Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (351)

Search Parameters:
Keywords = TiC-based coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4208 KB  
Article
Two-in-One Hybrid Sensor Based on PV4D4/AgAu/TiO2 Structure for Carbon Dioxide and Hydrogen Gas Detection in Biomedical and Industrial Fields
by Mihai Brinza, Lynn Schwäke, Stefan Schröder, Cristian Lupan, Nicolai Ababii, Nicolae Magariu, Maxim Chiriac, Franz Faupel, Alexander Vahl and Oleg Lupan
Biosensors 2026, 16(1), 5; https://doi.org/10.3390/bios16010005 - 22 Dec 2025
Viewed by 33
Abstract
A novel two-in-one sensor for both carbon dioxide and hydrogen detection has been obtained based on a hybrid heterostructure. It consists of a 30 nm thick TiO2 nanocrystalline film grown by atomic layer deposition (ALD), thermally annealed at 610 °C, and subsequently [...] Read more.
A novel two-in-one sensor for both carbon dioxide and hydrogen detection has been obtained based on a hybrid heterostructure. It consists of a 30 nm thick TiO2 nanocrystalline film grown by atomic layer deposition (ALD), thermally annealed at 610 °C, and subsequently coated with bimetallic AgAu nanoparticles and covered with a PV4D4 nanolayer, which was thermally treated at 430 °C. Two types of gas response behaviors have been registered, as n-type for hydrogen gas and p-type semiconductor behavior for carbon dioxide gas detection. The highest response for carbon dioxide has been registered at an operating temperature of 150 °C with a value of 130%, while the highest response for hydrogen gas was registered at 350 °C with a value of 230%, although it also attained a relatively good gas selectivity at 150 °C. It is considered that a thermal annealing temperature of 610 °C is better for the properties of TiO2 nanofilms, since it enhances gas sensor sensitivity too. Polymer coating on top is also believed to contribute to a higher influence on selectivity of the sensor structure. Accordingly, to our previous research where PV4D4 has been annealed at 450 °C, in this research paper, a lower temperature of 430 °C for annealing has been used, and thus another ratio of cyclocages and cyclorings has been obtained. Knowing that the polymer acts like a sieve atop the sensor structure, in this study it offers increased selectivity and sensitivity towards carbon dioxide gas detection, as well as maintaining a relatively increased selectivity for hydrogen gas detection, which works as expected with Ag and Au bimetallic nanoparticles on the surface of the sensing structure. The results obtained are highly important for biomedical and environmental applications, as well as for further development of the sensor industry, considering the high potential of two-in-one sensors. A carbon dioxide detector could be used for assessing respiratory markers in patients and monitoring the quality of the environment, while hydrogen could be used for both monitoring lactose intolerance and concentrations in cases of therapeutic gas, as well as monitoring the safe handling of various concentrations. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Graphical abstract

12 pages, 6785 KB  
Article
Detonation Spraying of Functionally Graded Hydroxyapatite/Titanium Coatings on Ti–6Al–4V Alloy
by Aidar Kengesbekov, Daryn Baizhan, Dastan Buitkenov and Nazerke Muktanova
Coatings 2025, 15(12), 1418; https://doi.org/10.3390/coatings15121418 - 3 Dec 2025
Viewed by 455
Abstract
In this work, two configurations of Ti/HAp functionally graded coatings were fabricated on Ti–6Al–4V alloy substrates using detonation spraying. The coatings differed in the number and sequence of Ti and hydroxyapatite (HAp) deposition cycles, resulting in distinct gradient architectures: Configuration 1 incorporated a [...] Read more.
In this work, two configurations of Ti/HAp functionally graded coatings were fabricated on Ti–6Al–4V alloy substrates using detonation spraying. The coatings differed in the number and sequence of Ti and hydroxyapatite (HAp) deposition cycles, resulting in distinct gradient architectures: Configuration 1 incorporated a sharper transition from the Ti-rich base to the HAp-rich surface, whereas Configuration 2 featured a smoother and more gradual compositional gradient. The microstructure and elemental distribution were examined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Both configurations exhibited well-defined gradient layering, with titanium concentrated near the coating–substrate interface and an increased Ca and P content toward the upper bioceramic region. Raman spectroscopy confirmed the preservation of hydroxyapatite as the main phase, showing a characteristic 961 cm−1 band. Adhesion strength measured according to ASTM C633-13 was 45.78 ± 4.4 MPa for Configuration 1 and 52.32 ± 6.7 MPa for Configuration 2, both significantly exceeding the minimum required 15 MPa. The findings demonstrate that detonation-sprayed Ti/HAp gradient coatings provide strong adhesion and stable bioceramic surfaces, making them promising for metal implant applications. Full article
(This article belongs to the Special Issue Characterization and Applications of Bioactive Coatings)
Show Figures

