Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (845)

Search Parameters:
Keywords = Thin Layer Chromatography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2205 KB  
Article
Phytochemical Analysis and In-Vitro Biological Activities of Three Wild Eryngium Species: E. beecheyanum, E. heterophyllum, and E. mexiae
by Mariana Villa-Santiago, Brenda Hildeliza Camacho-Díaz, Argelia López-Bonilla, Hortencia Gabriela Mena-Violante, Jeanette Guadalupe Cárdenas-Valdovinos, Zaida Ochoa-Cruz and María Valentina Angoa-Pérez
Molecules 2025, 30(21), 4250; https://doi.org/10.3390/molecules30214250 (registering DOI) - 31 Oct 2025
Abstract
The genus Eryngium (Apiaceae Lindley) includes over 250 species distributed worldwide. In Michoacán, Mexico, 22 species have been recorded, among them E. beecheyanum (EB), E. heterophyllum (EH), and E. mexiae (EM), which are commonly used in traditional medicine. However, our understanding of their [...] Read more.
The genus Eryngium (Apiaceae Lindley) includes over 250 species distributed worldwide. In Michoacán, Mexico, 22 species have been recorded, among them E. beecheyanum (EB), E. heterophyllum (EH), and E. mexiae (EM), which are commonly used in traditional medicine. However, our understanding of their biology and chemical composition remains limited. This study evaluated the phytochemical profile, as well as the antioxidant and hypoglycemic activities of leaves and roots from these three wild species. Flavonoids, phenolic compounds, and sterols were analyzed using high-performance thin-layer chromatography (HPTLC). Antioxidant activity was assessed in vitro using ABTS·+ and DPPH· assays, while antihyperglycemic activity was determined by α-glucosidase inhibition. Six metabolites were detected across all species, with organ-dependent variation. In the leaves, EB showed a high rutin content (241.3 µg/mL), EM contained catechin (137.3 µg/mL), and EH exhibited β sitosterol (315.9 µg/mL). Both leaves and roots of all species showed notable antioxidant activity. EB leaves exhibited inhibition rates of 69.5% and 85.5% in ABTS•+ and DPPH• assays, respectively (IC50 = 22 and 23.47 µg/mL). EH roots showed higher activity, reaching 89.4% and 78.2% inhibition (IC50 = 21.8 and 20.72 µg/mL). Conversely, EM organs exhibited relatively lower radical scavenging capacities; however, EM leaves showed the highest α-glucosidase inhibition (49.1%). Overall, these results suggest that roots generally possess stronger antioxidant potential than leaves, whereas EM leaves stand out for their enzymatic inhibitory activity. These findings highlight the diverse phytochemical and bioactive profiles of E. beecheyanum, E. heterophyllum, and E. mexiae. Full article
Show Figures

Graphical abstract

47 pages, 1224 KB  
Review
TLC in the Analysis of Plant Material
by Maria Zych and Alina Pyka-Pająk
Processes 2025, 13(11), 3497; https://doi.org/10.3390/pr13113497 (registering DOI) - 31 Oct 2025
Abstract
This paper provides an overview of thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) methods for analyzing plant materials and herbal formulations, as described in scientific publications from January 2022 to July 2025. It describes the use of TLC in the qualitative and [...] Read more.
This paper provides an overview of thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) methods for analyzing plant materials and herbal formulations, as described in scientific publications from January 2022 to July 2025. It describes the use of TLC in the qualitative and quantitative examination of plant materials and pharmaceutical preparations containing herbs, including profiling plant materials using TLC and applying it to HPTLC plates. It also describes other modern methods that improve component separations, such as applying TLC to profile plant formulations and detect adulterations and contaminants in them. Additionally, it discusses TLC coupled with other methods, such as principal component analysis (PCA), hierarchical cluster analysis (HCA), orthogonal partial least squares discriminant analysis (OPLS-DA), mass spectrometry (MS), nuclear magnetic resonance (NMR), surface-enhanced Raman spectroscopy (SERS), and image analysis (IA). The quantitative determination of biologically active compounds in herbs and herbal formulations is presented based on methods that combine TLC with densitometry. The paper also discusses TLC with effect-oriented analysis, including the detection of antimicrobial, antioxidant, enzyme-inhibiting, endocrine-disrupting, genotoxic, and cytotoxic substances. The advantages, disadvantages, and prospects of analyzing plant material using the TLC technique are indicated. TLC/HPTLC has great prospects for use by regulatory authorities due to the low cost of analysis and high throughput. Full article
(This article belongs to the Special Issue Quality of Plant Raw Materials and Their Processing)
Show Figures

