrane PS: pore ∅ = 205 nm | (1) TiO2 self-standing by PS sphere impregnation between 2 slides in a sandwich geometry; (2) Zn impregnation | (1) TTIP, DEA, EtOH, PSs) ZN, EtOH, DW | (1) calcination: 500 °C, 2 h; (2) annealing; 400 °C, 3 h, air. | CP: A, W | SA = 35 m2 g−1 | [85] | |
M: IOS. PS: Z QDs 5–10 nm; TNPs = 5–15 nm | (1) Z QDs by ZAc hydrolyzing: (2) Z QDs@TiO2 by sol–gel; (3) IOS by PS impregnation | (1) ZA, MeOH, KOH, TEOS, DW; (2) EtOH. HCl, TTIP, DW, Z QDs (from 1); (3) gel (from 2), self-assembled PS spheres onto filter paper | drying: 24 h; calcination: 550 °C, 12 h | CP: anatase CS = 5.5 nm (Z QDs), 8.5–11.8 nm (anatase) | SA = 33–37 m2 g−1 | [86] | |
TNPs on Z NFls PS: TNPs = 21 nm; lengthZNFls = 155 nm | hydrothermal method | TTIP, EtOH, ZN, DW, NaOH h | r = ZnO/TiO2 volume ratio = 1/0, 2, 4 | autoclave: 120 °C, 8 h | CP: anatase, wurtzite CS = 32–40 nm, decreases with increasing Ti content | [87] | |
M: ZNRs on ZT inverse opal membrane | 4-step route: (1) FTO immersion in ethanol dispersion of PSs followed by evaporation; (2) TiO2 IOS by CBD; (3) ZnO seeding by CBD; (4) ZNRs by CBD | SM: (1) EtOH, PSs; (2) TTIP, EtOH, PSs on FTO (from 1); (3) ZAc, EtOH, TiO2 on FTO (from 2); (4) ZAc, EtOH, HMTA, DW, seeded FTO (from 3) | (1) drying: 58 °C; (2) annealing: 550 °C, 2 h; (3) 450 °C, 5′; (4) CBD: 80 °C, 2 h; drying: 60 °C, 6 h, air | Anatase, wurtzite | [88] |
Shape and Particle Size | Synthesis Method | Starting Materials | Composition | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | SA and E Gap | Ref. |
---|---|---|---|---|---|---|---|
ZT films on quartz PS = 5 nm (Tannealing = 400 °C), 10 nm (Tannealing 500 °C). Film thickness: 1.2–1.5 μm | N cycles of sol-gel/dip coating/annealing | ZAc, TBT, EtOH, DW, HNO3 | Zn at.% = 1%, 5%, 10%, 20%. | drying: 100 °C, 20′; annealing: 400 °C, air; 500 °C, 2 h in N2 | CP: anatase | Egap = 3.25–3.43 eV (Tannealing = 400 °C); 3.12–3.24 eV (Tannealing = 500 °C); increases with increasing Zn content | [89] |
ZT flat films on Ti plates with numerous cracks | 1–5 cycles of sol–gel/dip coatings/annealing). Dip-coating by immersion for 30 s | ZN, TBT, DW, DEA, EtOH, PEG 2000 | T/Zn/O at. ratio = 47.27/3.64/49.09 | drying: 100 °C, 30′; annealing: 520 °C, 1 h | CP: anatase CS = 15–20 nm | [90] | |
ZT film on glass slide, no crack. Film thickness: 60 nm per cycle | N cycles of sol–gel/dip coating/drying/annealing. Dipping and withdrawing speed = 10 cm min−1 | TTIP, IPOH, CitrA; ZnCl2, NH4OH | Ti/Zn at. ratio = 1/1 | Drying: 80 °C 30′; annealing: 500/600/800 °C, 1 h, O2 | CP: anatase (Tannealing = 500 and 600 °C), rutile ((111) oriented when Tannealing ≤ 600 °C); wurtzite | [91] | |
ZT film on glass PS = 15–30 nm (χTi = 100%); 5–15 nm (χTi = 75%); 100–500 nm (χTi = 25%); 20–40 m, (χTi = 0%). Film thickness = 250 nm(χTi = 100%) | 2 cycles of sol–gel/dip coating. Dipping and withdrawing speed = 2 mm s−1 h | ZAc, TBT, H2O, DEA, EtOH, AcA | χTi = 100%, 75%, 50%, 25%, 0% | Drying 100 °C, 1 h; annealing: 500 °C, 2 | CP: anatase, (χTi ≥ 75%), wurtzite (χT i ≤ 50%.), amorphous (χTi = 25 ÷ 50%) CS = 16 nm (χTi = 100%); 12 nm (χTi = 75%); 10 nm (χTi = 50%); 27 nm (χTi = 25, 0%) | [92] | |
Macroporous ZT film on glass substrate | 3 cycles of sol–gel spin coating | ZAc, EtOH, DEA, TBT, acetone, HNO3 | Drying: 110 °C, 30′; calcination: 500 °C, 30′ air | r = ZnO/TiO2 mol ratio = 10%, 20%, 30%, 40% | CP: anatase (r = 0, 10, 20%); amorphous (r = 30, 40%) | [93] | |
Columnar granular ZT films, TiO2 into porous ZnO Film thickness = 140 nm | 2 steps: (1) ZnO by cold-wall CVD; (2) TiO2 by cold-wall CVD * Deposition parameter: see note at the end | (1) Z(hfa)2*TMEDA, H2O, O2, N2; (2) Ti(OiPr)2(dpm)2, H2O, O2, N2 | CP: W (preferential orientation (002) on Si), A (on Si, longer deposition times) | [95] |
Shape and Particle Size | Synthesis Method | Starting Materials | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | SA and E Gap | Ref. |
---|---|---|---|---|---|---|
TiO2 and ZnO/TiO2 films on ITO with cone-like surface morphology. Film thickness = 1.418 μm | 2 steps: (1) TiO2 compact film on ITO by CBD; (2) ZnO crystalline film by LbL | (1) TiCl3, HCl, DW, ITO, NH4OH; (2) (a) ZnCl2, NH4OH, H2O2, DW, (b) H2O 90 °C. | CP: wurtzite | E gap: 3.85 eV (TiO2/ITO), 3.26 eV (ZnO/TiO2/ITO) | [96] | |
ZnO/TiO2 film on ITO, ZnO. Film thickness = 300 nm | 2 steps: (1) TiO2 films by spin-coating on ITO/glass: (2) ZnO film by LbL. LbL by 1–10 cycles of dipping 30 s + TT 95 °C | (1) TiO2 (P25), Triton X-100, 2–4 pentadiene, DW, ITO/glass; (2) (a) [(Zn(NH3)4]2+ solution 8 (b) 95 °C in water | CP: anatase, rutile, wurtzite | [97] | ||
ZnO/TiO2 film on FTO | 2 steps: (1) TiO2 film on FTO by doctor-blade technique; (2) ZnO on TiO2 by CVD | (1) TiO2 (P25), H2O, acetone, PEG, polyethylene oxide (PEO); (2) Zn powder | (1) annealing: 450 °C; (2) T = 500 °C, Ar, t = 5′, 30′, 60′ | CP: anatase, rutile, wurtzite | [98] | |
TiO2/ZnO film inside a quartz tube PS = 30 nm | 2 steps: (1) ZnO by calcination of Zn film deposited on a quartz tube by vacuum vaporization; (2) TiO2 coating by dip coating | SM: (1) Zn Powder; (2) TTIP, EtOH, HNO3, DW | (1) calcination: 500 °C, 1 h; (2) calcination: 500 °C, 1 h | CP: anatase, wurtzite | [99] | |
