Novel Synthetic Strategies Towards Analogues of Cadaside and Malacidin Antibiotic Peptides
Abstract
1. Introduction
2. Materials and Methods
2.1. General Reagents and Instrumentation
2.2. Cadaside Synthetic Procedure
2.3. Malacidin Synthetic Procedure
2.4. Analytical Characterisation
2.5. Minimum Inhibitory Concentration (MIC) Assays
2.6. Thin-Layer Chromatography (TLC) Precursor-Binding Assay
3. Results
3.1. Establishing the Synthetic Route
3.1.1. Cadaside Synthesis
3.1.2. Malacidin Synthesis
3.2. Synthesis of Analogues
3.3. Assessment of Activity via MIC and TLC Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Jonas, O.B.; Irwin, A.; Berthe, F.C.J.; Le Gall, F.G.; Marquez, P.V. Drug-Resistant Infections: A Threat to Our Economic Future (Vol. 2 of 2): Final Report (English); Report Number 114679; World Bank Group: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Lakey, J.H.; Lea, E.J.A.; Rudd, B.A.M.; Wright, H.M.; Hopwood, D.A. A new channel-forming antibiotic from Streptomyces coelicolor A3(2) which requires calcium for its activity. J. Gen. Microbiol. 1983, 129, 3565–3573. [Google Scholar] [CrossRef]
- Lakey, J.H.; Maget-Dana, R.; Ptak, M. Conformational change on calcium binding by the lipopeptide antibiotic amphomycin. A C.D. and monolayer study. Biochem. Biophys. Res. Commun. 1988, 150, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Eliopoulos, G.M.; Willey, S.; Reiszner, E.; Spitzer, P.G.; Caputo, G.; Moellering, R.C. In vitro and in vivo activity of LY 146032, a new cyclic lipopeptide antibiotic. Antimicrob. Agents Chemother. 1986, 30, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Fass, R.J.; Helsel, V.L. In vitro activity of LY146032 against staphylococci, streptococci, and enterococci. Antimicrob. Agents Chemother. 1986, 30, 781–784. [Google Scholar] [CrossRef] [PubMed]
- Verbist, L. In vitro activity of LY146032, a new lipopeptide antibiotic, against gram-positive cocci. Antimicrob. Agents Chemother. 1987, 31, 340–342. [Google Scholar] [CrossRef]
- Kirst, H.A.; Thompson, D.G.; Nicas, T.I. Historical Yearly Usage of Vancomycin. Antimicrob. Agents Chemother. 1998, 42, 1303–1304. [Google Scholar] [CrossRef]
- Knapp, C.C.; Washington, J.A. Antistaphylococcal activity of a cyclic peptide, LY146032, and vancomycin. Antimicrob. Agents Chemother. 1986, 30, 938–939. [Google Scholar] [CrossRef]
- Hover, B.M.; Kim, S.-H.; Katz, M.; Charlop-Powers, Z.; Owen, J.G.; Ternei, M.A.; Maniko, J.; Estrela, A.B.; Molina, H.; Park, S.; et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol. 2018, 3, 415–422. [Google Scholar] [CrossRef]
- Wu, C.; Shang, Z.; Lemetre, C.; Ternei, M.A.; Brady, S.F. Cadasides, Calcium-Dependent Acidic Lipopeptides from the Soil Metagenome That Are Active against Multidrug-Resistant Bacteria. J. Am. Chem. Soc. 2019, 141, 3910–3919. [Google Scholar] [CrossRef]
- Fernández-Pastor, I.; Ortiz-López, F.J.; Oves-Costales, D.; Martín, J.; Sánchez, P.; Melguizo, Á.; Reyes, F.; Weber, T.; Genilloud, O. Dilarmycins A–C, Calcium-Dependent Lipopeptide Antibiotics with a Non-canonical Ca2+-Binding Motif. Org. Lett. 2024, 26, 1343–1347. [Google Scholar] [CrossRef]