Figure 1

12 pages, 2048 KB  
Article
Recombinant Clostridium acetobutylicum Endoxylanase for Xylooligosaccharide Production from Pretreated Lignocellulosic Biomass
by Afifa Husna, Agustin Krisna Wardani, Chun-Yi Hu and Yo-Chia Chen
BioTech 2025, 14(4), 85; https://doi.org/10.3390/biotech14040085 - 30 Oct 2025
Abstract
Xylooligosaccharides (XOS) are functional oligosaccharides with recognized prebiotic properties and growing industrial relevance, typically obtained through enzymatic depolymerization of xylan-rich lignocellulosic substrates. In this study, a recombinant endo-β-1,4-xylanase (XynA) from Clostridium acetobutylicum was employed for XOS production. The xynA gene was cloned into [...] Read more.
Xylooligosaccharides (XOS) are functional oligosaccharides with recognized prebiotic properties and growing industrial relevance, typically obtained through enzymatic depolymerization of xylan-rich lignocellulosic substrates. In this study, a recombinant endo-β-1,4-xylanase (XynA) from Clostridium acetobutylicum was employed for XOS production. The xynA gene was cloned into the expression vector pET-21a(+) and heterologously expressed in Escherichia coli BL21(DE3) under induction with isopropyl β-D-1-thiogalactopyranoside (IPTG). The recombinant protein, with an estimated molecular mass of 37.5 kDa, was verified by SDS-PAGE and Western blot analysis. Functional characterization via thin-layer chromatography revealed that XynA efficiently hydrolyzed beechwood xylan and rye arabinoxylan, predominantly yielding xylobiose. Additionally, the enzyme catalyzed the conversion of xylotriose into xylobiose and trace amounts of xylose. Notably, XynA demonstrated hydrolytic activity against autohydrolysed and alkali-pretreated coconut husk biomass, facilitating the release of XOS. These results underscore the potential of C. acetobutylicum XynA as a biocatalyst for the valorization of lignocellulosic residues into high-value oligosaccharides. Full article
(This article belongs to the Special Issue BioTech: 5th Anniversary)
Show Figures

Figure 1

12 pages, 3706 KB  
Article
Assessment of Estrogenic and Genotoxic Activity in Wastewater Using Planar Bioassays
by Markus Windisch, Valentina Rieser and Clemens Kittinger
Toxics 2025, 13(11), 936; https://doi.org/10.3390/toxics13110936 - 30 Oct 2025
Abstract
The contamination of ground and surface waters with micropollutants like estrogenic compounds and genotoxins is a major public health concern. Conventional wastewater treatment plants are currently not capable of completely removing those contaminants. In this study, we applied planar bioassays to investigate the [...] Read more.
The contamination of ground and surface waters with micropollutants like estrogenic compounds and genotoxins is a major public health concern. Conventional wastewater treatment plants are currently not capable of completely removing those contaminants. In this study, we applied planar bioassays to investigate the genotoxicity and estrogenic activity of hospital and municipal wastewater from an Austrian treatment plant. Using the open-source 2LabsToGo platform in combination with the HPTLC-SOS-UmuC and HPTLC-YES assays, both genotoxic and estrogenic compound zones were detected in untreated wastewater. Genotoxic activity was found in sewage sludge filtrate and hospital wastewater, with bioanalytical concentrations ranging from 1.6 to 21.8 µg 4-NQO-EQ L−1. Estrogenic responses were observed in the influent and hospital wastewater samples, with BEQ values between 3.5 and 16.0 µg E2-EQ L−1. No activity was detected in the treated effluent, indicating efficient removal of these compounds during wastewater treatment. These results confirm the presence of biologically active micropollutants in hospitals and raw wastewater and demonstrate the suitability of planar bioassays for sensitive, spatially resolved detection. The use of portable equipment like the 2LabsToGo system suggests that on-site monitoring of estrogenic and genotoxic activities in wastewater is feasible and could support routine surveillance of treatment efficiency. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