TiO2, ZnO, TiO2/ZnO and ZnO/TiO2 films on quartz glass substrate | Electron-beam evaporation using (ZnO) f (O2) = 60 sccm, working pressure = 2.4 × 10−4 torr, working T = 300 °C, V = 7.11 kV, i = 78 mA, deposition rate = 5.0 Å s−1 (TiO2): f (O2) = 35 sccm, working pressure = 1 × 10−4 torr, working T = 200 °C, V = 7.11 kV, i = 246 mA, deposition rate = 5.0 Å s−1 | ZnO, TiO2, O2 | CP: amorphous (TiO2 film); (002) wurtzite (ZnO film); (002) wurtzite, (102) rutile (TiO2/ZnO and ZnO/TiO2). CS = 15 nm (W in ZnO film), 20 nm (W in TiO2/ZnO film); 25 nm (W in ZnO/TiO2 film). | E gap: 3.38 eV (ZnO); 3.35 eV (TiO2/ZnO); 3.32 eV (ZnO/TiO2); 4.0 eV (TiO2) | [100] | |
ZnO, ZnO/TiO2 and ZnO/TiO2/ZnO film on quartz-glass substrate | electron-beam evaporation WC: TiO2: f (O2) = 35 sccm, p = 9 × 10−5 torr T = 200 °C, i = 220 mA, growth rate = 5.0 Å s−1 ZnO: f (O2) = 60 sccm, p = 1 × 10−4 torr T = 320 °C, i = 90 mA, growth rate = 2.5 Å s−1 | CP: (100)- and (002)-oriented wurtzite CS: 19 nm (ZnO film); 22 nm (ZnO/TiO2 film), 23 nm (ZnO/TiO2/ZnO). E gap: 3.26 eV (ZnO), 3.27 eV (ZnO/TiO2), 3.34 eV (ZnO/TiO2/ZnO) | [101] | |||
TiO2/ZnO on glass substrate. film thickness = 120–130 nm | ZnO film by Zn magnetron sputtering followed by thermal oxidation; (2) TiO2 film by Ti magnetron sputtering followed by thermal oxidation | (1) Zn metal: (2) Ti metal | 400 °C, 450 °C, 500 °C, 550 °C | CP: anatase, rutile, wurtzite CS: 7–20 nm (rutile); 16–26 nm (wurtzite) | [102] | |
ZnO micro-rod array or ZNWs/TNPs film on FTO. PS: ØZNWs = 50–100 nm; film thickness = 10 μm | 2 steps: (1) TiO2 compact film by screen printing on FTO; (2) Z micro-rod or NWs by hydrothermal synthesis | (1) TiO2 paste; (2) ZN, HMTA, DW | (1) 325 °C, 5′; 375 °C, 5′; 500 °C, 15′; (2) hydrothermal treatment: 88 °C, 12 | CP: anatase, wurtzite | [103] | |
ZNWs/mesoporous TZNPs film on FTO. film thickness = 12 μm | 2 steps: (1) ZNPs by hydrolysis; (2) ZT mesoporous film on FTO by screen-printing method, (3) ZNWs on (2) by hydrothermal treatment (5–10–15 h) | (1) ZAc, KOH, MeOH, FTO; (2) mesoporous ZnO film on FTO (from 1), TiO2 paste (3) ZN, HMTA, DW, PEI, NH4OH, HNO3 | (2) sintering: 325 °C, 5′; 375 °C, 5′; 450 °C, 30′; (3) hydrothermal treatment: 93 °C, 5, 10 or 15 h | CP: anatase, rutile, wurtzite | [104] | |
10 bilayers of (001) ZnO/(200) TiO2 on (006) sapphire substrate | ALE | ZnEt2, TiCl4, DW | Tdep = 450 °C | [105] |
Shape and Particle Size | Synthesis Method | Starting Materials | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | SA and E Gap | Ref. |
---|---|---|---|---|---|---|
cs ZT NWs on conductive glass PS: ∅NWs = 150 nm, length NWs = 15 μm, TiO2 thickness: 5–40 nm | 3-step route: (1) ZNPs seeding by dip coating; (2) ZnO NWs by CBD in a continuous flow reactor using T = 92 °C, t = 24 h; (3) TiO2 coating by ALD using Tdep = 300 °C, pulse dep time = 1 s, purge time = 12 s | (1) ZNPs, EtOH, conductive glass; (2) ZN, DW, HMTA, PEA, ZnO seed on conductive glass (from 1); (3) TiCl4, DW, Z NWs on glass (from 2) | (2) 400 °C, 30′ | CP: anatase, (if shell thickness is more than 5 nm) amorphous TiO2 (if shell thickness is lower than 5 nm), wurtzite (single crystal) | [106] | |
cs ZT NWs (vertically oriented) on FTO layer on glass. PS: ∅NWs = 100–150 nm; lengthNWs = 1.5–2 μm, TiO2 thickness = 20–50 nm | 3-step route: (1) ZnO seeding by spin coating; (2) Z NWs by hydrothermal method; (3) TiO2 coating by sol–gel deposition | (1) ZAc, EtOH; (2) ZN, HMTA, DW, NH4OH; ZnO seed on glass (from 1); (3) TTIP, AcA, BuOH, DW, Z NW on glass (from 2) | (1) 350 °C 20′, air; (2) hydrothermal treatment: 88 °C, 2 h; (3) annealing: 450 °C, 30′, air or N2 | CP: (002) wurtzite, anatase | E gap = 3.25 eV | [107] |
cs ZT NWs (almost) vertically aligned arrays on steel mesh PS: ∅NWs = 600 nm, lengthNWs = 9 μm | 2 steps: (1) ZNWs by hydrothermal method; (2) TiO2 coating by hydrothermal method | (1) ZN, NH4OH, DW, steel mesh; (2) TBT, DEA, EtOH, DW, ZNWs (from 1) | (1) 83 °C, 24 h; drying: 60 °C; (2) drying: 60 °C; annealing 500 °C, 1 h, air | CP: anatase, wurtzite | E gap = 3.22 eV (cs ZT NWs); 3.25 eV (ZNWs) | [108] |
vertically aligned cs ZT NWs on Si. PS: ∅NWs = 60 nm; lengthNWs = 5 μm; TiO2 thickness = 15 nm | 2 steps: (1) ZNWs by thermal evaporation using f: 0.6 l min−1, Tdep: 700 °C, t: 30 s; (2) f (N2): 0.55 l min−1, Tbubbler = RT, Tdep = 450 °C, t = 30′; (3) TiO2 coating by CVD | SM:(1) Zn wire; (2) TTIP, N2 | CP: (002) wurtzite | [109] | ||
cs ZT NWs film on substrate PS: ∅NWs = 30–250 nm; length NWs = 3 μm; TiO2 thickness: 0, 5, 10, 20, 30, 50 nm | 3 steps: (1) ZnO seeding on substrate by spin coating; (2) ZNWs by hydrothermal growth; (3) TiO2 coating by thermal evaporation using Tfilament = 1800 °C, P = 2 × 10−5 mbar | SM: (2) ZN, HMTA, DW (3) Ti | (2) hydrothermal growth: 95 °C, 7 h; (3) annealing: 350 °C | CP: (002) wurtzite | [110] | |
M: cs ZT NRs on ITO substrate PS: ∅NRs = 15–25 nm, lengthNRs = 150–225 nm | 3 steps: (1) ZnO nanocrystal textured seeding by dropping with ZAc/EtOH; (2) Z NRs by chemical-bath growth; (3) TiO2 coating by ALD. ALD performed with P = 300–500 mtorr, T = 300 °C, growth rate: 0.9 Å/cycle | Me: (1) SM: (1) ZAc, EtOH, ITO; (2) ZN, DW, HMTA, PEA, seeded ITO (from 1); (3) TiCl4, DW, ZNRs (from 2) | (1) 350 °C,20′; (2) 80 °C, 30′ | CP: anatase (if shell is thicker than 4 nm), (002) wurtzite | [111] | |
cs ZT NRs PS: ∅NRs = 30–60 nm; TiO2 thickness: 10–20 nm | 3-step route: (1) ZnO seeding by solution dropping (2) Z NRs by chemical-bath growth: (3) TiO2 coating by spin coating | (1) ZAc, EtOH; (2) ZN, PEA, HMTA DW; (3) TTIP, EtOH | (1) annealing: 350 °C, 20′ (2) chemical-bath growth: 90 °C, 2.5 h; (3) annealing: 400 °C, 1 h | [112] | ||