Figure 1

16 pages, 8797 KB  
Article
Properties and Microstructure of TiSiC- and TiSiCN-Based Coatings Produced by RPS
by Lazat S. Baimoldanova and Bauyrzhan K. Rakhadilov
Crystals 2025, 15(12), 1029; https://doi.org/10.3390/cryst15121029 - 30 Nov 2025
Viewed by 207
Abstract
This work presents a comparative study of TiSiC and TiSiCN composite coatings deposited on stainless steel by reactive plasma spraying using mechanically activated powders. Microstructure, phase composition, and hardness were assessed by SEM/EDS, XRD, and Vickers indentation, while corrosion, erosion, and high-temperature tribological [...] Read more.
This work presents a comparative study of TiSiC and TiSiCN composite coatings deposited on stainless steel by reactive plasma spraying using mechanically activated powders. Microstructure, phase composition, and hardness were assessed by SEM/EDS, XRD, and Vickers indentation, while corrosion, erosion, and high-temperature tribological behavior were systematically evaluated. The TiCN + SiC + Si system forms a stable TiCxN1−x solid solution with amorphous Si3N4 grain-boundary phases, leading to densification and enhanced chemical stability. Compared with TiSiC, TiSiCN coatings exhibit higher hardness (2599 N/mm2, ≈324 HV), lower erosion loss (<1 mg), and stable friction coefficients (0.45–0.50 at 600 °C) due to protective oxide/nitride tribofilms. Electrochemical tests in 3.5 wt.% NaCl show a >6-fold reduction in corrosion rate (from 0.0506 to 0.008 mm·year−1) relative to bare steel. Overall, TiSiCN coatings deposited at 500–600 A provide an optimal balance of hardness, wear, and corrosion resistance, indicating strong potential for gas-turbine and power-generation components operating in aggressive environments. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

16 pages, 13644 KB  
Article
Numerical Simulation and Experimental Study of Deposition Behavior for Cold-Sprayed Nano-Structured HA/70wt.%Ti Composite Coating
by Xiao Chen, Chengdi Li, Shuangxia Zhu, Peiyun Ao and Yao Hu
Nanomaterials 2025, 15(23), 1807; https://doi.org/10.3390/nano15231807 - 29 Nov 2025
Viewed by 230
Abstract
This study employs numerical simulations and experiments to examine the cold spray deposition of nanostructured hydroxyapatite (Ca10(PO4)6(OH)2, HA)/70wt.%Ti composite particles under different processing conditions, based on the features of nanocomposites that strengthen interfacial adhesion and improve coating [...] Read more.
This study employs numerical simulations and experiments to examine the cold spray deposition of nanostructured hydroxyapatite (Ca10(PO4)6(OH)2, HA)/70wt.%Ti composite particles under different processing conditions, based on the features of nanocomposites that strengthen interfacial adhesion and improve coating interfacial strength. Using ABAQUS/CAE combined with LS-PrePost 4.9-x64 software, the deposition behavior of the composite particles during deposition under various impact velocities was analyzed, along with the stress of the HA and Ti particles within the composite particle. The deposition behavior of both single and multiple composite particles under different gas temperatures was studied through cold spray experiments, and composite coatings were fabricated. The microstructure and phase composition were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that the numerical simulations were consistent with the experimental analyses. As the particle velocity or gas temperature increased, the degree of particle deformation upon deposition became more pronounced, accompanied by phenomena such as cracking or fragmentation and splashing rebound. At a gas temperature of 700 °C, both the bonding density of individual particles and the bonding effectiveness of multi-particle deposits were lower than those achieved at 500 °C. The coating prepared at a gas temperature of 500 °C exhibited a flatter surface, better overall bonding with the Ti interlayer, and higher internal density. Full article
Show Figures