17 pages, 3580 KB  
Article
Novel Synthetic Strategies Towards Analogues of Cadaside and Malacidin Antibiotic Peptides
by Katharina Webhofer, Darsha Naidu, Milandip Karak, Stephen A. Cochrane, Christopher J. Morris and Rachael Dickman
Biomolecules 2025, 15(11), 1497; https://doi.org/10.3390/biom15111497 - 23 Oct 2025
Viewed by 527
Abstract
With antibiotic resistance becoming an increasingly pressing issue, the search for novel antimicrobial drugs is more important than ever before. The recently discovered calcium-dependent lipopeptides cadaside A/B and malacidin A/B have promising activity against resistant Gram-positive bacteria. With limited reports of synthetic routes [...] Read more.
With antibiotic resistance becoming an increasingly pressing issue, the search for novel antimicrobial drugs is more important than ever before. The recently discovered calcium-dependent lipopeptides cadaside A/B and malacidin A/B have promising activity against resistant Gram-positive bacteria. With limited reports of synthetic routes towards these peptides available in the literature, especially for cadasides, we herein report a novel on-resin synthesis strategy. We used this strategy to produce fifteen simplified malacidin and cadaside analogues. In addition, both minimum inhibitory concentration and thin layer chromatography assays were conducted to determine antimicrobial activity and advance our understanding of these peptides’ structure–activity relationships. Full article
Show Figures

Figure 1

12 pages, 706 KB  
Article
Efficient Enrichment of Total Flavonoids and Antibacterial Activity of the Ethyl Acetate Fraction of Croton blanchetianus Baill. (Euphorbiaceae) Leaves
by Pedro Artur Ferreira Marinho, Wêndeo Kennedy Costa, Maria Tereza dos Santos Correia, Wliana Alves Viturino da Silva, Magda Rhayanny Assunção Ferreira, Luiz Alberto Lira Soares, José Jailson Lima Bezerra and Alisson Macário de Oliveira
Drugs Drug Candidates 2025, 4(4), 45; https://doi.org/10.3390/ddc4040045 - 18 Oct 2025
Viewed by 204
Abstract
Background/Objectives: This study investigated the flavonoid enrichment and antimicrobial activity of the ethyl acetate fraction (EAF) obtained from Croton blanchetianus (Euphorbiaceae) leaves against Staphylococcus aureus, including the methicillin-resistant strains (MRSA) that were isolated, as well as its possible mechanism of action. [...] Read more.
Background/Objectives: This study investigated the flavonoid enrichment and antimicrobial activity of the ethyl acetate fraction (EAF) obtained from Croton blanchetianus (Euphorbiaceae) leaves against Staphylococcus aureus, including the methicillin-resistant strains (MRSA) that were isolated, as well as its possible mechanism of action. Methods: Croton blanchetianus leaves were extracted with ethanol:water (50%), then the extract was spray-dried and partitioned (8×) with ethyl acetate. Phytochemical analysis was performed using thin layer chromatography (TLC), while antibacterial activity was conducted using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. Results: Chemical profiling (TLC) confirmed multiple flavonoid bands and the presence of hyperoside; the total flavonoid content in the EAF reached 25.3% (≈2.28× the spray-dried extract and 6.65× the aqueous fraction). The MIC and MBC assays against S. aureus ATCC 29213 and six clinical isolates showed an MIC of 4–32 μg/mL and an MBC of 16–64 μg/mL for EAF. The combination of EAF with chloramphenicol showed a complete synergistic effect for S. aureus ATCC 29213 and S. aureus UFPEDA 705, a partial effect for S. aureus UFPEDA-659 and S. aureus UFPEDA-671, antagonistic effect for S. aureus UFPEDA 731 and S. aureus UFPEDA 802, and no effect for S. aureus UFPEDA-691. Growth curves indicated time- and concentration-dependent inhibition. Membrane integrity assays revealed K+ efflux and release of DNA/RNA and proteins, suggesting bacterial membrane destabilization as a likely mechanism. Conclusions: The flavonoid-rich fraction of C. blanchetianus exhibits potent anti-S. aureus activity, including MRSA. Furthermore, it was observed that EAF has a synergistic effect with chloramphenicol and acts through membrane damage, making it a candidate for a phytoderived adjuvant in antimicrobial therapies. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Figure 1