cs ZT NRs (arrays) film on FTO, ZnO growth direction along [0001] direction PS: ∅NRs = 80–120 nm, length NRs = 1.5 μm, TiO2 thickness = 11 nm, TiO2 NPs = 5 nm | 3-step route: (1) ZnO seeding by magnetron sputtering: f (Ar) = 20 sccm, P = 0.5 Pa, RF power = 100 W; (2) Z NRs by hydrothermal-bath deposition; (3) TiO2 coating by magnetron sputtering: fAr = 20 sccm, P = 0.5 Pa, RF power = 100 W, Tsub = 450 °C, t = 9′ | SM:(1) ZnO target, Ar; (2) ZN, HMTA, DW (3) TiO2 target, Ar | (1) annealing: 350 °C, 30′; (2) hydrothermal condition: 80 °C, 8 h; (3) annealing: 500 °C, 10′ | Anatase, wurtzite | [113] | |
cs ZT NRs arrays on glass substrate PS: ∅NRs = 200 nm (Z NRs), 220 nm (ZT NRs) | 3-step route: (1) seed layer by spin coating (2) ZNRs by hydrothermal method; (3) TiO2 layer by sol–gel spin coating method | SM: (1) ZAc, MEA, MeOEtOH; (2) ZAc, DW HMTA; (3) TBT, DEA, EtOH, DW | (1) 350 °C, 30′; (2) hydrothermal treatment: 93 °C 6 h; drying: 60 °C, 10′; (3) sintering: 550 °C, 1 h | CP: (004) anatase, (002) wurtzite, traces of Zn2TiO4 and Zn1.7SiO4 | SA = 16.4 m2 g−1 (Z NRs), 16.7 m2 g−1 (ZT NRs) | [114] |
cs ZT NRs on glass substrate PS: ∅NRs = 40–45 nm | 3-step route: (1) seed layer by thermal decomposition at 350 °C; (2) NRs by CBD at 90 °C 1 h; (3) TiO2 layer by sol–gel spin coating, with speed 2000 rpm. Ncycles = 1, 3, 5 | SM: (1) ZAc; (2) ZAc, HMTA, DW; (3) TTIP, 2-MeOEtOH, AcA, DW | (3) 500 °C, 2 h | CP: anatase (ncycles > 1), wurtzite | [115] | |
cs ZT NRs (oriented) on ITO PS: ∅NRs = 100–300 nm, lengthNRs = 1.6–2.2 μm, TiO2 thickness = 25–40 nm (sol–gel 30′ × 3), TNPs: 3–8 nm (sol gel 6 h) | 3-step route: (1) urchin-like Zn seeding by electrochemical method, V = −1.2 V (versus calomel reference electrode; (2) hydrothermal process; (3) immersion in sol–gel 6 h, or 30′ 3 times | (1) ZAc, DW, O2; (2) ZN, DW, NH4OH; (3) TBT, IPOH, ZNRs (from 2) | (1) 300 °C, 1 h; (2) autoclave: 80 °C, 2.5 h; drying: in air; calcination: 300 °C; (3) calcination: 450 °C | CP: A, (002), (103) preferentially oriented W | E gap: 2.86–2.93 eV (sol–gel 6 h), 2.78–2.85 eV (sol–gel 30′ × 3) | [116] |
cs TZ NFs on Si wafer PS: ØNFs = 250 nm | 2 steps: (1) TNFs by electrospinning using Vneedle = 15 kV. Vcoll = −10 KV, distanceneddle/col = 20 cm, feed rate: 0.2 mL h−1; (2) ZnO coating by ALD using Tdep = 150 °C, P = 0.3 torr, alternating pulses, ZnEt2/N2/DW/N2 | SM: (1) TTIP, PVAc, DMFA, AcA; (2) ZnEt2, DW, N2 | (1) calcination: 600 °C, 8 h, O2 | CP: anatase, wurtzite | E gap: 3.31 eV | [117] |
Shape and Particle Size | Synthesis Method | Starting Materials | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | Ref. |
---|---|---|---|---|---|
Bottlebrush films on glass substrate, consisting of TNWs on ZNRs. PS: lengthZNRs = 2–3 μm; lengthTNWs = 90–100 nm | 3-step route: (1) ZnO seeding by magnetron sputtering using p = 2.67 Pa, RF = 13.56 MHz, RF power = 500 W, t = 30′; (2) ZNRs by hydrothermal treatment; (3) TNWs by magnetron sputtering using T = RT, p = 10 mtorr, f = 10 sccm; carrier gas = Ar | (1) ZnO target; (2) ZN, HMTA, HNO3, NH4OH, DW, ZnO seeded glass (from 1); (3) TiO2 target, ZNRs on glass (from 2) | (1) hydrothermal treatment: 95 °C, 4 h | CP: rutile, (002) wurtzite | [118] |
Nanocomposite array on Ti fabric PS: TiO2 array: Ø = 80 nm | 2 steps: (1) TNTs synthesis by anodic oxidation of Ti fabric with working electrode: Ti fabric, counter electrode: Pt, V = 60 V, t = 24 (2) ZnO deposition by impregnation and hydrothermal treatment | SM: (1) Ti fabric; (2) ZAc, DW | (1) drying: 60 °C, 12 h; (2) drying: 100 °C, 1 h; autoclave: 120 °C, 2 h; drying: 70 °C, 6 h | CP: anatase, wurtzite | [119] |
Radiolarian-like porous ZnO microspheres (RZMPs) PS: RZMP: 7–9 μm; macropores: 200–500 nm; ZnO nanosheets: 500 × 100 × 50 nm; NWs: Ø = 20–30 nm | 2 steps: (1) compact TiO2 film on glass by spin coating; (2) hydrothermal method | (1) TTIP, HNO3; (2) ZN, MEA, DW, TiO2 film on glass (from 1) | (1) 450 °C, 30′; (2): autoclave: 95 °C, 4 h | wurtzite | [120] |
Flower-like and NR arrays of ZnO on nanoporous TiO2 film on FTO PS: ØTNPs = 16–35 nm; ZNRs on the bottom: ØZNRs:: =60–110 nm, lengthZNRs = 500–700 nm; ZnO flower-like microstructure on the top: Ø = 100–200 nm, length = 0.73–2 μm, flower-shaped total structure: 5–8 μm | 3 steps: (1) TiO2 film on FTO by screen-printing method; (2) hydrothermal synthesis on porous TiO2 film with pH = 11.3 (3) hydrothermal treatment with pH = 10.8 | SM: (1) TiO2 paste; (2) ZN, DW. NH4OH, TiO2 film (from 1); (3) ZN, DW, NH4OH, Ti/Zn film on substrate (from 2) | (2) autoclave: 70 °C, 12 h; (3) autoclave: 70 °C, 6 h | Anatase, wurtzite | [121] |
Shape and Particle Size | Synthesis Method | Starting Materials | Thermal Treatments | Crystal Phases (CP) and Crystallite Size (CS) | SA and E Gap | Ref. |
---|---|---|---|---|---|---|
ZNPs into the TNTs on Ti foil PS: inner ØNTs = 60–80 nm, lengthNTs = 300 nm | 2 steps: (1) TNTs by anodic oxidation method using working electrode: Ti foil, counter electrode: Pt, electrolyte (NH4)2SO4/NH4F, using V = 20 V t = 4 h; (2) ZNPs by hydrothermal synthesis on TNTs (from 1) | (1) Ti foil; (2) ZN, NH4OH, DW | (1) calcination: 500 °C, 1 h; (2) autoclave: 70 °C, 24 h; drying: air | CP: anatase, wurtzite | [122] | |
ZNPs (nanorice-decorated) TNTs on Ti foil PS: ∅TNTs = 90 nm, lengthTNTs = 4 μm; ZNPs = 1 nm × 100 nm × 1 μm | M: (1) TNTs by anodic oxidation using working electrode: Ti foil, counter electrode: Pt, V = 30 V, 3 h; (2) ZnO nanorice by 0–8 cycle of CBD at 65 °C, 15′ | (1) Ti foil, EG, NH4F, DW; (2) ZN, HMTA, DW | (1) drying: 80 °C; annealing: 450 °C, 1 h, air | CP: Anatase, wurtzite | [123] | |
