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Abstract: A multi-step procedure was effectively employed to synthesize innovative three-dimensional
(3D) heterostructures encompassing sodium titanate (Na2Ti3O7) nanowire cores, an intermediate
resorcinol–formaldehyde (RF) layer, and outer silver (Ag) nanoparticle sheaths, referred to as
Na2Ti3O7@RF@Ag heterostructures. Initially, a one-step hydrothermal technique facilitated the
direct growth of single-crystal Na2Ti3O7 nanowires onto a flexible Ti foil. Subsequently, a two-step
wet chemical process facilitated the sequential deposition of an RF layer and Ag nanoparticles onto
the Na2Ti3O7 nanowires at a low reaction temperature. Optimal concentrations of silver nitrate and
L-ascorbic acid can lead to the cultivation of Na2Ti3O7@RF@Ag heterostructures exhibiting height-
ened surface-enhanced Raman scattering (SERS), which is particularly beneficial for the detection of
rhodamine B (RhB) molecules. This phenomenon can be ascribed to the distinctive geometry of the
Na2Ti3O7@RF@Ag heterostructures, which offer an increased number of hot spots and surface-active
sites, thereby showcasing notable SERS enhancement, commendable reproducibility, and enduring
stability over the long term. Furthermore, the Na2Ti3O7@RF@Ag heterostructures demonstrate
remarkable follow-up as first-order chemical kinetic and recyclable photocatalysts for the photode-
composition of an RhB solution under UV light irradiation. This result can be attributed to the
enhanced inhibition of electron–hole pair recombination and increased surface-active sites.

Keywords: one-dimensional heterostructures; sodium titanate nanowires; resorcinol–formaldehyde;
silver nanoparticle; surface-enhanced Raman scattering; rhodamine B; photocatalysts

1. Introduction

Surface-enhanced Raman scattering (SERS) greatly amplifies the Raman signals of
analytes near enhancing materials [1,2]. Electromagnetic and chemical enhancements, par-
ticularly electromagnetic field amplification (localized surface plasmon resonance (LSPR))
and charge transfer, contribute to Raman signal enhancement [3–5]. This dual-path en-
hancement elevates SERS sensitivity to single-molecule levels while retaining Raman
spectroscopy advantages [6]. The pivotal aspect of SERS lies in enhancing substrates,
notably plasmonic substrates, with Ag and Au being the most efficient due to their inherent
plasmonic properties [7–10]. The substrate’s geometry, particularly the surface localiza-
tion of nanostructures, is crucial for sustaining strong surface plasmon resonance (SPR),
and the surface chemistry of these nanostructures significantly influences the intensity
of SPR peaks [11–15]. At present, combining semiconductor nanostructures with noble
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metal nanoparticles, known as metal–semiconductor heterostructures, offers a promis-
ing approach to creating three-dimensional (3D) LSPR structures to enhance SERS sub-
strates’ detection sensitivity and uniformity [16–21]. These heterostructures can serve as
recyclable SERS substrates through the photocatalytic degradation of target molecules
under UV light irradiation and facilitate charge transfer pathways for Raman scattering
enhancement [22–24]. Among semiconductor nanostructures, titanium dioxide (TiO2) and
zinc oxide (ZnO) nanostructures are popular due to their excellent photocatalytic activity
when exposed to UV light, making them ideal SERS substrates [25–27]. Nevertheless, fewer
studies explore the use of sodium titanate nanostructures in SERS and photocatalysis [28].

Sodium titanate (Na2TinO2n+1, where 2 ≤ n ≤ 9) has garnered considerable attention
as a promising material due to its notable attributes: a high level of chemical inertness, non-
toxicity, ion exchange capabilities, and cost-effectiveness [29–31]. This versatile substance
finds applications in chemical absorption, photocatalysis, supercapacitors, and sodium-ion
batteries [32–37]. Numerous synthesis methods have been employed to fabricate sodium
titanate nanostructures [38–40]. The hydrothermal method has emerged as a preferred
choice due to its simplicity and cost-effectiveness, making it widely used for obtaining a
diverse range of nanostructures [35,41]. One-dimensional sodium titanate nanostructures
adorned with Ag nanoparticles via an ion-sputtering technique have recently emerged
as highly effective SERS substrates, showcasing exceptional detection sensitivity, stability,
and uniformity [28]. This limitation stems from the necessity to conduct the deposition
of Ag nanoparticles under high-vacuum conditions, which are energy-intensive and not
environmentally friendly.