20 pages, 3659 KB  
Article
Metabolites Fingerprinting Variations and Chemotaxonomy of Related South African Hypoxis Species
by Kokoette Bassey
Diversity 2025, 17(10), 729; https://doi.org/10.3390/d17100729 - 17 Oct 2025
Viewed by 221
Abstract
Hypoxis hemerocallidea (Hypoxidaece) is thoroughly researched and well documented for its plethora of anecdotal and scientifically backed pharmacological potentials. Its anecdotal uses and pharmacological activities are attributed to its extract’s inherent bioactive compounds like hypoxoside, rooperol, and β-sitosterol. This study aimed at conducting [...] Read more.
Hypoxis hemerocallidea (Hypoxidaece) is thoroughly researched and well documented for its plethora of anecdotal and scientifically backed pharmacological potentials. Its anecdotal uses and pharmacological activities are attributed to its extract’s inherent bioactive compounds like hypoxoside, rooperol, and β-sitosterol. This study aimed at conducting a targeted and holistic phytochemical profiling of variations in Hypoxis hemerocallidea (H. hemerocallidea) and related species. The chemotaxonomic classifications of H. hemerocallidea and seven other related species were also carried out to avert the possibility of over harvesting H. hemerocallidea and the encouragement of species inter-change. The plant extracts were analysed with reverse phase ultra-pure liquid chromatography quadrupole time-of-flight mass spectrometry and gas chromatography, as well as high-performance thin-layer chromatography. The generated chromatographic data were made compatible for chemometric computation using Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) models. The results obtained unveil orcinol glycoside, curculigoside C, hypoxoside, dehydroxyhypoxoside, bisdehydroxy hypoxoside, hemerocalloside, galpinoside, cholchicoside, geraniol glycoside, β-sitosterol, oleic acid, and 2-hydroxyethyl linoleate as target phytochemicals that define the profiles of the Hypoxis species. In addition, three distinct chemotypes defined by hemerocalloside, galpinoside, and colchicoside, respectively, were observed, as well as holistic variations in all secondary metabolites. Due to similarities in the phytochemical constituents of selected species, species inter-change seems imminent if further research confirms the findings of this study. Full article
(This article belongs to the Section Chemical Diversity and Chemical Ecology)
Show Figures

Figure 1

17 pages, 1829 KB  
Article
Study on the Rheological Properties of Recycled Plastic and Waste Cooking Oil Composite Modified Asphalt
by Maowen Li, Ping Zheng, Chao Pu, Dongxu Xu, Waiti Litifu, Zhe Ma and Peng Yin
Materials 2025, 18(20), 4762; https://doi.org/10.3390/ma18204762 - 17 Oct 2025
Viewed by 309
Abstract
To enhance the overall performance of asphalt pavements and promote the efficient utilization of solid waste resources, this study innovatively incorporates recycled polyethylene (PE) particles and recycled ethylene-vinyl acetate copolymer (EVA) particles, each compounded with waste cooking oil (WCO), to modify base asphalt. [...] Read more.
To enhance the overall performance of asphalt pavements and promote the efficient utilization of solid waste resources, this study innovatively incorporates recycled polyethylene (PE) particles and recycled ethylene-vinyl acetate copolymer (EVA) particles, each compounded with waste cooking oil (WCO), to modify base asphalt. Systematic tests were conducted to evaluate the physical and rheological properties of the composite modified asphalt. Additionally, Fourier transform infrared spectroscopy (FTIR) and thin-layer chromatography with flame ionization detection (TLC-FID) were used to analyze the microstructures and internal components of the modified asphalt. The results indicate that the optimal mixing ratio for the WPA is 5% WCO, 5% EVA, and 5% PE. With the incorporation of these modified materials, the asphalt’s high-temperature and low-temperature properties, as well as its rutting and fatigue resistance, are enhanced to some extent. Furthermore, the modification significantly improves the rheological properties of the asphalt across the full temperature range. Additionally, the modified materials lead to changes in the internal composition of the asphalt: the content of lighter components decreases, while the content of heavier components increases. These changes in the internal composition are the primary cause of the observed improvements in the rheological properties of the asphalt. Full article
Show Figures