Figure 1

17 pages, 4796 KB  
Article
Nanomechanical and Adhesive Behavior of Electrophoretically Deposited Hydroxyapatite- and Chitosan-Based Coatings on Ti13Zr13Nb Alloy
by Michał Bartmański
Materials 2025, 18(23), 5323; https://doi.org/10.3390/ma18235323 - 26 Nov 2025
Viewed by 356
Abstract
This work reports on the effects of surface pre-treatment and EPD process parameters on the nanomechanical and adhesive performance of chitosan-based composite coatings fabricated on a Ti13Zr13Nb alloy. Three different coating systems were prepared: chitosan–Cu (series A), chitosan–HAp (series B), and HAp–Cu (series [...] Read more.
This work reports on the effects of surface pre-treatment and EPD process parameters on the nanomechanical and adhesive performance of chitosan-based composite coatings fabricated on a Ti13Zr13Nb alloy. Three different coating systems were prepared: chitosan–Cu (series A), chitosan–HAp (series B), and HAp–Cu (series C). Coatings were deposited from suspensions at different voltages (10–30 V) and for various times (1–2 min) onto polished, anodized, and laser surface-treated titanium alloy substrates. Microstructural, nanomechanical, and adhesion properties were characterized by means of SEM, nanoindentation, and nanoscratch testing, respectively. Chitosan–Cu coatings exhibited the highest hardness (up to 8.2 GPa) and stiffness due to the homogeneous dispersion of Cu nanoparticles and strong interfacial bonding to the underlying anodized TiO2 layer. Chitosan–HAp coatings were softer (0.05–0.13 GPa) and highly plastic, particularly after laser surface treatment due to their specific porous, polymer-dominated structure. HAp–Cu coatings exhibited an intermediate mechanical behavior with a hardness between 0.1 GPa and 2.9 GPa and enhanced elastic recovery (Wp/We ≈ 3.5–4.7), particularly for anodized substrates. The nanoscratch test results showed that the HAp–Cu coatings exhibited the highest adhesion Lc (≈150–173 mN), confirming a synergistic effect of hybrid composition and heat treatment on interfacial toughness. The present data demonstrate that the optimization of anodizing and EPD processing parameters allows for the manipulation of the mechanical integrity and adhesion of bioactive chitosan-based coatings for titanium biomedical applications. Full article
Show Figures

Figure 1

27 pages, 9610 KB  
Article
Wear Performance of a Physical Vapour Deposition-Coated, Spark Plasma Sintered TiB2/Ti Composite Lubricated with Externally Introduced hBN at Temperatures up to 900 °C
by Remigiusz Michalczewski, Maciej Łuszcz, Marek Kalbarczyk, Zbigniew Słomka, Edyta Osuch-Słomka, Jarosław Molenda, Le Liu, Maksim Antonov, Irina Hussainova and Manel Rodríguez Ripoll
Materials 2025, 18(23), 5274; https://doi.org/10.3390/ma18235274 - 21 Nov 2025
Viewed by 522
Abstract
In this paper, the achieved state-of-the-art understanding regarding the wear behaviour of various PVD (physical vapour deposition) coatings deposited on TiB2/Ti composites produced by SPS (spark plasma sintering) is presented. The objective of this paper is to investigate the wear behaviour [...] Read more.
In this paper, the achieved state-of-the-art understanding regarding the wear behaviour of various PVD (physical vapour deposition) coatings deposited on TiB2/Ti composites produced by SPS (spark plasma sintering) is presented. The objective of this paper is to investigate the wear behaviour of various PVD coatings deposited on TiB2/Ti composites manufactured by SPS, when lubricated with hexagonal boron nitride (hBN) as an external solid lubricant in the range from room temperature up to 900 °C in friction contacts under extreme pressure and with oscillation relative motion. Four multicomponent and multilayer coatings were investigated based on AlCrN and TiCrN coatings with TiCrN-AlCrN/AlCrTiN/Si3N4 interlayers and various external layers (AlCrN, Si3N4, AlCrTiSiN, and AlCrTiSiN gradient with increasing oxygen gradient replacing nitrogen). The wear tests were performed by means of a ball-on-disc SRV friction and wear tester using reciprocating motion of the Si3N4 ball sliding against a coated disc from room temperature up to 900 °C. The best protection against wear and oxidation at higher temperatures (even up to 900 °C) was achieved for coatings with AlCrN and AlTiCrN external layers, and hBN lubricant was used simultaneously. Full article
Show Figures