Prior investigations have often resorted to thermal evaporation or ion-sputtering tech-
niques to achieve the uniform deposition of Au or Ag nanoparticles on one-dimensional
semiconductor nanostructures to fabricate 3D SERS substrates [42–44]. These methods
can effectively produce high-performance SERS substrates but fall short regarding energy
savings and carbon reduction [45]. Moreover, the literature dedicated to the development of
SERS substrates on one-dimensional semiconductor nanostructures through the application
of a resorcinol–formaldehyde (RF) resin layer, a strategy aimed at diminishing the reliance
on noble metal nanoparticles, has been relatively scant [46,47]. In earlier studies, resorcinol
exhibited versatility by serving as a critical reactant in forming the RF layer and playing
an essential role in passivating the surfaces of metal nanoparticles to prevent agglomera-
tion [48,49]. Furthermore, resorcinol’s capabilities extended to acting as a reducing agent,
facilitating the conversion of metal salts into their nanoparticle counterparts [50,51]. This
innovative approach promises effective SERS substrates and aligns with sustainability goals
by reducing the carbon footprint associated with traditional high-vacuum methods.

This study details the fabrication of Na2Ti3O7@RF@Ag heterostructures achieved
through straightforward hydrothermal and wet chemical techniques, aiming to enhance
their photocatalytic and SERS capabilities. The optimization of AgNO3 and L-ascorbic
acid volumes was explored to maximize SERS enhancement, specifically for detecting
rhodamine B (RhB) molecules. The Na2Ti3O7@RF@Ag heterostructures were thoroughly
characterized to reveal their morphology, crystal structure, and chemical composition
using microscopic and spectroscopic techniques. These heterostructures offer improved
separation of photoelectron–hole pairs and increased surface-active sites, enhancing their
photocatalytic efficiency and reusability. Additionally, the Na2Ti3O7@RF@Ag heterostruc-
tures present an advantageous geometry for the uniform deposition of Ag nanoparticles,
facilitating the creation of high-performance SERS and photocatalytic substrates.

2. Results and Discussion

Figure 1 presents a schematic representation of the fabrication process for cultivating
Na2Ti3O7@RF@Ag heterostructures. Initially, a straightforward hydrothermal technique
was utilized to nurture Na2Ti3O7 nanowires on a Ti foil at 220 ◦C for 5 h. Subsequently,
a self-assembled APTMS ((3-Aminopropyl)trimethoxysilane) monolayer was employed
to enhance the hydrophilic properties of Na2Ti3O7 nanowires, allowing for the uniform
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decoration of the RF layer [47]. Lastly, Na2Ti3O7 nanowires coated with an RF layer, in
conjunction with L-ascorbic acid, facilitated the reduction of Ag+ to Ag, culminating in the
formation of Na2Ti3O7@RF@Ag heterostructures.
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Figure 1. Synthetic scheme of the preparation of the Na2Ti3O7@RF@Ag heterostructures.

Figure 2 illustrates the X-ray powder diffraction (XRD) patterns of the Na2Ti3O7
nanowires, Na2Ti3O7@RF heterostructures, and Na2Ti3O7@RF@Ag heterostructures. The
XRD patterns for the Na2Ti3O7 nanowires (Figure 2a) exhibit distinct peaks at 2θ values of
24.3◦, 28.5◦, 48.5◦, and 49.5◦, corresponding to the (102), (111), (303), and (410) crystal planes
of monoclinic-phase Na2Ti3O7 (JCPDS Card No. 72-0148), respectively. Additionally, these
peaks are observed at 2θ angles of 35.1◦, 38.4◦, 40.2◦, 53.0◦, 62.9◦, 70.7◦, 74.2◦, 76.2◦, and
77.4◦, corresponding to the (100), (002), (101), (102), (110), (103), (200), (112), and (201) crystal
planes of hexagonal-phase Ti (JCPDS Card No. 44-1294), respectively. Figure 2b shows
the XRD pattern of Na2Ti3O7@RF heterostructures of Na2Ti3O7 nanowires without any
distinctive peaks. Notably, the presence of Ag nanoparticles within the Na2Ti3O7@RF@Ag
heterostructures (Figure 2c) is evident from the faint peaks at 2θ values of 38.2◦, 44.4◦, 64.6◦,
and 77.6◦, corresponding to the (111), (200), (220), and (311) crystal planes of cubic-phase
Ag (JCPDS Card No. 87-0720). This outcome verifies the absence of impurities within the
Na2Ti3O7@RF@Ag heterostructures.