Figure 1

22 pages, 1386 KB  
Article
Pharmacokinetic Profile of Extracts from the Chayote (Sechium edule) H387 07 Hybrid and Phytochemical Characterization of Its Segregant H387 M16 for Potential Therapeutic Applications
by Eugenia Elisa Delgado-Tiburcio, Ramón Marcos Soto-Hernández, Itzen Aguiñiga-Sánchez, Jorge Cadena-Iñiguez, Lucero del Mar Ruiz-Posadas, Cecilia B. Peña-Valdivia and Héctor Gómez-Yáñez
Molecules 2025, 30(19), 3948; https://doi.org/10.3390/molecules30193948 - 1 Oct 2025
Viewed by 614
Abstract
The hybrid Sechium edule H387 07, commonly known as chayote, has shown potential as an antiproliferative, cytotoxic, and pro-apoptotic agent in the murine leukemia cell lines P388 (macrophagic) and J774 (monocytic) and in the myelomonocytic leukemia cell line WEHI-3. However, despite these reported [...] Read more.
The hybrid Sechium edule H387 07, commonly known as chayote, has shown potential as an antiproliferative, cytotoxic, and pro-apoptotic agent in the murine leukemia cell lines P388 (macrophagic) and J774 (monocytic) and in the myelomonocytic leukemia cell line WEHI-3. However, despite these reported bioactivities, its pharmacokinetic profile remains largely unexplored. Understanding the absorption, distribution, and elimination of this hybrid is critical for addressing unmet therapeutic needs and for advancing the development of natural product-based therapies. These effects are attributed to the presence of phenols, flavonoids, and cucurbitacins in its organic extracts. In this study, the pharmacokinetic parameters of secondary metabolites from methanolic extracts of Sechium H387 07 were evaluated after oral administration in mice, while its segregant H387 M16 was subjected to complementary phytochemical characterization. Methanolic extracts of Sechium edule H387 07 were orally administered to mice at doses of 8, 125, and 250 mg/kg, and plasma, liver, and urine samples were collected at 1, 6, 24, and 48 h post-treatment. High-performance liquid chromatography (HPLC) identified polyphenols and cucurbitacins, notably cucurbitacin B (CuB) and cucurbitacin IIA (CuIIA), in the biological samples, and pharmacokinetic variables such as the maximum plasma concentration (Cmax), time to reach maximum concentration (Tmax), half-life (T1/2), and volume of distribution (Vd) were determined. For instance, CuB exhibited a Cmax of 37.56 µg/mL at 1 h post-dose after oral administration of 125 mg/kg, confirming its rapid absorption and systemic distribution. Notably, the presence of CuIIA in plasma was documented for the first time, along with the pharmacokinetic profiles of apigenin, phloretin, CuB, CuE, and CuI. In parallel, the segregant H387 M16 was characterized via colorimetric assays, thin-layer chromatography (TLC), HPLC, and antioxidant activity tests, which revealed high levels of flavonoids, phenols, and cucurbitacins, with an antioxidant activity of approximately 75% at the highest tested dose (1 mg/mL), supporting its suitability for future bioassays. Overall, these findings not only provide novel pharmacokinetic data for key metabolites of the H387 07 hybrid but also establish the phytochemical and antioxidant profile of its segregant H387 M16. This dual characterization strengthens the evidence of the therapeutic potential of Sechium genotypes and provides a valuable foundation for future studies aiming to develop standardized protocols and explore translational applications in drug development and natural product-based therapies. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

14 pages, 1796 KB  
Brief Report
Lipid Signature of Motile Human Sperm: Characterization of Sphingomyelin, Ceramide, and Phospholipids with a Focus on Very Long Chain Polyunsaturated Fatty Acids
by Gerardo Martín Oresti, Jessica Mariela Luquez and Silvia Alejandra Belmonte
Int. J. Mol. Sci. 2025, 26(19), 9301; https://doi.org/10.3390/ijms26199301 - 23 Sep 2025
Viewed by 503
Abstract
Sperm membrane lipids play a crucial role in male fertility, influencing sperm motility, viability, and functional competence. This study comprehensively characterizes the phospholipid and sphingolipid composition in highly motile human spermatozoa obtained through the swim-up method, a widely used technique in assisted reproductive [...] Read more.
Sperm membrane lipids play a crucial role in male fertility, influencing sperm motility, viability, and functional competence. This study comprehensively characterizes the phospholipid and sphingolipid composition in highly motile human spermatozoa obtained through the swim-up method, a widely used technique in assisted reproductive technology (ART). Using two-dimensional thin-layer chromatography and phosphorus analysis, we identified choline glycerophospholipids (CGP, 45%), ethanolamine glycerophospholipids (EGP, 26%), and sphingomyelin (SM, 17%) as predominant phospholipids, with minor components including cardiolipin, lysophospholipids, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and neutral lipids. Gas chromatography analysis of glycerophospholipids (GPL) revealed a high long chain (C20–C22) polyunsaturated fatty acids (PUFA) content (46.3%), particularly docosahexaenoic acid (DHA, 22:6n-3), which was more abundant in CGP (46%) than EGP (26%). Sphingolipid analysis indicated that ceramide (Cer) and SM shared similar fatty acid profiles due to their metabolic relationship, with very-long-chain (VLC) PUFA (≥C26) being more prevalent in SM (10%) than in Cer (6%). Additionally, argentation chromatography identified highly unsaturated VLCPUFA species in Cer, including 28:3n-6, 28:4n-6, and 30:4n-6, which had not been previously quantified in motile human spermatozoa. Given the essential function of sphingolipid metabolism in spermatogenesis, capacitation, and acrosomal exocytosis, our findings suggest that the balance of VLCPUFA-containing SM and Cer could play a role in sperm performance and fertilization potential. This study provides novel insights into the lipid signature of human sperm and highlights the relevance of membrane lipid remodeling for male fertility and ART outcomes. Full article
Show Figures