Figure 1

15 pages, 5937 KB  
Article
Effect of Mn Content and Heat Treatment on Microstructure and Properties of Laser Cladding of FeCoNiCrTi High-Entropy Alloy Coating
by Shibang Ma, Yicheng Zhou, Congzheng Zhang, Zhengchun Xu and Chengguo Fu
Materials 2025, 18(22), 5160; https://doi.org/10.3390/ma18225160 - 13 Nov 2025
Viewed by 365
Abstract
In this study, the effects of different Mn content and heat treatment on the microstructure and properties of CoCrFeNiTi coatings by laser cladding technology were investigated. Scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction were used to analyze the structure and composition. The [...] Read more.
In this study, the effects of different Mn content and heat treatment on the microstructure and properties of CoCrFeNiTi coatings by laser cladding technology were investigated. Scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction were used to analyze the structure and composition. The hardness and wear resistance were tested by a microhardness tester and a friction-wear tester. The results show that there are many intermetallic compounds rich in Ti and Ni between the grains. As the Mn content increases, the coating gradually transitions from a dual-phase structure of BCC and FCC to a single FCC structure. The hardness of the coating decreases gradually with the increase in Mn content due to the change in the phase structure, while the friction coefficient decreases slightly at first and then increases significantly. The main wear mechanisms of the coating are adhesive wear and abrasive wear. After heat treatment at 600 °C, petal-like Laves precipitates appear. The average microhardness of CoCrFeNiTi coatings after heat treatment is lower than before treatment, and the friction coefficient is higher than before treatment. The average microhardness of the coating increases slightly with the increase in the treatment temperature. The average friction coefficient of the coating obtained after heat treatment at 600 °C is only 0.5941 because of its uniform microstructure. Therefore, it is reduced by approximately 15% compared with the base metal. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

12 pages, 2769 KB  
Article
Structural and Phase Transformations in Detonation Coatings Made of Eutectic Fe–TiB2–CrB2 Alloy After Pulsed Plasma Exposure
by Dauir Kakimzhanov, Bauyrzhan Rakhadilov, Ainur Seitkhanova, Arystanbek Kussainov, Zhangabay Turar and Nuraly Bazarov
Coatings 2025, 15(11), 1291; https://doi.org/10.3390/coatings15111291 - 4 Nov 2025
Viewed by 555
Abstract
Coatings based on the eutectic alloy Fe–TiB2–CrB2 were obtained by detonation spraying and subjected to pulsed plasma treatment. Comprehensive studies of the microstructure, phase composition, and mechanical and electrochemical properties of the coatings were carried out using SEM, TEM, and [...] Read more.
Coatings based on the eutectic alloy Fe–TiB2–CrB2 were obtained by detonation spraying and subjected to pulsed plasma treatment. Comprehensive studies of the microstructure, phase composition, and mechanical and electrochemical properties of the coatings were carried out using SEM, TEM, and XRD methods. The initial coatings are characterized by a typical lamellar structure with interlamellar pores and defects. After pulsed plasma treatment, pronounced compaction of the surface layer, grain refinement, and sealing of interlamellar voids and cracks are observed. The thickness of the modified zone is about 15–30 μm, and the structure becomes fine-grained and more uniform. According to XRD and TEM data, the main boride phases (TiB2, CrB2) remain stable, while the intensity of γ-Fe decreases and weak Cr23C6 peaks appear, indicating phase stabilization and diffusion hardening. After treatment, the microhardness of the near-surface zone increases from ~14 GPa to 17–18 GPa, confirming the strengthening effect. Electrochemical tests showed an increase in corrosion resistance: the corrosion potential shifts to the positive side by approximately 0.15 V, and the corrosion current density decreases by almost two times. Thus, the use of pulsed plasma treatment significantly improves the density, phase stability, hardness, and corrosion resistance of Fe–TiB2–CrB2 detonation coatings, making this duplex approach promising for use in conditions of intense wear and exposure to aggressive environments. Full article
Show Figures