The FESEM morphology (Figure 3a) of the Na2Ti3O7 nanowires reveals a high-density
distribution of these nanowires that have grown across the entire surface of the Ti foil, dis-
playing a random orientation. Figure 3b displays a FETEM image of a Na2Ti3O7 nanowire
featuring an intermediate diameter of approximately 105 nm. Additionally, Figure 3c re-
veals a selected area electron diffraction (SAED) pattern of a Na2Ti3O7 nanowire, presenting
a well-defined arrangement of single crystal dots. This single-crystal-dot array corresponds
to the crystal structure of the Na2Ti3O7 nanowire and aligns with the monoclinic Na2Ti3O7
crystal phase (JCPDS Card No. 72-0148). The HRTEM image (Figure 3d) demonstrates
an index lattice spacing of 0.314 nm, which agrees with the lattice spacing of the (111)
plane of Na2Ti3O7. In addition, the FETEM-EDS mapping images (Figure 3e) prove the
homogeneous distribution of Ti, O, and Na elements in the nanowire. The calculated atomic
percentages of the Na2Ti3O7 nanowires from the FETEM-EDS mapping images reveal the
following compositions: Na 7.9%, Ti 25.1%, and O 67%.
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Figure 4a reveals an FETEM image of a Na2Ti3O7@RF heterostructure with a core–
shell structure. Figure 4b shows an SAED pattern of a Na2Ti3O7@RF heterostructure
which only presents a single-crystal-dot array aligned with the monoclinic Na2Ti3O7
crystal phase (JCPDS Card No. 72-0148). The HRTEM image (Figure 4c) reveals the
presence of an approximately 4.02 nm thick amorphous RF layer decorated on the Na2Ti3O7