Figure 1

12 pages, 1141 KB  
Article
Development of a Validated High-Performance Thin-Layer Chromatography (HPTLC) Analysis Protocol for Salivary Caffeine Used as a Probe Drug
by K. M. Yasif Kayes Sikdar, Ahmed Shalan, Vincent Castejon, Carly Chambers, Samara Renae Coverley, Okhee Yoo, Md Khairul Islam, Tomislav Sostaric, Lee Yong Lim, Philip Burcham and Cornelia Locher
Molecules 2025, 30(19), 3859; https://doi.org/10.3390/molecules30193859 - 23 Sep 2025
Viewed by 780
Abstract
CYP1A2 activity plays a critical role in the metabolism of drugs such as caffeine, clozapine, propranolol, and warfarin. In pharmacogenomic studies, caffeine is a probe drug of choice for CYP1A2 phenotyping. Due to the non-invasive nature of sampling, saliva is an alternative biofluid [...] Read more.
CYP1A2 activity plays a critical role in the metabolism of drugs such as caffeine, clozapine, propranolol, and warfarin. In pharmacogenomic studies, caffeine is a probe drug of choice for CYP1A2 phenotyping. Due to the non-invasive nature of sampling, saliva is an alternative biofluid to plasma for monitoring caffeine levels. This study reports on a validated HPTLC method for quantifying salivary caffeine levels, which can support future studies on CYP1A2 phenotyping employing caffeine as a probe drug. The HPTLC method, using silica gel 60 F254 plates and acetone/toluene/chloroform (4:3:3, v/v/v) as the mobile phase, has detection and quantification limits of 2.42 and 7.34 ng/band, respectively. An optimised saliva processing protocol using a 1:1 dilution with methanol was also established. Five saliva sample sets collected 0–4 h after ingestion of 100 mg caffeine were analysed using the developed and validated HPTLC method, which demonstrated that salivary caffeine concentrations peak around 1 h post ingestion and then gradually decrease over the study period. Thus, the developed HPTLC method can be used to analyse caffeine levels in saliva and to support CYP1A2 phenotyping using caffeine as a probe drug. Full article
(This article belongs to the Special Issue Recent Advances in Chromatography for Pharmaceutical Analysis)
Show Figures