Figure 1

13 pages, 2608 KB  
Article
Antibacterial Efficacy and Biocompatibility of HiPIMS-Ag Films for Prosthetic Application
by Ping-Yen Hsieh, Shu-Ting Li, Ying-Hung Chen, Hsi-Kai Tsou, Ming-Che Wu and Ju-Liang He
Coatings 2025, 15(11), 1286; https://doi.org/10.3390/coatings15111286 - 3 Nov 2025
Viewed by 488
Abstract
Implant-associated infections (IAIs) remain a major cause of orthopedic implant failure, motivating the development of surface coatings that deliver durable antibacterial activity without compromising host compatibility. Here, we deposit silver (Ag) thin films onto commercially pure titanium (Ti) using high power impulse magnetron [...] Read more.
Implant-associated infections (IAIs) remain a major cause of orthopedic implant failure, motivating the development of surface coatings that deliver durable antibacterial activity without compromising host compatibility. Here, we deposit silver (Ag) thin films onto commercially pure titanium (Ti) using high power impulse magnetron sputtering (HiPIMS) and assess their antibacterial performance and osteoblast cytocompatibility. Film formation, morphology and crystallinity were characterized by electron microscopy and X-ray diffractometry, while interfacial integrity was probed using ASTM D3359 cross-cut and VDI 3198 Rockwell-C indentation. Antibacterial activity against Escherichia coli and Staphylococcus aureus was quantified by culture-based enumeration, and Ag+ release was measured by ICP-MS. HiPIMS enabled rapid formation of dense, continuous and crystalline Ag films with excellent adhesion. Even ultrathin coatings (~7 nm) produced strong antibacterial effects (activity value > 2.0) while releasing controllable trace Ag+ (ultimately 0.43 ppb/day), and osteoblast assays indicated no cytotoxicity under the tested conditions. The results show that HiPIMS-Ag achieves a favorable balance between antimicrobial efficacy and biocompatibility at low thickness, supporting its use as a robust antibacterial surface for Ti implants and providing a foundation for translation to device level and in vivo studies. Full article
Show Figures

Figure 1

16 pages, 6552 KB  
Article
Antibacterial Electrophoretically Loaded Titania Nanotubes on Titanium Alloy Implants Enhance Osseointegration
by Julia Fischer, Deborah J. Hall, Meghan M. Moran, Adrienn Markovics, Peter H. Pennekamp, John L. Hamilton and Markus A. Wimmer
Pathogens 2025, 14(11), 1072; https://doi.org/10.3390/pathogens14111072 - 22 Oct 2025
Viewed by 610
Abstract
Primary hip and knee arthroplasties are common surgeries in the U.S., with periprosthetic joint infection (PJI) being the leading cause of implant revision. Systemic antibiotics often fail to achieve sufficient local concentrations, driving interest in localized drug delivery. Titanium (Ti) implants modified with [...] Read more.
Primary hip and knee arthroplasties are common surgeries in the U.S., with periprosthetic joint infection (PJI) being the leading cause of implant revision. Systemic antibiotics often fail to achieve sufficient local concentrations, driving interest in localized drug delivery. Titanium (Ti) implants modified with titania nanotubes (TNTs) provide an increased surface area for drug loading and controlled release. Previous studies have shown that gentamicin-loaded TNTs inhibit Staphylococcus aureus growth in vitro without compromising osteoblast viability. This study investigated the effect of gentamicin–chitosan (GC)-coated TNT implants in a murine model, hypothesizing a positive impact on osseointegration. Titanium alloy (Ti6Al4V) wires were anodized to form TNTs and then coated with gentamicin–chitosan (GC) via electrophoretic deposition. Implants (Bare, TNT, TNT+GC; n = 30) were inserted bilaterally into femoral canals of C57BL/6J mice. After > 1 month, osseointegration was assessed by histological point counting, scanning electron microscopy (SEM)-based areal analysis, and mechanical pull-out testing. ANOVA was used to identify differences between groups, and linear regression was applied to account for harvest time, bone contact area, and anatomical section. Bone area fraction (BAF) around the implant measured by the SEM–areal method was significantly higher around TNT+GC (18.4% ± 1.1) and TNT (16.5% ± 1.4) versus Bare (9.0% ± 2.3) (p < 0.0028) implants. The maximum fixation strength was higher for TNT (0.878 ± 0.175 N/mm2) and TNT+GC (0.853 ± 0.215N/mm2) when compared to bare implants 0.316 ± 0.082 N/mm2) (p = 0.048 and p = 0.050, respectively). No significant differences appeared between TNT and TNT+GC. These findings indicate that GC coatings on TNT implants do not impair osseointegration and may even enhance bone–implant integration. Such coatings may therefore provide dual benefits, offering antibacterial protection while improving bone fixation, making them a promising strategy for PJI prevention. Further long-term studies are needed to confirm durability and clinical translation. Full article
(This article belongs to the Special Issue Infections and Bone Damage)
Show Figures