- Lai, H.-E.; Woolner, V.H.; Little, R.F.; Woolly, E.F.; Keyzers, R.A.; Owen, J.G. Calcium-Dependent Lipopeptide Antibiotics against Drug-Resistant Pathogens Discovered via Host-Dependent Heterologous Expression of a Cloned Biosynthetic Gene Cluster. Angew. Chem. Int. Ed. 2024, 63, e202410286. [Google Scholar] [CrossRef] [PubMed]
- Chow, H.Y.; Po, K.H.L.; Jin, K.; Qiao, G.; Sun, Z.; Ma, W.; Ye, X.; Zhou, N.; Chen, S.; Li, X. Establishing the Structure–Activity Relationship of Daptomycin. ACS Med. Chem. Lett. 2020, 11, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Wenzel, M.; Strahl, H.; Grein, F.; Saaki, T.N.V.; Kohl, B.; Siersma, T.; Bandow, J.E.; Sahl, H.-G.; Schneider, T.; et al. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc. Natl. Acad. Sci. USA 2016, 113, E7077–E7086. [Google Scholar] [CrossRef] [PubMed]
- Alborn, W.E.; Allen, N.E.; Preston, D.A. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrob. Agents Chemother. 1991, 35, 2282–2287. [Google Scholar] [CrossRef]
- Grein, F.; Müller, A.; Scherer, K.M.; Liu, X.; Ludwig, K.C.; Klöckner, A.; Strach, M.; Sahl, H.-G.; Kubitscheck, U.; Schneider, T. Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat. Commun. 2020, 11, 1455. [Google Scholar] [CrossRef]
- Jung, D.; Rozek, A.; Okon, M.; Hancock, R.E.W. Structural Transitions as Determinants of the Action of the Calcium-Dependent Antibiotic Daptomycin. Chem. Biol. 2004, 11, 949–957. [Google Scholar] [CrossRef]
- Kleijn, L.H.J.; Vlieg, H.C.; Wood, T.M.; Toraño, J.S.; Janssen, B.J.C.; Martin, N.I. A High-Resolution Crystal Structure that Reveals Molecular Details of Target Recognition by the Calcium-Dependent Lipopeptide Antibiotic Laspartomycin C. Angew. Chem. Int. Ed. 2017, 56, 16546–16549. [Google Scholar] [CrossRef]
- Du, Y.; Li, L.; Zheng, Y.; Liu, J.; Gong, J.; Qiu, Z.; Li, Y.; Qiao, J.; Huo, Y.-X. Incorporation of Non-Canonical Amino Acids into Antimicrobial Peptides: Advances, Challenges, and Perspectives. Appl. Environ. Microbiol. 2022, 88, e01617-22. [Google Scholar] [CrossRef]
- Enninful, G.N.; Kuppusamy, R.; Tiburu, E.K.; Kumar, N.; Willcox, M.D.P. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J. Pept. Sci. 2024, 30, e3560. [Google Scholar] [CrossRef]
- Kapil, S.; Sharma, V. D-Amino acids in antimicrobial peptides: A potential approach to treat and combat antimicrobial resistance. Can. J. Microbiol. 2020, 67, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Zai, Y.; Ying, Y.; Ye, Z.; Zhou, M.; Ma, C.; Shi, Z.; Chen, X.; Xi, X.; Chen, T.; Wang, L. Broad-Spectrum Antimicrobial Activity and Improved Stability of a D-Amino Acid Enantiomer of DMPC-10A, the Designed Derivative of Dermaseptin Truncates. Antibiotics 2020, 9, 627. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xu, H.; Xia, J.; Ma, J.; Xu, J.; Li, Y.; Feng, J. D- and Unnatural Amino Acid Substituted Antimicrobial Peptides With Improved Proteolytic Resistance and Their Proteolytic Degradation Characteristics. Front. Microbiol. 2020, 11, 563030. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, S.A.; Findlay, B.; Bakhtiary, A.; Acedo, J.Z.; Rodriguez-Lopez, E.M.; Mercier, P.; Vederas, J.C. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II. Proc. Natl. Acad. Sci. USA 2016, 113, 11561–11566. [Google Scholar] [CrossRef] [PubMed]