Figure 1

23 pages, 2237 KB  
Article
Discovery of Undescribed Clerodane Diterpenoids with Antimicrobial Activity Isolated from the Roots of Solidago gigantea Ait
by Márton Baglyas, Zoltán Bozsó, Ildikó Schwarczinger, Péter G. Ott, József Bakonyi, András Darcsi and Ágnes M. Móricz
Int. J. Mol. Sci. 2025, 26(18), 9187; https://doi.org/10.3390/ijms26189187 - 20 Sep 2025
Viewed by 546
Abstract
Three previously undescribed clerodane diterpenoids, including two cis-clerodanes, solidagolactone IX (1) and solidagoic acid K (2), and one trans-clerodane, solidagodiol (3), along with two known cis-clerodane diterpenoids, (−)-(5R,8R,9R,10 [...] Read more.
Three previously undescribed clerodane diterpenoids, including two cis-clerodanes, solidagolactone IX (1) and solidagoic acid K (2), and one trans-clerodane, solidagodiol (3), along with two known cis-clerodane diterpenoids, (−)-(5R,8R,9R,10S)-15,16-epoxy-ent-neo-cleroda-3,13,14-trien-18-ol (4) and solidagoic acid J (5), were isolated and comprehensively characterized from the ethanolic and ethyl acetate root extract of Solidago gigantea Ait. (giant goldenrod). Compound 4 has previously been reported from the roots of this species, whereas compound 5 was identified from the leaves of S. gigantea but not from the roots. The bioassay-guided isolation involved thin-layer chromatography–direct bioautography (TLC–DB) with a Bacillus subtilis antibacterial assay, preparative flash column chromatography, and TLC–mass spectrometry (MS). The chemical structures of the isolated compounds (15) were elucidated through extensive in-depth spectroscopic and spectrometric analyses, including one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, high-resolution tandem mass spectrometry (HRMS/MS), and attenuated total reflectance Fourier-transform infrared (ATR–FTIR) spectroscopy. Their antimicrobial activities were evaluated using in vitro microdilution assays against B. subtilis and different plant pathogens. Compound 3 was the most active against the tested Gram-positive strains, exerting particularly potent effects against Clavibacter michiganensis with a minimal inhibitory concentration (MIC) value of 5.1 µM as well as B. subtilis and Curtobacterium flaccumfaciens pv. flaccumfaciens (MIC 21 µM for both). Compound 4 also strongly inhibited the growth of C. michiganensis (MIC 6.3 µM). Compounds 2, 4, and 5 displayed moderate to weak activity against B. subtilis and C. flaccumfaciens pv. flaccumfaciens with MIC values ranging from 100 to 402 µM. Rhodococcus fascians bacteria were moderately inhibited by compounds 3 (MIC 41 µM) and 4 (MIC 201 µM). Bactericidal activity was observed for compound 3 against C. michiganensis with a minimal bactericidal concentration (MBC) value of 83 µM. Compounds 2 and 3 demonstrated weak antifungal activity against Fusarium graminearum. Our findings underscore the value of bioassay-guided approaches in discovering previously undescribed bioactive compounds. Full article
Show Figures

Figure 1

22 pages, 2118 KB  
Article
Chemical Composition and Bioactivity of Essential Oils from Magnolia pugana, an Endemic Mexican Magnoliaceae Species
by Edison Osorio, José A. Vázquez-García, Paco Noriega, Ramón Reynoso-Orozco, Rosario Huizar, Mario Noa, Elisa Cabrera-Diaz, Lucía Barrientos-Ramírez, Hugo Cerda and Mario A. Ruíz-López
Molecules 2025, 30(18), 3778; https://doi.org/10.3390/molecules30183778 - 17 Sep 2025
Viewed by 1477
Abstract
Magnolia pugana (Iltis & A. Vazquez) A. Vázquez & Carvajal, an endemic Mexican species of the Magnoliaceae family, has received limited phytochemical and pharmacological attention. This study reports, for the first time, the chemical composition and in vitro bioactivities of essential oils (EOs) [...] Read more.
Magnolia pugana (Iltis & A. Vazquez) A. Vázquez & Carvajal, an endemic Mexican species of the Magnoliaceae family, has received limited phytochemical and pharmacological attention. This study reports, for the first time, the chemical composition and in vitro bioactivities of essential oils (EOs) obtained from its leaves, flowers, and seeds. EOs were analyzed by gas chromatography–mass spectrometry (GC-MS) and flame ionization detection (GC-FID), revealing cyclocolorenone, a sesquiterpene, as the major compound (38–40%) across all plant parts. Antioxidant activity was evaluated using DPPH• and ABTS• radical scavenging assays, complemented by bioautographic thin-layer chromatography (TLC). Antibacterial activity was determined by minimum inhibitory concentration (MIC) against human pathogenic bacteria, while cytotoxicity was assessed in MCF-7 (breast) and HT-29 (colon) cancer cell lines. Seed and flower EOs exhibited the highest antioxidant activity, with IC50 values of 21.5 mg/mL and 9.04 mg/mL, respectively. Strong antibacterial effects were observed against Gram-positive strains, particularly Staphylococcus epidermidis (MIC = 355.11 µg/mL) and S. aureus (MIC = 710.23 µg/mL). Leaf EO showed selective cytotoxicity toward MCF-7 cells (IC50 = 27.25 µg/mL), while seed EO was most active against HT-29 cells (IC50 = 54.01 µg/mL). These results suggest that M. pugana EOs, especially those from seeds, are a promising source of natural antioxidant, antimicrobial, and anticancer agents. Full article
Show Figures