Figure 1

29 pages, 30122 KB  
Article
Micro-Structured Multifunctional Greener Coatings Obtained by Plasma Spray
by Spyridoula G. Farmaki, Dimitrios A. Exarchos, Panagiota T. Dalla, Elias A. Ananiadis, Vasileios Kechagias, Alexandros E. Karantzalis and Theodore E. Matikas
Appl. Mech. 2025, 6(4), 76; https://doi.org/10.3390/applmech6040076 - 13 Oct 2025
Viewed by 766
Abstract
The increasing reliance on conventional coatings such as WC-Co raises serious environmental and health concerns due to the toxicity of cobalt and the ecological footprint of these materials. To address this challenge, the present study explores the development of eco-friendly multifunctional coatings via [...] Read more.
The increasing reliance on conventional coatings such as WC-Co raises serious environmental and health concerns due to the toxicity of cobalt and the ecological footprint of these materials. To address this challenge, the present study explores the development of eco-friendly multifunctional coatings via the Plasma Spray (PS) process, using titanium (Ti), silicon carbide (SiC), and tungsten carbide-cobalt (WC-Co) mixtures as alternative feedstocks. Steel substrates were coated under different deposition strategies (powder mixing, layer-by-layer) and current settings (800-900 A). The coatings were characterized by scanning electron microscopy (SEM/EDX), 3D profilometry, sliding wear testing, and potentiodynamic corrosion measurements. Results showed that Ti-WC (mix, 900 A) and Ti-SiC (layer, 900 A) coatings achieved the most favorable performance, combining excellent adhesion, uniform coverage, reduced porosity, and improved resistance to wear and corrosion compared to conventional Cr2O3 coatings. Notably, Ti-WC coatings provided surface roughness values comparable to Cr2O3, while significantly lowering the environmental impact. These findings demonstrate that PS-based Ti-WC and Ti-SiC systems can serve as sustainable and high-performance alternatives for protective applications in harsh environments, particularly in marine industries, supporting the transition toward coatings with reduced ecological footprint. Full article
Show Figures