ZNRs embedded in highly ordered TNTs on Ti sheet PS: ∅TNTs = 30–90 nm, thickness wall = 10 nm, length∅TNTs = 200–300 nm; lengthZNRs = 200 nm | 2 steps: (1) TNTs by anodic oxidation using working electrode: Ti sheet, counter electrode: Pt, V = 20 V, t = 20′; (2) ZNRs by direct cathodic electrodeposition on TNTs using working electrodes: TNTs, ref. electrode; calomel, counter electrode: Pt, V = −1 V, t = 20′−60′, T = 350 K | (1) Ti sheet, HF, DW; (2) TNTs (from 1), ZN, DW | (1) annealing: 500 °C, 1 h, dry O2 | CP: anatase, wurtzite | [124] | |
Surface-grafted flower-like ZNRs on TNTs PS: ∅TNTs = 50–90 nm, thickness wall = 10–15 nm, NTs gap = 20 nm; ∅ZNRs = 50 nm, lengthZNRs = 1–2 μm | 2 steps: (1) TNTs by Ti foil anodic oxidation using V = 20 V, electrode: Ti foil, counter electrode: Pt; t = 3 h; (2) ZnO seeding by sol–gel/spin coating with speed 100 rpm, 10 s, 10 times; (3) ZNR growth by hydrothermal synthesis | (1) Ti foil; (2) TNTs (from 1) ZAc, EtOH; (3) seeded TNTs (from 2), ZN, HMTA, DW TT | (1) Annealing: 500 °C, 5 h, O2; (2) 350 °C, 0.5 h; (3) autoclave: 90 °C, 0–12 h | CP: Anatase, rutile, wurtzite | E gap = 3.26 eV (TNTs), 3.19–3.3 eV (ZNRs on TNTs) | [125] |
ZNRs intra- and inter-TNTs PS: ØTNTs = 200–300 nm, wall thickness = 30 nm; ØZNRs = 10–30 nm (t = 2 h) 30–50 nm (t = 4 h), lengthZNRs = 100–300 nm (tCBD = 2 h), 300–500 (tCBD = 4 h) | 2 steps: (1) TNTs by Ti foil anodization using V = 60 V; (2) ZNRs by CBD at 70 °C, for 2–4 h | (1) Ti foil; (2) ZN, HMTA, DW | (1) annealing: 450 °C, 3 h, air | CP: anatase, wurtzite | SA = 0.32 m2 g−1 (TNTs), 0.45 m2 g−1 (ZNRs/TNTs) | [126] |
Shape and Particle Size | Synthesis Method | Starting Materials | Composition | Thermal Treatments | Crystal Phases (CP) and E Gap | Ref. |
---|---|---|---|---|---|---|
ZnO crystals onto lateral surface of porous TNTs. PS: ∅TNTs = 120 nm, length TNTs = 3.5 μm; ∅ZTNTs = 180 nm; ZNPs = 30 nm | 2 steps: (1) TNTs by anodic oxidation using working electrode: Ti foil, counter electrode: Pt, V = 20 V, t = 3–12 h (increasing time increases tube length); (2) ZnO nanocrystal by filtered cathodic vacuum-arc technique | (1) Ti foil; (2) TNTs (from 1), Zn metal, O2 | (1) annealing: 550 °C, 3 h, air | CP: anatase, wurtzite | [127] | |
Coaxial TZNT arrays. PS: inner ØTNTs = 130 nm, wall thickness = 15 nm, ZnO thickness (inside TNT pore) = 30 nm | 2 steps: (1) TNTs by Ti foil anodic oxidation using working electrode: Ti foil, T = RT; (2) electrochemical deposition using working electrode: TNTs, counter electrode: Pt, reference electrode: calomel, V = −1 V, t = 1 h | SM: (1) Ti foil; (2) TNTs (from 1), ZN, EDTA, DW h | (1) annealing: 450 °C, 2 | CP: anatase, wurtzite E gap: ~3.2 eV | [128] | |
ZnO nanocrystals inside and outside well-aligned TNTs PS: ØinnTNTs = 76 nm, ZNPs = 50 nm | (1) TNTs by Ti foil anodization using working electrode: Ti foil, counter electrode: graphite sheet, V = 40 V, t = 10 h; the procedure has been repeated twice, the first time TNT formation is removed; (2) CBD followed by pyrolysis | SM: (1) Ti foil; (2) ZN, EtOH, DW; (3) TNTs (from 1), ZN, EtOH, DW | ZnO/TiO2 (wt.% = 5, 10, 15, 20) | (1) annealing: 450 °C, 3 h, air; (2) pyrolysis: 400 °C, 2 h, air | CP: anatase, wurtzite | [129] |
ZNPs (hexagonal flake) lateral decorated TNTs PS: ∅TNTs = 70 nm, length = 2 μm | (1) TNTs by Ti foil anodic oxidation using working electrode: Ti sheet, counter electrode graphite sheet, V = 30 V, t = 2 h; (2) ZNPs on/in TNTs by hydrothermal method | (1) Ti foil, EG, NH4 F, DW; (2) TNTs (from 1), ZN, HMTA, citrA, DW | Ti/O/Zn (at. ratio) = 35/65/0, 36/62/2, 30/64/6, 26/55/19, 22/54/24 | (1) annealing: 450 °C, 3 h, air; (2) hydrothermal treatment: 70 °C, 2 h; annealing: 300 °C, 100′ | anatase | [130] |
MO Degradation | |||
---|---|---|---|
Ref. | Catalyst Crystal phases Synthesis method | Measurement parameters | Main results |
[43] | ZT/r/NPs Anatase, rutile Sol–gel method | In 250 mL beaker C0 (cat) = 10 g L−1 C0 (dye) = 0.1–1 mg L−1 P = 160 W Rad = UV Hg lamp | t = 5 h deg = 50–70% zinc sulfate as precursor gives more active photocatalysts than zinc chloride and nitrate |
[44] | ZT/r/NPs Anatase, rutile, wurtzite Sol–gel method (with SDS or DBS surfactant) | Fixed-film batch reactor C0 (dye) 5 mg L−1 P = 6 W LI = 3.0 mW cm−2 Rad = UV lamp | ZT/r/NPs more active than pristine oxides K = 1.81 h−1 (Zn/Ti at. ratio = 0.25/Tcalc = 600 °, DBS) DBS allows higher K than SDS |
[39] | ZT/r/NPs Anatase, wurtzite Hydrothermal method | Quartz-glass reactor C0 (cat) = 2.5 g L−1 C0 (dye) = 0.02 g L−1 P = 125 W d = 20 cm Rad = UV Hg lamp | t ~20′ deg ~80% ZT/r/NPs more active than TNPs ZT/r/NPs more active ZNPs ZT/r/NPs a little more active than P25 ZT/r/NPs more resistant than P25 |
[34] | ZT/r/NPs A W Precipitation method | C0 (cat) = 0.2 g L−1 C0 (dye) = 0.01 M P = 4 × 8 W LI = 1.4 W m−2 Rad = UVA Phillips TL | t = 140′ deg = 100% K = 1.86 × 10−2 min−1 ZT/r/NPs more active than TNPs, K = 0.1 × 10−2 min−1 ZT/r/NPs more active ZNPs, K = 1.23 × 10−2 min−1 |
[24] | ZT/r/NPs A, W Mechanical mixing | Photoreactor with 250 mL beaker C0 (cat) = 0.5 g L−1 C0 (dye) = 40 ppm P = 375 W Rad = UV Hg lamp | t = 20′ deg = 45–50% with increasing ZnO content degradation decreases, increases, and decreases Maximum deg.: ZnO wt.% = 95% minimum deg.: ZnO wt.% = 5% |