Molecules 2024, 29, 218 5 of 16

nanowire. Additionally, a lattice fringe characterized by an interplanar spacing of 0.314 nm
corresponds to the (111) plane of the monoclinic Na2Ti3O7 crystal phase (JCPDS Card No.
72-0148). The FETEM-EDS mapping images (Figure 4d) still exhibit the heterostructure’s
homogeneous Ti, O, and Na distribution. This observation verifies that the presence of
the RF layer on the Na2Ti3O7 nanowire does not induce any alterations in the material’s
elemental composition.
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Figure 5a,b presents the FETEM images of a Na2Ti3O7@RF@Ag heterostructure grown
using 0.15 mL AgNO3 and 3 mL L-ascorbic acid volumes. The FETEM images can reveal
that the Ag nanoparticles’ size is about 3–10 nm, and they are completely decorated on
the Na2Ti3O7@RF heterostructure. The SAED pattern (Figure 5c) of a Na2Ti3O7@RF@Ag
heterostructure displays a combination of a single-crystal-dot array and a polycrystalline
ring. The presence of a single-crystal-dot array in the SAED pattern of Na2Ti3O7@RF@Ag
heterostructure corresponds to the crystalline structure of Na2Ti3O7 nanowire, which aligns
with the monoclinic Na2Ti3O7 crystal phase (JCPDS Card No. 72-0148). This alignment
indicates the well-preserved crystal structure of Na2Ti3O7 even after the deposition of
Ag nanoparticles. The Ag nanoparticles’ distinctive appearance exhibited a concentric
ring pattern, corresponding to the diffraction from the (111) plane of the cubic Ag crystal
structure (JCPDS Card No. 87-0720). The HRTEM image of the Na2Ti3O7@RF@Ag het-
erostructure (Figure 5d) shows two visible lattice fringes exhibiting an interplanar spacing
of 0.235 nm which can be confidently attributed to the (111) lattice plane of the cubic
Ag (JCPDS Card No. 87-0720). This observation underscores the successful deposition
of cubic-phase Ag nanoparticles within the heterostructures. The FETEM-EDS mapping
image (Figure 5d) provides valuable insights into the composition of the Na2Ti3O7@RF@Ag
heterostructure. This composition analysis reveals the presence of Ti, O, Na, and Ag ele-
ments within the Na2Ti3O7@RF@Ag heterostructure, indicating the successful synthesis of
this heterostructure through a two-step wet chemical process on the Na2Ti3O7 nanowire.
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X-ray photoelectron spectroscopy (XPS) is a powerful tool for investigating the chemi-
cal states of elements in Na2Ti3O7@RF@Ag heterostructures (0.15 mL AgNO3 and 3 mL
L-ascorbic acid volumes), providing valuable insights into surface chemistry. The XPS
survey spectrum (Figure 6a) shows the existence of Na, Ti, C, O, N, and Ag in the
Na2Ti3O7@RF@Ag heterostructures. The high-resolution (HR) XPS spectrum of Na 1s
(Figure 6b) exhibits a peak at 1071.4 eV, confirming the valence state of Na as +1 [52,53]. The
presence of Ti4+ species is confirmed by Ti 2p doublets with binding energies of 458.5 eV
and 464.6 eV, corresponding to Ti 2p3/2 and Ti 2p1/2, respectively, as shown in Figure 6c.
Two additional minor peaks were detected at 459.1 and 463.0 eV, consistent with the pres-
ence of the Ti–C bond, confirming the robust adhesion of the RF layer to the surface of the
Na2Ti3O7 [54]. The C 1s spectrum of the RF layer (Figure 6d) is deconvoluted, revealing
four distinct peaks centered at 284.2, 285.0, 285.7, and 286.1 eV which can be attributed to
C–C, Ti–C, C–O, and C=O bonds, respectively [55,56]. The O 1s spectrum of the RF layer
(Figure 6e) can be successfully deconvoluted with three discernible peaks at 530.6, 532.5,
and 532.9 eV which are assigned to the C=O, Ti–O, and C–O groups, respectively [56,57].
The N 1s spectrum of the RF layer (Figure 6f) can also successfully deconvolute into two
distinct peaks at 398.4 eV and 401.2.6 eV, corresponding to C-NH-C and C=N-C, respec-
tively [58]. The HRXPS spectrum of Ag 3d (Figure 6g) can be observed at binding energies
of 367.8 and 373.8 eV, corresponding to Ag 3d5/2 and Ag 3d3/2, respectively. The 6 kV
binding energy difference between these peaks confirms the presence of an Ag0 state [59].