Graphical abstract

24 pages, 2222 KB  
Article
Multidisciplinary Bioanalytical Approach to Assess the Anti-Aging Properties of Flower Petals—A Promising Sustainable Cosmetic Ingredient
by Đurđa Ivković, Milan Senćanski, Mirjana Novković, Jelena Stojković-Filipović, Jelena Trifković, Petar Ristivojević and Maja Krstić Ristivojević
Plants 2025, 14(18), 2869; https://doi.org/10.3390/plants14182869 - 15 Sep 2025
Viewed by 555
Abstract
The increasing demand for natural, safe, and sustainable ingredients is driving innovation in cosmetic science. This study assessed the anti-aging potential of 17 petal extracts using a multidisciplinary bioanalytical approach. In vitro spectrophotometric assays evaluated anti-wrinkle (anti-elastase), anti-pigmentation (anti-tyrosinase), and antioxidant (DPPH, ABTS) [...] Read more.
The increasing demand for natural, safe, and sustainable ingredients is driving innovation in cosmetic science. This study assessed the anti-aging potential of 17 petal extracts using a multidisciplinary bioanalytical approach. In vitro spectrophotometric assays evaluated anti-wrinkle (anti-elastase), anti-pigmentation (anti-tyrosinase), and antioxidant (DPPH, ABTS) activities, while cytotoxicity was tested on HaCaT keratinocytes. Chemical profiling using HPTLC and UHPLC–MS/MS identified 17 phenolic compounds. For the first time, petals from prairie rose (Rosa setigera Michx.), common peony (Paeonia officinalis L.), horse-chestnut cultivars (Aesculus hippocastanum L., Aesculus × carnea Zeyx.), lilac (Syringa vulgaris), mock-orange (Philadelphus pubescens Loisel), orange lily (Lilium bulbiferum L.), garden tulip (Tulipa gesneriana L.), ivy geranium (Pelargonium × peltatum (L.) L’Hér. ex Aiton), and wallflower (Erysimum × cheiri (L.) Crantz) were studied for their skin anti-aging properties. Prairie rose, peony, and ivy geranium extracts showed strong anti-elastase activity; rose and peony also demonstrated high antioxidant potential, while lilac exhibited significant anti-tyrosinase effects. Key phenolic constituents—caffeic acid, p-coumaric acid, and gallic acid—were further examined via molecular docking, which confirmed their inhibitory properties by revealing inhibition mechanisms. All extracts were confirmed to be non-toxic in zebrafish acute toxicity assays at relevant concentrations. This integrative strategy effectively links chemical composition with biological activity, offering valuable insight into the development of safe, plant-derived anti-aging agents for sustainable cosmetic applications. Full article
(This article belongs to the Special Issue Advanced Research in Plant Analytical Chemistry)
Show Figures

Figure 1

14 pages, 1620 KB  
Article
Lipid Composition Analysis of Cricket Oil from Crickets Fed with Broken Rice-Derived Bran
by Ryosuke Sogame, Taiki Miyazawa, Masako Toda, Akihiro Iijima, Maharshi Bhaswant and Teruo Miyazawa
Insects 2025, 16(9), 951; https://doi.org/10.3390/insects16090951 - 11 Sep 2025
Viewed by 671
Abstract
This study investigated the effect of rice bran derived from broken rice feeding on the lipid classes and fatty acid composition of oil extracted from crickets (Acheta domesticus). During the final seven days prior to cricket oil extraction, crickets were fed [...] Read more.
This study investigated the effect of rice bran derived from broken rice feeding on the lipid classes and fatty acid composition of oil extracted from crickets (Acheta domesticus). During the final seven days prior to cricket oil extraction, crickets were fed either rice bran or control feed. The lipid classes in both the cricket oil and feed materials (rice bran or control feed) were identified using thin-layer chromatography, while the proportion of neutral lipids, phospholipids, and glycolipids was quantified by solid-phase extraction. Fatty acid composition was determined using GC-FID. Cricket oil from the rice bran-fed group exhibited a significantly higher ratio of glycolipids, which are abundant in rice bran, compared to the control group. Although both oleic and linoleic acid levels were significantly higher than in the control feed, only the oleic acid proportion was significantly increased in the cricket oil from the rice bran-fed group. Additionally, the ω-6/ω-3 ratio in each lipid fraction was significantly higher in the rice bran-fed group compared to the control group. These results suggest that dietary supplementation with rice bran derived from broken rice significantly alters the lipid profile of crickets and may represent a valuable strategy for enhancing the nutritional quality of cricket oil. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

Back to TopTop