[48] | ZT/r/NPs A, W, Am Sol–and precipitation, (different composition) methods | 100 mL beaker C0 (cat) = 0.5 g L−1 C0 (dye) 10−5 M P = 40 W LI = 413 W cm−2 Rad = UV VL 340 lamp | t = 5 h deg = 100% χZn ≤ 0.67: precipitate catalysts more active than sol–gel catalyst χZn ≥ 0.67: precipitate catalysts less active than sol–gel catalyst, amorphization and high E gap decreases MO photodegradation |
[62] | hollow spheres anatase Solvothermal method | C0 (dye) = 10 mg L−1 Rad = UV light | t = 9′ deg = 100% ZT hollow spheres much more active than TiO2 hollow spheres ZT hollow spheres a little more active than P25 ZT hollow spheres more resistant than P25 |
[112] | Cs ZT NRs on Si substrate Hydrothermal/spin coating | C0 (dye) = 0.25 mg L−1. P = 66.2 W cm−2, 16.7 W cm−2. Rad = black-ray UV light and oriel solar simulator | Cs ZTNRs less active than ZNRs |
[80] | UTZs (urchin-like TiO2/ZnO) Anatase, wurtzite Hydrothermal method | C0 (cat) = 0.5 g L−1 C0 (dye) = 10 mg L−1 P = 300 W Rad = UV Xenon lamp d = 15 cm | t = 25′ deg = 100% UTZs more active than ZNPs UTZs more active than P25 UTZs more active than TiO2 urchin-like |
[56] | TNPsZNRs Anatase, wurtzite PLAL | C0 (cat) = 0.5 g L−1 P = 500 W Rad = Xenon lamp (UV) | TNPsZNRs with ZnO/TiO2 (wt. ratio) = 9/1 the most active t = 35′ deg = 100% K = 0.1142 min−1 more active than other composition more active than pristine ZNRs (K = 0.04062 min−1) s more active than TNPs (K = 0186 min−1) |
[124] | ZNRs embedded in TNTs on Ti sheet Anatase, wurtzite TNTs by anodic oxidation method; ZNRs by direct cathodic electrodeposition on TNTs | Photo-electrocatalytic measurements WE: ZNRs/TNTs WE area = 1.0 cm2 CE: Pt RE: SCE C0 (dye) = 5 × 10−5 M P = 11 W LI = 10 mW cm−2. Rad = UV lamp | t = 90′ deg = 100% ZNRs embedded in TNTs slightly more active than TNTs |
[126] | ZNRs/TNTs (intra- and extra-tube) Anatase, wurtzite TNTs by Ti foil anodization; ZnO NRs by CBD | C0 (dye) = 5 × 10−5 M P = 400 W LI = 23 mW cm−2 Rad = Hg lamp d = 12 cm | t = 105′ deg = 75–80% ZNRs/TNTs more active than TNTs 2nd cycle t = 105′ deg. = 20–25% |
[119] | ZT NCs arrays on Ti fabric Anatase, wurtzite Anodic oxidation followed by hydrothermal treatment | C0 (cat) = 1 × 1 cm2/100 mL C0 (dye) = 20 mg L−1 P = 300 W Rad = UV Xenon lamp | t = 60′ deg = 100% ZT NCs more active than TNPs (at pH 7) pH = 10 more active than other pH Reusable |
[92] | ZT film on glass anatase, (χTi ≥ 75%), wurtzite (χT i ≤ 50%.), amorphous (χTi = 25 and 50%) Sol–gel/dip coating | In small beaker C0 (dye) = 2.5 × 10−5 M P = 20 W Rad = UV lamp | t = 3 h deg = 90–95% The higher the titanium content, the higher the MO photodegradation Films with poorest crystallization show lowest photocatalytic degradation |
[93] | ZT macroporous film anatase (ZnO/TiO2 = 0, 10, 20%), amorphous (ZnO/TiO2 = 30, 40%) Sol–gel/spin coating | Water-cooled reactor C0 (cat) = 1 g L−1. C0 (dye) = 10.3 mg L−1 P = 100 mWcm−2 Rad = solar simulator with an AM1.5 filter | ZT macroporous film with ZnO/TiO2 (molar ratio) = 10% the most active t = 280′ deg = 70–80 more active than TNPs more active than other compositions (ZnO/TiO2 = 20, 30 and 40%) less active then P25 |
[85] | self-standing ZT photonic crystal with IOS Anatase, wurtzite Self-standing TiO2 by impregnation of PS sphere between 2 slides and Zn impregnation | C0 (cat) = 3 cm × 2 cm/10 mL C0 (dye) = 5 mg L−1 P = 500 W Rad = Xe arc lamp/IR cut-off solar-light simulator | t = 120′ deg = 90–100% self-standing ZT more active than ZNPs self-standing ZT more active than TNPs self-standing ZT more active than ZTNPs self-standing ZT more active than TPC self-standing ZT more active than P25 |
MB degradation | |||
Ref. | Catalyst Crystal phases Synthesis method | Measurement parameters | Main results |
[78] | ZNRs TNPs Anatase, wurtzite Hydrothermal method | 3 mL quartz-glass vessel photoreactor C0 (dye) = 1 × 10−5 M P = 100 W LI = 35 mW cm−2 Rad = UV vis Hg lamp light d = 12 cm | ZNRs TNPs with Z/Ti (at. ratio) = 2/1 the most active t = 180′ deg = 90% k = 1.37 × 10−2 min−1 more active than other composition more active than ZNPs and TNPs more active than P25 |
[128] | Coaxial TZNTs arrays film Anatase, wurtzite TNTs by Ti foil anodic oxidation; ZnO nanocrystal by filtered cathodic vacuum-arc technique. | C0 (dye) = 5 mg L−1 | t = 150′ deg = 80% Coaxial TZNT-array film more active than TNTs |
[33] | ZT/r/NPs Anatase, wurtzite MW precipitation method | C0 (cat) = 14.3 g L−1 C0 (dye) = 5 × 10−6 M P = 18 W Rad = UV lamp | t = 150′ deg = 95% |
[116] | cs ZT NRs (oriented) on ITO anatase, (002) and (103) preferentially oriented wurtzite Urchin-like Zn seeding by electrochemical method; ZNRs by hydrothermal process; TiO2 shell by sol–gel | C0 (cat) = in a quartz cuvette C0 (dye) = 10 mM Rad = LED LI = 140 mW cm−2 d = 2 cm International standard procedure | cs ZT NRs with a non-uniform layer (nul) of TiO2, the most active t = 180′ deg = 80–85% k = 1.2 × 10−2 min−1 cs ZT NRs on ITO (nul) more active than ZNRs on ITO cs ZT NRs on ITO (nul) more active than pristine ZnO, k= 0.2 × 10−2 min−1 cs ZT NRs on ITO (nul) more active than uniform layer (of TiO2) on NRs on ITO, k= 0.7 × 10−2 min−1 |
[45] | ZT/r/NPs Anatase, rutile, wurtzite Sol–gel method | Batch reactor C0 (cat) = 0.5 g L−1 LI = 42 (UV) 121 (vis) Wm−2 Rad = UV and visible light | t = 30′ deg = 90% K = 0.07 (UV), 0.008 (vis) min−1 ZT/r/NPs more active than ZNPs ZT/r/NPs more active than TNPs In UV and vis light |