SERS activity is intricately linked to the morphology, size, and density of Au and Ag
nanoparticles, which collectively govern the efficiency and performance of SERS measure-
ments [60,61]. This investigation assessed the SERS performance of the Na2Ti3O7@RF@Ag
heterostructures synthesized under various reaction conditions, using RhB as the target
molecule. Figure 7a shows the SERS spectra of Na2Ti3O7@RF@Ag heterostructures grown
via different Ag-nanoparticle-deposition methods, such as the wet chemical method (only
0.15 mL of AgNO3; 0.15 mL of AgNO3 and 3 mL of L-ascorbic acid) and ion-sputtering
method (Ag-ion-sputtering time of 90 s), which were immersed in the RhB solution (10−6 M)
for 1h. The primary vibrational modes for the characteristic peaks of the RhB molecule are
aromatic C–C stretching (1076 cm−1), C-H in-plane bending (1197 cm−1), C–H bending
(1279 cm−1), the stretching vibration of bridge C–C aromatic bonds (1360 cm−1), aromatic
C–C bending (1508 cm−1), C–H stretching (1527 cm−1), aromatic C-C bending, and C=C
stretching vibration (1647 cm−1), respectively [62,63]. This study chose a Raman peak at
1647 cm−1 as the reference point to assess SERS activity because it does not readily overlap
with the SERS substrate or the solvent. The Raman intensity of RhB is significantly boosted
in the presence of Na2Ti3O7@RF@Ag heterostructures (0.15 mL of AgNO3 and 3 mL of
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L-ascorbic acid) compared to the Na2Ti3O7@RF@Ag heterostructures (only 0.15 mL of
AgNO3) and the Na2Ti3O7@RF@Ag heterostructure (Ag-ion-sputtering time of 90 s). The
efficacy of the Na2Ti3O7@RF@Ag heterostructures for RhB detection was assessed using
the SERS enhancement factor (EF), determined by the formula EF = ISERS × C0/I0 × CSERS.
Here, ISERS and I0 represent the SERS (with Na2Ti3O7@RF@Ag heterostructures) and stan-
dard Raman intensities of RhB, while CSERS and C0 denote the RhB concentration on the
Na2Ti3O7@RF@Ag heterostructures (10−6 M) and bare Ti foil (10−4 M) [64,65]. The calcu-
lated maximum EF values for the RhB Raman band at 1647 cm−1 are 5.00 × 106 (0.15 mL
AgNO3), 1.09 × 107 (0.15 mL of AgNO3 and 3 mL of L-ascorbic acid), and 2.88 × 106 (Ag-
ion-sputtering time of 90 s), respectively. The Na2Ti3O7@RF@Ag heterostructures (0.15 mL
AgNO3 and 3 mL L-ascorbic acid) are 2.18 and 3.78 times higher than the Na2Ti3O7@RF@Ag
heterostructures (0.15 mL of AgNO3) and Na2Ti3O7@RF@Ag heterostructures (Ag-ion-
sputtering time of 90 s), respectively.
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Figure 7b shows the SERS intensity of an RhB solution (10−6 M) at 1647 cm−1 obtained
from Na2Ti3O7@RF@Ag heterostructures grown using different volumes of AgNO3. The
most prominent Raman intensity is observed at 0.15 mL of AgNO3. As the volume of
AgNO3 increases, there is a gradual decrease in the Raman intensity. As the SERS en-
hancement effect remained relatively low, this research introduced different volumes of
L-ascorbic acid to expedite the formation and deposition of Ag nanoparticles, as shown
in Figure 7c. The most prominent Raman signal is observed for 3 mL of L-ascorbic acid.
This trend may be attributed to the more effective distribution of hot spots achieved with
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3 mL of L-ascorbic acid, significantly enhancing Raman signal intensity. This result is
consistent with previous FETEM observations. To confirm the effectiveness of the Ag
nanoparticle preparation method employed in the wet chemical method compared to the
ion-sputtering method, this study used the ion-sputtering method to deposit Ag nanopar-
ticles onto Na2Ti3O7@RF heterostructures at different times. Figure 7d reveals the SERS
intensity of an RhB solution (10−6 M) at 1647 cm−1 obtained from Na2Ti3O7@RF@Ag het-
erostructures grown using different Ag-ion-sputtering times. Hence, it can be determined
that the most significant SERS enhancement effect was achieved with an ion-sputtering time
of 90 s. This result is much lower than for Na2Ti3O7@RF@Ag heterostructures prepared
via wet chemical methods (0.15 mL of AgNO3 and 3 mL of L-ascorbic acid). In order to
understand the differences, Na2Ti3O7@RF@Ag heterostructures (Ag-ion-sputtering time
of 90 s) were further analyzed through FETEM. Figure 7e displays a FETEM image that
depicts a size range of Ag nanoparticles, varying from approximately 3 to 21 nm. While the
Ag nanoparticles are thoroughly dispersed within the Na2Ti3O7@RF heterostructure, their
size distribution appears irregular. This non-uniformity in size has consequences for the
hot spot distribution on the heterostructure’s surface, reducing its SERS enhancement ef-
fect [24,66]. Hence, the simplicity and remarkable efficiency of this study’s Ag nanoparticle
preparation method can be further validated.
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The uniformity and reusability of SERS substrates are crucial factors in real-world
SERS applications [25,47]. In order to assess the uniformity of the Na2Ti3O7@RF@Ag het-
erostructures, ten random spots were chosen on the substrate loaded with RhB solution
(10−6 M) for an SERS analysis. Figure 8a shows the SERS spectra of an RhB solution
(10−6 M) acquired from these ten positions on the substrate. The Raman signals’ peak
positions and intensities exhibit remarkable uniformity across various locations on the
the Na2Ti3O7@RF@Ag heterostructures. This outcome further substantiates the effective
enhancement of Raman signals achieved by the Na2Ti3O7@RF@Ag heterostructures. The
reusability of the Na2Ti3O7@RF@Ag heterostructures is a pivotal concern in this study.
In order to address this issue, RhB molecules were systematically eliminated from the
Na2Ti3O7@RF@Ag heterostructures using photocatalytic degradation facilitated by ex-
posure to UV light for 1h. Figure 8b reveals the Raman spectra of Na2Ti3O7@RF@Ag
heterostructures initially immersed in an RhB solution with a 10−7 M concentration for
1 h. These spectra are presented before and after five consecutive UV light exposure cy-
cles. These observations emphasize the remarkable reusability of the Na2Ti3O7@RF@Ag
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heterostructures, which consistently retain a comparable Raman signal strength even af-
ter undergoing five repeated cycles. This result reconfirms their enduring efficacy and
suitability for practical applications. In addition, this occurrence can be attributed to the
unique structural configuration of the Na2Ti3O7@RF@Ag heterostructures, which provide
an augmented quantity of hot spots and surface-active sites. As a result, Na2Ti3O7@RF@Ag
heterostructures exhibit remarkable SERS enhancement, excellent reproducibility, and
sustained stability over an extended period.
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The SERS spectra were acquired for freshly synthesized SERS substrates after their
immersion in different concentrations of RhB solution for 1 h, followed by air-drying. This
assessment aimed to determine the low detection limit of the Na2Ti3O7@RF@Ag heterostruc-
tures for RhB solutions. Figure 9a displays the SERS intensities of the Na2Ti3O7@RF@Ag
heterostructures at 1647 cm−1 over a concentration range from 10−6 M to 10−10 M of RhB
solution. As the RhB concentration decreases, the SERS signal intensities at 1647 cm−1