Figure 1

16 pages, 3491 KB  
Article
Rapid Screening of Liquid Metal Wetting for a Materials Compatibility Library
by Shahryar Mooraj, Alexander Baker, Connor J. Rietema, Jesse Ahlquist, Hunter Henderson and Viktor Sukhotskiy
Metals 2025, 15(10), 1121; https://doi.org/10.3390/met15101121 - 10 Oct 2025
Viewed by 976
Abstract
Wetting behavior of molten metals on solid substrates is a critical phenomenon influencing numerous industrial applications, including welding, anti-corrosion coatings, and metal additive manufacturing (AM). In particular, molten metal jetting (MMJ), an emerging AM technology, requires that the molten metal remain pinned at [...] Read more.
Wetting behavior of molten metals on solid substrates is a critical phenomenon influencing numerous industrial applications, including welding, anti-corrosion coatings, and metal additive manufacturing (AM). In particular, molten metal jetting (MMJ), an emerging AM technology, requires that the molten metal remain pinned at the nozzle exit. Thus, each new metal requires a specific nozzle material to ensure consistent droplet ejection and deposition, making it important to rapidly identify the appropriate wetting combinations. However, traditional measurements of wetting angles require expensive equipment and only allow one combination of materials to be investigated at a time which can be time consuming. This work introduces a rapid screening method based on sessile droplet experiments to evaluate wetting profiles across multiple metal–substrate combinations simultaneously. This study investigates the wetting interactions of molten Al alloy (Al4008), Cu, and Sn on various ceramic and metal substrates to identify optimal material combinations for MMJ nozzle designs. Results demonstrate that Al4008 achieves wetting on ceramic substrates such as AlN, TiO2, and SiC, with varying mechanisms including chemical reactions and weak surface interactions. Additionally, theoretical predictions regarding miscibility gaps and melting point differences were verified for Cu and Sn on refractory metals like Mo and W. Findings from this study contribute to the establishment of a materials compatibility library, enabling the selection of wetting/non-wetting combinations for stable MMJ operation. This resource not only advances MMJ technologies but also provides valuable insights for broader applications such as welding, coating, and printed electronics. Full article
Show Figures

Graphical abstract

28 pages, 2726 KB  
Proceeding Paper
Recent Advances in Tool Coatings and Materials for Superior Performance in Machining Nickel-Based Alloys
by Kerolina Sonowal and Partha Protim Borthakur
Eng. Proc. 2025, 105(1), 8; https://doi.org/10.3390/engproc2025105008 - 9 Oct 2025
Viewed by 1422
Abstract
Nickel-based alloys, including Inconel 718 and alloy 625, are indispensable in industries such as aerospace, marine, and nuclear energy due to their exceptional mechanical strength, high-temperature performance, and corrosion resistance. However, these very properties pose severe machining challenges, such as accelerated tool wear, [...] Read more.
Nickel-based alloys, including Inconel 718 and alloy 625, are indispensable in industries such as aerospace, marine, and nuclear energy due to their exceptional mechanical strength, high-temperature performance, and corrosion resistance. However, these very properties pose severe machining challenges, such as accelerated tool wear, poor surface finish, and high cutting forces. Although several studies have investigated coatings, lubrication strategies, and process optimization, a comprehensive and up-to-date integration of these advancements is still lacking. To address this gap, a systematic review was conducted using Web of Science and Scopus databases. The inclusion criteria focused on peer-reviewed journal and conference articles published in the last eleven years (2014–2025), written in English, and directly addressing machining of nickel-based alloys, with particular emphasis on tool coatings, lubrication/cooling technologies, and machinability optimization. Exclusion criteria included duplicate records, non-English documents, papers lacking experimental or modeling results, and studies unrelated to tool life or coating performance. Following this screening process, 101 high-quality articles were selected for detailed analysis. The novelty of this work lies in synthesizing comparative insights across TiAlN, TiSiN, and CrAlSiN coatings, alongside advanced lubrication methods such as HPC, MQL, nano-MQL, and cryogenic cooling. Results highlight that CrAlSiN coatings retain hardness up to 36 ± 2 GPa after exposure to 700 °C and extend tool life by 4.2× compared to TiAlN, while optimized cooling strategies reduce flank wear by over 30% and improve tool longevity by up to 133%. The integration of coating performance, thermal stability, and lubrication effects into a unified framework provides actionable guidelines for machining optimization. The study concludes by proposing future research directions, including hybrid coatings, real-time process monitoring, and sustainable lubrication technologies, to bridge the remaining gaps in machinability and promote industrial adoption. This integrative approach establishes a robust foundation for advancing machining strategies of nickel-based superalloys, ensuring improved productivity, reduced costs, and enhanced component reliability. Full article
(This article belongs to the Proceedings of The 4th Coatings and Interfaces Online Conference)
Show Figures