[73] | ZT cs NPs anatase, (W before TiO2 precipitation) double-step precipitation | C0 (cat) = 0.16 g L−1 C0 (dye) = 10 ppm pH = 8 P = 2 × 18 W LI = 115 mW cm−2 Rad = Philips UV lamp | ZT cs NPs with ZnO/TiO2 (wt. ratio) = 1/25 the most active t = 120′ deg = 59.56% more active than ZNPs |
[37] | ZT/r/NPs Wurtzite (ZnO/TiO2 vol. ratio > 0), anatase, rutile (ZnO/TiO2 vol. ratio = 0), ZnTiO3 (traces). Sol–gel method | 50 mL borosilicate glass C0 (cat) = 5 mg L−1 C0 (dye) = 10 mM LI = 862 W cm−2 Rad = solar light | ZT/r/NPs with ZnO/TiO2 (mol ratio) = 4/6 the most active t = 75′ deg = 90% more active than TNPs (deg. = 77%) more active than ZNPs (deg. = 74%) |
[87] | TNPs/ZNFls Anatase, wurtzite Hydrothermal method | C0 (cat) = 1 g L−1 C0 (dye) = 10 mg L−1 pH = 7 P = 100 W Rad = vis W bulb | Catalyst with Zn/Ti (volume ratio) = 4 the most active t = 6′ deg = 100% more active than ZNFls more active than catalyst with Zn/Ti (volume ratio) = 2 |
[10] | ZT/r/NPs Anatase (Z/Ti mol ratio = 0/1), rutile (Z/Ti = 0/1, 1/3), wurtzite (Z/Ti ˃0/1), ZnTiO3 (traces Z/Ti = 1/1, 2/1) Sol–gel method | Glass beaker C0 (cat) = 0.5 g L−1 C0 (dye) = 20 mM P = 413 mWcm−2 LI = 413 mW cm−2 Rad = UV d = 12 cm | ZT/r/NPs with Zn/Ti mol ratio = 1 the most active t = 6 h deg = 100% K = 9.5 × 10−3 min−1 (Zn/Ti mol ratio = 1) more active than TNPs, deg. = 60%, K = 3.06 × 10−3 min−1 (TiO2) more active than ZNPs, deg = 65%, K = 2.64 × 10−3 min−1 (ZnO) |
[25] | ZT/r/NP Anatase, wurtzite SSR (TiO2 and ZnO by Hydrothermal synthesis) | Tot. volume 250 mL C0 (cat) = 0.8 g L−1 C0 (dye) = 2 mg L−1 P = 300 W Rad = UV Xe lamp | ZT/r/NPs with Ti/Zn wt. ratio = 1 the most active t = 150′ deg = 91.6% K = 1.412 × 10−2 min−1 more active than other composition more active than ZNPs, K = 0.424 × 10−2 min−1 more active than TNPs, K = 1.041 × 10−2 min−1 |
[140] | ZnO-decorated TiO2, NPs Anatase, wurtzite Sol–gel method + reflux | 50 mL quartz glass C0 (cat) = 2.5 g L−1 C0 (dye) = 2.9 mg L−1 t = 30’ deg = 70% Rad = UVA light | K = 5.86 × 10−2 min−1 ZnO-decorated TNPs more active than ZNPs, K = 3.67 × 10−2 min−1 ZnO-decorated TNPs more active than TNPs, K = 2.09 × 10−2 min−1 |
RhB degradation | |||
Ref. | Catalyst Crystal phases Synthesis method | Measurement parameters | Main results |
[65] | TZNFs Anatase, rutile, wurtzite Electrospinning | C0 (cat) = 0.5 g L−1 C0 (dye) = 20 ppm P = 12 W Rad = UV lamp Philips 365 D = 10 cm | ZNFs with ZnO (wt.%) = 15.8% the most active t = 25′ deg = 100% K = 0.7467 mg L−1 h−1 more active than T NFs, K = 0.5733 mg L−1 h−1 |
[129] | ZTNTs Anatase, wurtzite Anodic oxidation and pyrolysis approach | SA (cat) = 3 × 1 cm2 C0 (dye) = 5 mg L−1 pH = 7 P = 300 W Rad = UV Xe lamp D = 15 cm | t = 150′ deg = 70–80% ZTNTs more active than TNTs ZTNTs more active than P25 film ZTNTs more active than ZnO film |
[67] | TZNFs Anatase (T calc = 550–750 °C), rutile (Tcalc ≥ 650 °C) wurtzite. Electrospinning | In Luzchem CCP-4 photo-chemical reactor C0 (cat) = 1 g L−1 C0 (dye) = 10−6 M P = 8 × low P UV Hg lamps | t = 75′ deg = 100% TZ NFs more active than P25 TZ NFs calcinated at 650 °C more active than TZ NFs calcinated at 550, 750 and 850 °C |
[86] | IOS Z QDs TiO2 anatase Impregnation on self-assembled PSs on filter paper | C0 (cat) = 400 mg L−1 C0 (dye) = 10−3 M P = 6 × 18 W LI = 6 ×1250 lm Rad = UV lamp | t = 25 ‘ deg = 100% more active than P25, deg = 40–45% |
[123] | ZNRsTNTs film on Titanium Anatase, wurtzite TNTs by anodic oxidation; ZnO nanorice by CBD | 3 mL quartz cuvette in Luzchem photoreactor C0 (dye) = 5 mg L−1 Rad = UVC, UVB, UVA and visible region lamps | ZNRsTNTs with 2 ZnO CBD cycles the most active t = 240′ deg = 90–95% (UVA) K = 0.011 min−1 more active than TNTs more active than catalyst with 4, 6, 8 CBD cycles |
[82] | ZTNTs Anatase, wurtzite Double step hydrothermal route | C0 (dye) = 10−5 M Rad = visible light | ZTNTs more active than TNTs, ZnO, P25 t = 180′ deg = 89% (ZTNTs); 77% (TNTs), 61% (P25), 31% (ZnO) K = 0.011 (ZTNTs). 0.085 (TNTs), 0.0059 (P25), 0.0023 (ZnO) |
[54] | ZT/r/NPs Anatase, wurtzite Green synthesis | In 250 mL Pyrex glass photochemical reactor C0 (cat) = 1 g L−1 C0 (dye) 0.3 mM Rad = halogen light lamp | t = 3 h deg = 59% ZT/r/NPs more active than ZNPs, deg = 39% ZT/r/NPs more active than TNPs, deg = 45% |
Other dye degradation | |||
Ref. | Catalyst Crystal phases Synthesis | Measurement parameters | Main results |
[31] | ZT/r/NPs Anatase: except Ti/Zn (at. ratio) = 0/1, wurtzite: Ti/Zn ≤ 3/1 Us precipitation method | CI basic blue 41 degradation C0 (cat) = 10 g L−1 C0 (dye) = 20 mg L−1 pH = 6.21 Rad = solar light | ZT/r/NPs with Ti/Zn (at. ratio) = 1/1 the most active t = 1 h deg = 99% K = 0.08256 min−1 more active than TNPs more active than ZNPs more active than all other compositions |
[38] | ZT/r/NPs Anatase, wurtzite Precipitation method | Procyon red MX oxidation in Teflon-sealed borosilicate vials C0 (cat) = 0.5 g L−1 C0 (dye) = 15 mg L−1 pH = 6.8 P = 4 × 8 W Rad = UV D = 7.6 cm | Catalysts with composition close to pristine oxides the most active |
[68] | TZ NFs (flower like) Anatase, wurtzite Electrospinning | Degradation of ARS (alizarin red S) C0 (cat) = 20 mg L−1 C0 (dye) = 20 mg L−1 Rad = UV lamp D = 15 cm | t = 70′ deg = 100% TZ NFs more active than P25 TZ NFs more active than ZNPs |
[46] | ZT/r/NPs Anatase, wurtzite Sol–gel method | Congo-red degradation in 50 mL opened Pyrex vessel C0 (cat) = 0.5 g L−1 C0 (dye) = 5 ppm P = 30 W Rad = UVC lamp D = 15 cm | t = 5′ and 10′ deg = 80% and 98% ZT/r/NPs more active than ZNPs with Tcalc = 420 °C higher performance than Tcalc = 220 °C or 800 °C (Zn2TiO4 formation) |