gradually diminish. When the RhB solution concentration decreases below 10−10 M, the
SERS signal at 1647 cm−1 becomes challenging to effectively detect for Na2Ti3O7@RF@Ag
heterostructures. Nevertheless, even at a concentration as low as 10−10 M, the SERS signal
at 1647 cm−1 can still be reliably detected using Na2Ti3O7@RF@Ag heterostructures. To as-
certain the versatility of the Na2Ti3O7@RF@Ag heterostructure across various organic dyes,
this study investigated the SERS effect of different methylene blue (MB) concentrations.
Figure 9b displays the SERS intensities of Na2Ti3O7@RF@Ag heterostructures at 1623 cm−1

over a concentration range from 10−6 M to 10−10 M of MB solution. As the concentration of
the MB solution drops below 10−10 M, effectively detecting the SERS signal at 1623 cm−1

becomes challenging for Na2Ti3O7@RF@Ag heterostructures.
In order to evaluate the temporal stability of the Na2Ti3O7@RF@Ag heterostructures,

RhB and MB solutions, each with a concentration of 10−6 M, were analyzed after preparing
the SERS substrate and storing it in the dark for different durations of 1, 8, 15, 22, and
29 days. Figure 9c,d present the SERS intensities of Na2Ti3O7@RF@Ag heterostructures
at 1647 cm−1 (RhB) and 1623 cm−1 (MB) for these different detection times, respectively.
Remarkably, even after 29 days of storage, the intensities of the SERS signal at 1647 cm−1

(RhB) and 1623 cm−1 (MB) retain substantial levels of 60.4% and 48.9%, respectively. This
result can verify that the Na2Ti3O7@RF@Ag heterostructures exhibit long-term stability.