Figure 1

14 pages, 5326 KB  
Article
Microstructure, Hardness, and Corrosion Behavior of Oxidized AA6061 Using Potentiostatic Plasma Electrolytic Oxidation
by Salvacion B. Orgen and Eden May B. Dela Peña
Coatings 2025, 15(10), 1129; https://doi.org/10.3390/coatings15101129 - 29 Sep 2025
Viewed by 672
Abstract
Aluminum and its alloys are widely used in aerospace and industrial sectors due to their high specific strength, low density, and abundance. However, their low hardness, high corrosion susceptibility, and poor wear resistance limit broader applications. Surface treatments such as electroplating, PVD/CVD, and [...] Read more.
Aluminum and its alloys are widely used in aerospace and industrial sectors due to their high specific strength, low density, and abundance. However, their low hardness, high corrosion susceptibility, and poor wear resistance limit broader applications. Surface treatments such as electroplating, PVD/CVD, and anodizing have been used to enhance surface properties. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), has emerged as a promising technique for producing durable ceramic coatings on light metals like Al, Mg, and Ti alloys. In this study, PEO was applied to AA6061 aluminum alloy using an AC power source in potentiostatic mode at 350 V and 400 V, 1000 Hz, and 80% duty cycle for 30 min in a silicate-based electrolyte (5 g/L Na2SiO3 + 5 g/L KOH) maintained at 25–40 °C. The effect of voltage on the coating morphology, thickness, and corrosion resistance was investigated. The coatings exhibited porous structures with pancake-like, crater, and nodular features, and thicknesses ranged from 0.053 to 83.64 µm. XRD analysis confirmed the presence of Al, α-Al2O3, Ƴ-Al2O3, and mullite. The 400 V-coated sample showed superior corrosion resistance ( Ecorr= 0.77 V; icorr=0.28 μA/cm2) and improved hardness (up to 233 HV), compared to 89 HV for the bare AA6061. Full article
Show Figures

Figure 1

20 pages, 2932 KB  
Article
Manganese-Based Electrocatalysts for Acidic Oxygen Evolution: Development and Performance Evaluation
by Giulia Cuatto, Elenia De Meis, Hilmar Guzmán and Simelys Hernández
Nanomaterials 2025, 15(18), 1434; https://doi.org/10.3390/nano15181434 - 18 Sep 2025
Viewed by 772
Abstract
Currently, the growing demand for sustainable hydrogen makes the oxygen evolution reaction (OER) increasingly important. To boost the performance of electrochemical cells for water electrolysis, both cathodic and anodic sides need to be optimized. Noble metal catalysts for the OER suffer from high [...] Read more.
Currently, the growing demand for sustainable hydrogen makes the oxygen evolution reaction (OER) increasingly important. To boost the performance of electrochemical cells for water electrolysis, both cathodic and anodic sides need to be optimized. Noble metal catalysts for the OER suffer from high costs and limited availability; therefore, developing efficient, low-cost alternatives is crucial. This work investigates manganese-based materials as potential noble-metal-free catalysts. Mn antimonates, Mn chlorates, and Mn bromates were synthesized using ultrasound-assisted techniques to enhance phase composition and homogeneity. Physicochemical characterizations were performed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM), together with energy-dispersive X-ray spectroscopy (EDX) and surface area analyses. All samples exhibited a low surface area and inter-particle porosity within mixed crystalline phases. Among the catalysts, Mn7.5O10Br3, synthesized via ultrasound homogenization (30 min at 59 kHz) and calcined at 250 °C, showed the highest OER activity. Drop-casted on Fluorine-Doped Tin Oxide (FTO)-coated Ti mesh, it achieved an overpotential of 153 mV at 10 mA cm−2, with Tafel slopes of 103 mV dec−1 and 160 mV dec−1 at 1, 2, and 4 mA cm−2 and 6, 8, 10, and 11 mA cm−2, respectively. It also demonstrated good short-term stability (1 h) in acidic media, with a strong signal-to-noise ratio. Its short-term stability is comparable to that of the benchmark IrO2, with a potential drift of 15 mV h−1 and a standard deviation of 3 mV for the best-performing electrode. The presence of multiple phases suggests room for further optimization. Overall, this study provides a practical route for designing noble metal-free Mn-based OER catalysts. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

Back to TopTop