[36] | ZT/r/NPs Anatase Homogeneous hydrolysis method | OII degradation in aqueous slurry C0 (dye) = 0.02 M P = 8 W Rad = florescent lamp (λ = 254 and 365 nm) | λ = 254 nm ZT/r/NPs with Ti/Zn (at. ratio) = 1.55/54.97 the most active t = 25′ deg = 100% K = 0.1235 min−1 more active than P25 λ = 365 nm ZT/r/NPs less active than P25 |
[23] | ZT/r/NPs Anatase, wurtzite SSR | Acid-red degradation in 50 mL tot. volume C0 (cat) = 1 mg L−1 C0 (dye) = 10 mg L−1 pH = 7 US: t = 100 min | t = 100′ deg = 75% (TNPs) deg = 35–40% (ZNPs) degradation decreases with increase in ZnO content |
[71] | cs ZT NPs Anatase(at highest TiO2 loading), wurtzite ZnO mw impregnation method | Orange G degradation P = 5 × 15 W Rad = UV light | t = 90′ deg = 100% Increasing amorphous titanium dioxide-layer thickness, decreasing photocatalytic degradation |
[32] | ZT/r/NPs Anatase, rutile, wurtzite Modified ammonia evaporation-induced synthetic method | Cyanides MB SY RB C0 (cat) = 0.8 g L−1 C0 (dye) = 50 ppm P = UV: 150 W; vis: 8 W Rad = UV: W halogen lamp; vis: Hg lamp | Cyanides t = 150 min deg = 25% ZT/r/NPs more active than P25 MB, SY, RB ZT/r/NPs less active than P25 |
[27] | ZT/r/NPs Anatase, wurtzite mixing and SSR | BGY in 50 mL borosilicate glass/batch reactor C0 (cat) = 6 g L−1 C0 (dye) = 20 mg L−1 Rad = solar light | ZT/r/NPs with Zn/Ti (mol ratio) = 1/1 and 3/1 the most active t = 2 h deg = 100% more active than ZNPs more active than TNPs |
[72] | Cs ZT NPs Anatase (detectable only with thicker shell), wurtzite ZnO by precipitation, TiO2 by chemical growth from TiO2 gel. | Acridine orange (AO) in homemade photo-reaction apparatus C0 (cat) = 1 g L−1 C0 (dye) = 0.03 mM Rad = solar light irradiation | t = 120 ‘ deg = 100% Cs ZT NPs with the thickest TiO2 (anatase) layer the most active more active than ZNPs (deg = 87%) more active than TNPs (deg = 80%) |
Phenol degradation | |||
Ref. | Catalyst Crystal phases Synthesis | Measurement parameters | Main results |
[90] | ZT compact film on Ti plate Anatase Sol–gel/dip coating | PCP degradation 600 mL photoreactor WE: ZT film on Ti CE stainless steel RE: SCE C0 (dye) = 5 mg L−1 P = 300 W Rad = Hg lamp | K = 0.0144 min−1 (ZT film photocatalysis) K = 0.0309 min−1 (ZT film electrophotocatalysis) K = 0.0249 min−1 (TiO2 electrophotocatalysis) More active than TNPs |
[75] | TZ cs tetrapods Anatase, wurtzite Z tetrapods by thermal evaporation; TiO2 layer by VHM | Phenol photooxidation in 400 mL Pyrex photoreactor C0 (cat) = 0.36 g L−1 C0 (dye) = 100 mg L−1 pH = 6.56 O2 = 100 mL min−1 Rad = UV light with and without filter glass (λ ˂ 340 nm). | Without cut-off t = 90′ deg = 100% Slightly more active than P25 More active than Z tetrapods With cut-off (λ ˂ 340 nm). t = 300′ deg = 100% More active than P25 More active than Z tetrapods |
[125] | Flower-like ZNRs on TNTs Anatase, rutile, wurtzite TNTs by Ti foil anodic oxidation, ZNRs by sol–gel/dipping and hydrothermal method | PEC oxidation of Bis Phenol A in 100 mL quartz electrolytic cell WE: ZNRs on TNTs SA (cat) = 4.5 cm2 CE platinum RE: calomel C0 (dye) = 25 mg L−1 P = 300 W UV lamp LI = 3 mW cm−2 Rad = UV lamp | t = 180′ deg = 90% Flower-like ZNRs on TNTs more active than TNTs |
[74] | Cs ZT NPs Anatase, wurtzite ZNRs by thermal decomposition; TiO2 shell by chemical growth from TiO2 gel. | 4 Cl phenol degradation in 250 mL glass photoreactor C0 (cat) = 0.4 g L−1 C0 (dye) = 40 ppm LI = 2.0 mW cm−2 Rad = UV Hg lamp | t = 1 h deg = 90.6% Cs ZT NPs with ZnO (mol.%) = 6%, the most active more active than ZNPs, deg. = 54.2% more active than TNPs, deg = 32.3% more active than other compositions |
[80] | Urchin-like hierarchical ZT architectures Anatase, wurtzite Hydrothermal method | nitrophenol in aqueous solution C0 (cat) = 0.5 g L−1 C0 (dye) = 10 mg L−1 P = 300 W Rad = Xenon lamp D = 15 cm | t = 25′ deg = 100% Urchin-like ZT more active then ZNPs Urchin-like ZT more active than TiO2 urchin-like structure Urchin-like ZT 2 more active than P25 |
[65] | TZ NFs Anatase, rutile, wurtzite Electrospinning | phenol degradation in aqueous solution C0 (cat) = 0.5 g L−1 C0 (dye) = 20 ppm P = 12 W Rad = UV lamp Phillips 365 D = 10 cm | t = 30′ deg = 75–80% K = 1.833 mg L−1 h−1 TZ NFs more active than pure TNFs, K = 0.5733 mg L−1 h−1 |
Other pollutant degradation | |||
Ref. | Catalyst Crystal phases Synthesis | Measurement parameters | Main results |
[138] | Mixing ZT/r/NPs | Lignin degradation P = 5 × 30 W(UV), 35 W m2 (solar light) Rad = UV and solar light | less active than ZnO in UV and solar light |
[127] | ZnO crystals onto TNTs Anatase, wurtzite TNTs by anodic oxidation; ZnO nanocrystal by filtered cathodic vacuum-arc technique | humic acid degradation C0 cat = 2.5 × 1 cm2 in 10 mL bottle C0 (dye) 50 mg L−1 P = 8 W Rad = UV light (λ = 254 nm) D = 5 cm | t =65′ deg = 100% K = 0.015 min−1 More active than ZNRs, deg = 80% More active than TNTs, deg = 55% Catalyst stability: photocatalytic activity decreases 10% after 20 catalytic cycles, recovery with 10 min of darkness |
[30] | ZT/r/NPs Anatase, rutile Wetness impregnation method | Cr6+ reduction in 200 mL Pyrex photoreactor C0 (cat) = 1 g L−1 C0 (Cr6 +) = 20 mg L−1 pH = 5.5 P = 10 W Rad = UV Hg lamp (λ = 365 nm) | ZT/r/NPs with ZnO (mol.%) = 2% more active than other compositions (ZnO (mol,%) = 0, 1, 4, 10) K = 1.2 × 10−2 min−1 |