The primary absorption peak at 552 nm for RhB gradually diminishes as the duration
of UV light irradiation increases [67,68]. Notably, there is no shift in the primary peak of
RhB, indicating that the process primarily involves decomposing the benzene/heterocyclic
rings [69]. In order to assess photocatalytic activity, a plot of (C/C0) versus time is pre-
sented in Figure 10a. The photocatalytic efficiency values of various samples, including
Na2Ti3O7 nanowires, Na2Ti3O7@RF heterostructures, Na2Ti3O7@RF@Ag heterostructures
(0.15 mL of AgNO3 and 3 mL of L-ascorbic acid), and Na2Ti3O7@RF@Ag heterostructures
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(Ag-ion-sputtering of 90 s), are 76.3, 83.0, 86.5, and 79.7%, respectively. The Langmuir–
Hinshelwood model is widely employed to assess the photodegradation kinetics of organic
dyes in aqueous solutions. The reaction-rate constants (k) for different samples, including
Na2Ti3O7 nanowires, Na2Ti3O7@RF heterostructures, Na2Ti3O7@RF@Ag heterostructures
(0.15 mL AgNO3 and 3 mL L-ascorbic acid), and Na2Ti3O7@RF@Ag heterostructures (Ag-
ion-sputtering of 90 s), are determined to be 0.0079, 0.00966, 0.01112, and 0.00846 min−1,
respectively, as depicted in Figure 10b. These findings suggest that the Na2Ti3O7@RF@Ag
heterostructures (0.15 mL of AgNO3 and 3 mL of L-ascorbic acid) exhibited approximately
1.4 and 1.3 times greater efficiency compared to Na2Ti3O7 nanowires and Na2Ti3O7@RF@Ag
heterostructures (Ag-ion-sputtering of 90 s). The Na2Ti3O7@RF@Ag heterostructures re-
veal exceptional efficiency as reusable photocatalysts for the photodecomposition of RhB
solutions under UV light irradiation. This outcome can be ascribed to the heightened
suppression of electron–hole pair recombination and the increased availability of surface-
active sites.
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The reusability of photocatalysts is of the utmost importance as it directly impacts their ef-
fectiveness in photocatalytic processes. In this study, an RhB solution with Na2Ti3O7@RF@Ag
heterostructures (0.15 mL of AgNO3 and 3 mL of L-ascorbic acid) was subjected to UV light
irradiation for 3 h. Subsequently, the substrate was thoroughly rinsed twice with copious
amounts of de-ionized water in preparation for the next cycle of photodegradation. Over
four cycles, the photocatalytic efficiency values of the Na2Ti3O7@RF@Ag heterostructures
on Ti foil were found to be 80.3, 80.4, 77.4, and 78.3, respectively, as depicted in Figure 11a.
The results reveal that the Na2Ti3O7@RF@Ag heterostructures exhibit superior reusability
for decomposing the RhB solution. Furthermore, an XRD analysis of Na2Ti3O7@RF@Ag
heterostructures (0.15 mL of AgNO3 and 3 mL of L-ascorbic acid) after undergoing four
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cycles of recycling (Figure 11b) indicate no significant crystalline alterations, substantiating
the enduring nature of the heterojunction. This analysis underscores the exceptional and
sustained photocatalytic degradation efficiency of Na2Ti3O7@RF@Ag heterostructures.
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3. Materials and Methods
3.1. Materials

A 0.25 mm thick titanium (Ti) foil (99.5%) was commercially sourced from Alfa Ae-
sar (Haverhill, MA, USA). All chemicals used were obtained from commercial suppliers
and were employed without the need for further purification. Specifically, hydrochloric
acid (HCl, 37%), sodium hydroxide (NaOH, 97%), ethanol (C2H5OH, 99%), L-ascorbic
acid (C6H8O6, 99%), and rhodamine B (RhB, C28H31ClN2O3, 95%) were acquired from
Sigma-Aldrich (Steinheim, Germany). (3-Aminopropyl)trimethoxysilane (C6H17NO3Si,
APTMS, 95%) was acquired from Acros (Renningen, Germany). Resorcinol (C6H6O2, 99%),
ammonium hydroxide (NH4OH, 28%), methylene blue (MB, C16H18ClN3S, 95%), and silver
nitrate (AgNO3, 99%) were obtained from Alfa Aesar (USA). A formaldehyde solution
(CH2O, 37%) was acquired from Merck (Darmstadt, Germany). De-ionized water with a
resistivity exceeding 18.2 MΩ was used to prepare all solutions.

3.2. Syntheses of Na2Ti3O7 Nanowires

A 0.25mm thick titanium (Ti) foil was cut to the desired dimensions 0.5 cm × 0.5 cm or
1.5 cm × 2.5 cm. The substrate underwent ultrasonic treatment in ethanol and 1.0 M HCl for
10 min each, effectively removing organic contaminants and oxide layers. After each treatment,
it was thoroughly rinsed with ethanol and dried using an air purge. Subsequently, the cleaned
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substrate was placed in separate 50 mL Teflon-lined stainless-steel autoclaves containing a
0.375 M NaOH solution (20 mL) and heated to 220 ◦C for 5 h. Finally, the substrate was
washed with de-ionized water and ethanol and dried via air purge.