- Karak, M.; Cloonan, C.R.; Baker, B.R.; Cochrane, R.V.K.; Cochrane, S.A. Optimizations of lipid II synthesis: An essential glycolipid precursor in bacterial cell wall synthesis and a validated antibiotic target. Beilstein J. Org. Chem. 2024, 20, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, R.V.K.; Alexander, F.M.; Boland, C.; Fetics, S.K.; Caffrey, M.; Cochrane, S.A. From plant to probe: Semi-synthesis of labelled undecaprenol analogues allows rapid access to probes for antibiotic targets. Chem. Commun. 2020, 56, 8603–8606. [Google Scholar] [CrossRef]
- Kovalenko, N.; Swain, J.A.; Howard, G.K.; Hermant, Y.O.; Cameron, A.J.; Stubbing, L.A.; Harris, P.W.R.; Brimble, M.A. Synthetic Studies towards the Calcium-Dependent Lipopeptide Antibiotic Cadaside B. Chem. Eur. J. 2022, 28, e202202554. [Google Scholar] [CrossRef]
- Yan, X.; He, C.; Li, Z.; Jin, K. Synthesis and antimicrobial studies of cadasides analogues via on-resin esterification. Bioorg. Med. Chem. 2024, 99, 117601. [Google Scholar] [CrossRef]
- Sewald, N.; Jakubke, H.-D. Synthesis Concepts for Peptides and Proteins. In Peptides: Chemistry and Biology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 317–364. [Google Scholar]
- Pedroso, E.; Grandas, A.; de las Heras, X.; Eritja, R.; Giralt, E. Diketopiperazine formation in solid phase peptide synthesis using p-alkoxybenzyl ester resins and Fmoc-amino acids. Tetrahedron Lett. 1986, 27, 743–746. [Google Scholar] [CrossRef]
- Gisin, B.F.; Merrifield, R.B. Carboxyl-catalyzed intramolecular aminolysis. Side reaction in solid-phase peptide synthesis. J. Am. Chem. Soc. 1972, 94, 3102–3106. [Google Scholar] [CrossRef]
- Lohani, C.R.; Taylor, R.; Palmer, M.; Taylor, S.D. Solid-Phase Total Synthesis of Daptomycin and Analogs. Org. Lett. 2015, 17, 748–751. [Google Scholar] [CrossRef]
- Xu, B.; Hermant, Y.; Yang, S.-H.; Harris, P.W.R.; Brimble, M.A. A Versatile Boc Solid Phase Synthesis of Daptomycin and Analogues Using Site Specific, On-Resin Ozonolysis to Install the Kynurenine Residue. Chem. Eur. J. 2019, 25, 14101–14107. [Google Scholar] [CrossRef]
- Lam, H.Y.; Zhang, Y.; Liu, H.; Xu, J.; Wong, C.T.T.; Xu, C.; Li, X. Total Synthesis of Daptomycin by Cyclization via a Chemoselective Serine Ligation. J. Am. Chem. Soc. 2013, 135, 6272–6279. [Google Scholar] [CrossRef]
- Moreira, R.; Wolfe, J.; Taylor, S.D. A high-yielding solid-phase total synthesis of daptomycin using a Fmoc SPPS stable kynurenine synthon. Org. Biomol. Chem. 2021, 19, 3144–3153. [Google Scholar] [CrossRef]
- Kovalenko, N.; Howard, G.K.; Swain, J.A.; Hermant, Y.; Cameron, A.J.; Cook, G.M.; Ferguson, S.A.; Stubbing, L.A.; Harris, P.W.R.; Brimble, M.A. A Concise Synthetic Strategy Towards the Novel Calcium-dependent Lipopeptide Antibiotic, Malacidin A and Analogues. Front. Chem. 2021, 9, 687875. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Shang, Z.; Forelli, N.; Po, K.H.L.; Chen, S.; Brady, S.F.; Li, X. Total Synthesis of Malacidin A by β-Hydroxyaspartic Acid Ligation-Mediated Cyclization and Absolute Structure Establishment. Angew. Chem. Int. Ed. 2020, 59, 19868–19872. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.M.; Martin, N.I. The calcium-dependent lipopeptide antibiotics: Structure, mechanism, & medicinal chemistry. Medchemcomm 2019, 10, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Li, J.; He, Y.; Herradura, P.; Pearson, A.; Mesleh, M.F.; Mascio, C.T.; Howland, K.; Steenbergen, J.; Thorne, G.M.; et al. Structure–Activity Relationship Studies of a Series of Semisynthetic Lipopeptides Leading to the Discovery of Surotomycin, a Novel Cyclic Lipopeptide Being Developed for the Treatment of Clostridium difficile-Associated Diarrhea. J. Med. Chem. 2015, 58, 5137–5142. [Google Scholar] [CrossRef]
- Schneider, T.; Gries, K.; Josten, M.; Wiedemann, I.; Pelzer, S.; Labischinski, H.; Sahl, H.-G. The Lipopeptide Antibiotic Friulimicin B Inhibits Cell Wall Biosynthesis through Complex Formation with Bactoprenol Phosphate. Antimicrob. Agents Chemother. 2009, 53, 1610–1618. [Google Scholar] [CrossRef]
- Wood, T.M.; Zeronian, M.R.; Buijs, N.; Bertheussen, K.; Abedian, H.K.; Johnson, A.V.; Pearce, N.M.; Lutz, M.; Kemmink, J.; Seirsma, T.; et al. Mechanistic insights into the C(55)-P targeting lipopeptide antibiotics revealed by structure-activity studies and high-resolution crystal structures. Chem. Sci. 2022, 13, 2985–2991. [Google Scholar] [CrossRef]
- Nguyen, K.T.; He, X.; Alexander, D.C.; Li, C.; Gu, J.-Q.; Mascio, C.; Van Praagh, A.; Mortin, L.; Chu, M.; Silverman, J.A.; et al. Genetically Engineered Lipopeptide Antibiotics Related to A54145 and Daptomycin with Improved Properties. Antimicrob. Agents Chemother. 2010, 54, 1404–1413. [Google Scholar] [CrossRef]
- Reynolds, K.A.; Luhavaya, H.; Li, J.; Dahesh, S.; Nizet, V.; Yamanaka, K.; Moore, B.S. Isolation and structure elucidation of lipopeptide antibiotic taromycin B from the activated taromycin biosynthetic gene cluster. J. Antibiot. 2018, 71, 333–338. [Google Scholar] [CrossRef]
- Kleijn, L.H.J.; Oppedijk, S.F.; Hart, P.; van Harten, R.M.; Martin-Visscher, L.A.; Kemmink, J.; Breukink, E.; Martin, N.I. Total Synthesis of Laspartomycin C and Characterization of Its Antibacterial Mechanism of Action. J. Med. Chem. 2016, 59, 3569–3574. [Google Scholar] [CrossRef]
- Srivastava, D.; Patra, N. Elucidating Daptomycin’s Antibacterial Efficacy: Insights into the Tripartite Complex with Lipid II and Phospholipids in Bacterial Septum Membrane. J. Phys. Chem. B 2024, 128, 4414–4427. [Google Scholar] [CrossRef]
- Silverman, J.A.; Perlmutter, N.G.; Shapiro, H.M. Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus Aureus. Antimicrob. Agents Chemother. 2003, 47, 2538–2544. [Google Scholar] [CrossRef]
- Oluwole, A.O.; Kalmankar, N.V.; Guida, M.; Bennett, J.L.; Poce, G.; Bolla, J.R.; Robinson, C.V. Lipopeptide Antibiotics Disrupt Interactions of Undecaprenyl Phosphate with UptA. Proc. Natl. Acad. Sci. 2024, 121, e2408315121. [Google Scholar] [CrossRef]
- Zhang, T.; Taylor, S.D.; Palmer, M.; Duhamel, J. Membrane Binding and Oligomerization of the Lipopeptide A54145 Studied by Pyrene Fluorescence. Biophys. J. 2016, 111, 1267-1277. [Google Scholar] [CrossRef]