[60] | Hollow sphere (or almost) Anatase, rutile, wurtzite Spray pyrolysis method | TCE degradation C0 (TCE) = 58.56 ppm Rad = UV lamp (λ = 300–420 nm) | Hollow sphere with ZnO (mol,%) = 5%, the most active more active than ZNPs more active than P25 more active than Hollow sphere with ZnO (mol,%) = 0, 16,33,66,100 |
[136] | ZT/r/NPs Anatase, wurtzite Precipitation method | Flumequine (antibiotic) degradation C0 (cat) = 4 g L−1 C0 (Fl) = 10 mg L−1 P = 2 mW cm−2 Rad = UV lamp (λ = 260 nm) | t = 240′ deg = 67% more active than TNPs, deg = 23% more active than ZNPs deg, = 11% still more active if supported on sepiolite, deg = 85% |
[26] | ZT/r/NPs Anatase, wurtzite mixing and SSR | Quinoline degradation in 250 mL borosilicate beaker batch reactor C0 (cat) = 2.5 g L−1 C0 (dye) = 100 mg L−1 Rad = UV Hg bulb (l = 365 nm) Distance = 10 cm pH = 8 | ZT/r/NPs Ti/Zn (molar ratio) = 1 more active than other compositions (Ti/Zn = 1/2, 1/3, 3/1 or 2/1) t = 240′ deg = 82% |
[134] | Layered TiO2/ZnO/ITO Anatase, wurtzite Magnetron sputtering | Ciprofloxacin removal C0 (cat) = 1 × 1 cm2/50 mL C0 (dye) = 10 mg L−1 P = 300 W LI = 208.5 mW cm−2 Rad = Hg lamp Distance = 10 cm pH = 7 | t = 120′ deg = 100% more active than ZnO film more active than TiO2 film on ITO |
[137] | ZT/r/NPs Anatase, wurtzite Deposition–precipitation method | Bentazon (herbicide) degradation C0 (cat) = 0.5 g L−1 C0 (B) = 5 mg L−1 Rad = UV lamp | t = 60′ deg = 100% K = 0.0649 min−1 more active than TNPs more active than ZNPs |
[25] | ZT/r/NPs Anatase, wurtzite SSR | Landfill leachate (from Yiyang city) degradation, diluted 1/100 Cat.: 200 mg in diluted landfill leachate Rad = Xenon lamp | ZT/r/NPs with TiO2/ZnO (wt. ratio) =1 t = 40′ deg = 90% K = 2.84 × 10−2 min −1 more active than TNPs: K = 2.19 × 10−2 min−1 more active than ZNPs: K = 0.95 × 10−2 min −1 |
[67] | TZ NFs Anatase (T calc = 550–750 °C), rutile (Tcalc ≥ 650 °C) W Electrospinning | NO oxidation in continuous flow reactor dish 150 × 25 mm [NO] = 1000 ppb Total flow = 3 l min−1 P = 300 W Rad = solar-light simulator (W halogen lamp) | t = 30′ deg = 34% catalyst calcinated at 650 °C more active than catalyst calcinated at T = 550 °C (deg = 23%), 750 °C (deg = 24%), 850 °C (deg = 19%) More active than P25, deg. = 18%) |
[139] | ZT/r/NPs Anatase, rutile, wurtzite Mixing by ball milling | NO oxidation to NO3 in in continuous-flow reactor [NO] = 1 ppm Total flow = 3 l min−1 P = 1 mW cm 2 Rad = UV Philips lamp (λ = 365 nm), vis Philips lamp | ZT/r/NPs more active than P25 |
fuel production reaction | |||
Ref. | Catalyst Crystal phases Synthesis | Measurement parameters | Main results |
[64] | Mesoporous French fries Anatase, rutile FAPO (furfural alcohol derived polymerization-oxidation) reaction | CO2 photo-reforming to CH4 cat = 0.1 g/8.1 cm2 total volume = 390 mL H2O (liquid) volume = 0.8 mL Reactants: CO2 + H2O P = 300 W LI = 60 mWm2 Rad = Xe lamp | CH4 yield = 55 μmol g−1 h−1 More active than P25 (9.3 μmol g−1 h−1) More active than ZT NCs by SSR (5 μmol g−1 h−1) |
[51] | ZT/r/NPs Anatase (%TiO2 > 0), wurtzite (%ZnO 50–100) Sol–gel method | H2 generation in aqueous methanol solution in 5 mL quartz semi-batch reactor cat = 2 mg H2O = 1.6 mL CH3OH = 0.4 mL P = 300 W Rad = UV Xe lamp (240 < λ < 400 nm) | ZT/r/NPs with ZnO (wt.%) = 30% the most active t = 10 h H2 yield = 17.3 mL g−1 more active than P25, H2 yield = 8.01 mL g−1 More active than ZNPs, H2 yield = 0 mL g−1 |
[40] | ZT/r/NPs Anatase, amorphous Hydrothermal method | H2 evolution in Labsolar II photocatalytic water-splitting testing system cat = 10 mg H2O = 90 mL CH3OH = 10 mL P = 300 W Rad = UV Xe lamp nm | ZT/r/NPs with Ti/Zn (at. ratio = 3) more active than other compositions (Ti/Zn at. ratio = 1, 2, 5, 7) H2 yield = 865 μmol g−1 h−1 |
[108] | Cs ZT NWs (vertically aligned on steel mesh) Anatase, wurtzite 2-step hydrothermal route | H2 evolution in Perfect Light Labsolar IIIAG photocatalytic reaction system (piezo-photocatalytic Perfectlight labsolar-IIIAG) cat = 220 mg (5 × 9 cm2) H2O = 120 mL CH3OH = 30 mL P = 50 W Rad = Xe lamp (200 < λ < 2500) Ultrasound: 50 A 50 W | H2 yield = 3.05 μmol g−1 h−1 Piezo-photo reaction more active than photo reaction (1.98 μmol g−1 h−1) Cs ZT NWs more active than piezo-photo Z NWs (1.86 μmol g−1 h−(1) Cs ZT NWs less active than P25 (11 μmol g−1 h−1) |
[79] | ZnO-decorated TNWs anatase, TiO2 (B), wurtzite TNWs by P25 hydrothermal treatment; ZnO by reflux method | Water splitting in the presence of sacrificial methanol in jacketed British purple-glass reactor cat = 50 mg H2O = 72 mL CH3OH = 8 mL P = 300 W Rad = Xe lamp | ZnO-decorated TNWs with ZnO (wt.%) = 20% the most active H2 yield = 193 μmol g−1 h−1 more active than TNWs, H2 yield = 145 μmol g−1 h−1 more active than other compositions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzari, F. Synthesis, Photocatalytic and Bio Activity of ZnO-TiO2 Nanocomposites: A Review Study. Reactions 2024, 5, 680-739. https://doi.org/10.3390/reactions5040035
Pinzari F. Synthesis, Photocatalytic and Bio Activity of ZnO-TiO2 Nanocomposites: A Review Study. Reactions. 2024; 5(4):680-739. https://doi.org/10.3390/reactions5040035
Chicago/Turabian StylePinzari, Fulvia. 2024. "Synthesis, Photocatalytic and Bio Activity of ZnO-TiO2 Nanocomposites: A Review Study" Reactions 5, no. 4: 680-739. https://doi.org/10.3390/reactions5040035
APA StylePinzari, F. (2024). Synthesis, Photocatalytic and Bio Activity of ZnO-TiO2 Nanocomposites: A Review Study. Reactions, 5(4), 680-739. https://doi.org/10.3390/reactions5040035