3.3. Syntheses of Na2Ti3O7@RF@Ag Heterostructures

The substrates featuring Na2Ti3O7 nanowires underwent a surface hydrophilicity
enhancement process by immersing them in a 50 mL ethanol solution containing 5 mM
APTMS for 6 h at room temperature. Subsequently, the substrates were thoroughly rinsed
with ethanol and de-ionized water and dried using an air purge. For the growth of the
RF layer on the Na2Ti3O7 nanowires, the substrates were placed in a 40 mL aqueous
solution containing 16.37 mg of resorcinol, 0.0284 mL of NH4OH, and 0.0444 mL of CH2O.
This mixture was vigorously stirred for 6 h at 50 ◦C. Next, the substrate was rinsed with
ethanol thrice and dried at 60 ◦C for 2 h. To deposit Ag nanoparticles on the Na2Ti3O7@RF
heterostructures, the substrate was immersed in a 50 mL aqueous solution with different
volumes of AgNO3 (5 mM) and L-ascorbic acid (50 mM) under vigorous stirring for 1 h.
Finally, the resulting substrate underwent several ethanol rinses and was dried at 60 ◦C for
2 h.

3.4. Characterization

The as-prepared SERS substrates underwent a comprehensive analysis to investi-
gate their microstructures and elemental composition. Field-emission scanning electron
microscopy (FESEM) was employed using a Hitachi S-4800 instrument (Tokyo, Japan).
Field-emission transmission electron microscopy (FETEM) was also utilized with a JEOL
JSM-2100F apparatus (Tokyo, Japan) equipped with energy-dispersive X-ray spectroscopy
(EDS). X-ray diffraction (XRD) was performed using a Bruker (Billerica, MA, USA) D8
SSS instrument based in the United States to characterize the crystal structures of the
as-prepared substrates. The chemical states of the elements within the Na2Ti3O7@RF@Ag
heterostructures were determined through X-ray photoelectron spectroscopy (XPS), con-
ducted using a ULVAC-PHI PHI 5000 VersaProbe instrument (Chigasaki, Japan). Further-
more, SERS measurements were carried out using a micro-Raman identify spectrometer
(MRI532S) provided by Protrustech in Taiwan. These measurements utilized an excitation
wavelength of 532 nm, with a laser beam diameter of 3.3 mm and a resolution of 2.2 cm−1.

3.5. SERS and Photocatalytic Measurement

For SERS measurement, a micro-Raman identify spectrometer with 532 nm excitation
wavelength employed 1 mW laser power and 0.15 s detector integration time. The SERS
properties of the Na2Ti3O7@RF@Ag heterostructures were evaluated, immersing substrates
in RhB solutions and drying them for 1 h at room temperature in the dark. For photocat-
alytic measurements, photocatalyst activity was assessed by degrading an RhB solution
(0.08 mM) without pH adjustment under UV light (253.7 nm, 10 W, Philips, Amsterdam,
The Netherlands) irradiation. Concentrations were measured with a DR/UV-Vis spectrom-
eter (Hitachi U-2900, Tokyo, Japan), and efficiency was calculated as C/C0, where C0 and C
represent initial and final RhB concentrations.

4. Conclusions

A 3D Na2Ti3O7@RF@Ag heterostructure is synthesized through a multi-step process
featuring Na2Ti3O7 nanowire cores, an intermediate RF layer, and outer Ag nanoparticle
sheaths. Initially, single-crystal Na2Ti3O7 nanowires are grown directly on flexible Ti foil
using a one-step hydrothermal technique. Subsequently, a two-step wet chemical process
deposits the RF layer and Ag nanoparticles on the nanowires at a low temperature. By
optimizing AgNO3 and L-ascorbic acid concentrations, the resulting Na2Ti3O7@RF@Ag
heterostructures exhibit higher surface-enhanced Raman scattering (SERS) enhancement
for detecting RhB molecules. The unique geometry of these heterostructures, providing
numerous hot spots and surface-active sites, contributes to significant SERS enhancement,
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remarkable reproducibility, and long-term stability. These Na2Ti3O7@RF@Ag heterostruc-
tures efficiently serve as reusable photocatalysts for decomposing RhB solutions under UV
light irradiation, benefitting from the enhanced inhibition of electron–hole pair recombina-
tion and an increased number of surface-active sites. This dual functionality highlights the
versatility of Na2Ti3O7@RF@Ag heterostructures, promising applications in environmental
remediation and chemical sensing.
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