- Rubinchik, E.; Schneider, T.; Elliott, M.; Scott, W.R.P.; Pan, J.; Anklin, C.; Yang, H.; Dugourd, D.; Müller, A.; Gries, K.; et al. Mechanism of Action and Limited Cross-Resistance of New Lipopeptide MX-2401. Antimicrob. Agents Chemother. 2011, 55, 2743–2754. [Google Scholar] [CrossRef]
- Singh, M.; Chang, J.; Coffman, L.; Kim, S.J. Solid-State NMR Characterization of Amphomycin Effects on Peptidoglycan and Wall Teichoic Acid Biosyntheses in Staphylococcus Aureus. Sci. Rep. 2016, 6, 31757. [Google Scholar] [CrossRef]
- Makitrynskyy, R.; Keller, L.; Kaur, A.; Tsypik, O.; Munz, L.; Bechthold, A.; Müller, R. Olikomycin A–A Novel Calcium-Dependent Lipopeptide with Antibiotic Activity Against Multidrug-Resistant Bacteria. Chem.-A Eur. J. 2025, 31, e202403985. [Google Scholar] [CrossRef]
- Bekiesch, P.; Zehl, M.; Domingo-Contreras, E.; Martín, J.; Pérez-Victoria, I.; Reyes, F.; Kaplan, A.; Rückert, C.; Busche, T.; Kalinowski, J.; et al. Viennamycins: Lipopeptides Produced by a Streptomyces Sp. J. Nat. Prod. 2020, 83, 2381–2389. [Google Scholar] [CrossRef]







| Peptide | Ring Size | Ca2+ Concentration [mM] | MIC + Ca2+ [µg/mL] | MIC − Ca2+ [µg/mL] | Lipid II | C55-P |
|---|---|---|---|---|---|---|
| Daptomycin | 10 | 15 | 1 | 16 | - | - |
| Daptomycin | 10 | 100 | 0.5 | 16 | - | - |
| Nisin | n.a. | n.a. | n.d. | n.d. | + | n.d. |
| M1 | 9 | 15 | 128 | 128 | - | - |
| M2 | 10 | 15 | 128 | 128 | - | - |
| M3 | 10 | 15 | 128 | 128 | - | - |
| M4 | 10 | 15 | 128 | 128 | - | - |
| M5 | 10 | 15 | 128 | 128 | - | - |
| C1a | 9 | 100 | 128 | 128 | - | - |
| C1b | 9 | 100 | 128 | n.d. | - | ~ |
| C2a | 9 | 100 | 128 | 128 | - | ~ |
| C2b | 9 | 100 | 128 | n.d. | - | ~ |
| C2c | 9 | 100 | 128 | n.d. | - | ~ |
| C3 | 9 | 100 | 128 | 128 | - | ~ |
| C4 | 9 | 100 | 128 | 128 | - | - |
| C5 | 9 | 100 | 128 | 128 | - | - |
| C6 | 9 | 100 | 128 | 128 | - | ~ |
| C7a | 9 | 100 | 128 | 128 | - | - |
| C7b | 9 | 100 | 128 | 128 | - | - |
| C8 | 9 | 100 | 128 | 128 | - | - |
| C9 | 10 | 100 | 128 | 128 | - | - |
| C10 | 10 | - | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Webhofer, K.; Naidu, D.; Karak, M.; Cochrane, S.A.; Morris, C.J.; Dickman, R. Novel Synthetic Strategies Towards Analogues of Cadaside and Malacidin Antibiotic Peptides. Biomolecules 2025, 15, 1497. https://doi.org/10.3390/biom15111497
Webhofer K, Naidu D, Karak M, Cochrane SA, Morris CJ, Dickman R. Novel Synthetic Strategies Towards Analogues of Cadaside and Malacidin Antibiotic Peptides. Biomolecules. 2025; 15(11):1497. https://doi.org/10.3390/biom15111497
Chicago/Turabian StyleWebhofer, Katharina, Darsha Naidu, Milandip Karak, Stephen A. Cochrane, Christopher J. Morris, and Rachael Dickman. 2025. "Novel Synthetic Strategies Towards Analogues of Cadaside and Malacidin Antibiotic Peptides" Biomolecules 15, no. 11: 1497. https://doi.org/10.3390/biom15111497
APA StyleWebhofer, K., Naidu, D., Karak, M., Cochrane, S. A., Morris, C. J., & Dickman, R. (2025). Novel Synthetic Strategies Towards Analogues of Cadaside and Malacidin Antibiotic Peptides. Biomolecules, 15(11), 1497. https://doi.org/10.3390/biom15111497

