Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = TRMM (TMPA) dataset

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6287 KiB  
Article
Superiority of Dynamic Weights against Fixed Weights in Merging Multi-Satellite Precipitation Datasets over Pakistan
by Nuaman Ejaz, Aftab Haider Khan, Muhammad Shahid, Kifayat Zaman, Khaled S. Balkhair, Khalid Mohammed Alghamdi, Khalil Ur Rahman and Songhao Shang
Water 2024, 16(4), 597; https://doi.org/10.3390/w16040597 - 17 Feb 2024
Viewed by 2294
Abstract
Satellite precipitation products (SPPs) are undeniably subject to uncertainty due to retrieval algorithms and sampling issues. Many research efforts have concentrated on merging SPPs to create high-quality merged precipitation datasets (MPDs) in order to reduce these uncertainties. This study investigates the efficacy of [...] Read more.
Satellite precipitation products (SPPs) are undeniably subject to uncertainty due to retrieval algorithms and sampling issues. Many research efforts have concentrated on merging SPPs to create high-quality merged precipitation datasets (MPDs) in order to reduce these uncertainties. This study investigates the efficacy of dynamically weighted MPDs in contrast to those using static weights. The analysis focuses on comparing MPDs generated using the “dynamic clustered Bayesian averaging (DCBA)” approach with those utilizing the “regional principal component analysis (RPCA)” under fixed-weight conditions. These MPDs were merged from SPPs and reanalysis precipitation data, including TRMM (Tropical Rainfall Measurement Mission) Multi-satellite Precipitation Analysis (TMPA) 3B42V7, PERSIANN-CDR, CMORPH, and the ERA-Interim reanalysis precipitation data. The performance of these datasets was evaluated in Pakistan’s diverse climatic zones—glacial, humid, arid, and hyper-arid—employing data from 102 rain gauge stations. The effectiveness of the DCBA model was quantified using Theil’s U statistic, demonstrating its superiority over the RPCA model and other individual merging methods in the study area The comparative performances of DCBA and RPCA in these regions, as measured by Theil’s U, are 0.49 to 0.53, 0.38 to 0.45, 0.37 to 0.42, and 0.36 to 0.43 in glacial, humid, arid, and hyper-arid zones, respectively. The evaluation of DCBA and RPCA compared with SPPs at different elevations showed poorer performance at high altitudes (>4000 m). The comparison of MPDs with the best performance of SPP (i.e., TMPA) showed significant improvement of DCBA even at altitudes above 4000 m. The improvements are reported as 49.83% for mean absolute error (MAE), 42.31% for root-mean-square error (RMSE), 27.94% for correlation coefficient (CC), 40.15% for standard deviation (SD), and 13.21% for Theil’s U. Relatively smaller improvements are observed for RPCA at 13.04%, 1.56%, 10.91%, 1.67%, and 5.66% in the above indices, respectively. Overall, this study demonstrated the superiority of DCBA over RPCA with static weight. Therefore, it is strongly recommended to use dynamic variation of weights in the development of MPDs. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

21 pages, 5618 KiB  
Article
Comparing Precipitation during Typhoons in the Western North Pacific Using Satellite and In Situ Observations
by Jessica R. P. Sutton, Alexandra Jakobsen, Kathryn Lanyon and Venkat Lakshmi
Remote Sens. 2022, 14(4), 877; https://doi.org/10.3390/rs14040877 - 12 Feb 2022
Cited by 5 | Viewed by 3432
Abstract
Typhoons are known for causing heavy precipitation, very strong winds, and storm surges. With climate change, the occurrence, strength, and duration of typhoons are changing. Daily, weekly, and monthly precipitation from in situ stations from the NOAA Global Historical Climatological Network (GHCN) were [...] Read more.
Typhoons are known for causing heavy precipitation, very strong winds, and storm surges. With climate change, the occurrence, strength, and duration of typhoons are changing. Daily, weekly, and monthly precipitation from in situ stations from the NOAA Global Historical Climatological Network (GHCN) were compared in the Western North Pacific from 2000 to 2018 against two widely used datasets: NASA’s TRMM TMPA and PERSIANN-CDR. Additionally, precipitation levels during twenty-five typhoons were compared using precipitation estimates. There have been reductions in the average number of typhoons per year from 1959 to present and by month during the months of August, September, and October. Satellite-derived precipitation estimates from PERSIANN and TRMM TMPA explained approximately 50% of the variation in weekly cumulative precipitation and approximately 72% of the variation in monthly cumulative precipitation during the study period (March 2000–December 2018) when using all available stations. When analysis was completed using only stations close to the best track for the entire duration of a typhoon, 62% of the variation was explained, which is comparable to the weekly and monthly cumulative comparisons. However, most of the stations available and with sufficient data were not located in the tracks of the typhoons. It is of utmost importance to better understand typhoon events by utilizing precipitation data from satellite remote sensing in the Western North Pacific. Full article
(This article belongs to the Special Issue Prediction of Extreme Weather Events)
Show Figures

Figure 1

31 pages, 9791 KiB  
Article
Evaluation and Application of Reanalyzed Combined Data under Extreme Climate Conditions: A Case Study of a Typical Flood Event in the Jinsha River
by Dandan Guo, Chi Luo, Jian Xiang and Siyu Cai
Atmosphere 2022, 13(2), 263; https://doi.org/10.3390/atmos13020263 - 4 Feb 2022
Cited by 1 | Viewed by 2347
Abstract
From 15 to 20 September 2016, precipitation extremes occurred in the middle and lower reaches of the Jinsha River, causing immense direct economic losses due to floods. The current research on extreme climate characteristics and the relationship between climate extremes and runoff extremes [...] Read more.
From 15 to 20 September 2016, precipitation extremes occurred in the middle and lower reaches of the Jinsha River, causing immense direct economic losses due to floods. The current research on extreme climate characteristics and the relationship between climate extremes and runoff extremes are based on a single data source. This is due to the uneven distribution of precipitation and temperature stations, which make it difficult to fully capture extreme climate events. In this paper, various internationally popular reanalysis datasets were introduced. Extreme climate indexes were computed using the merged datasets versus the meteorological station observations. The results showed that: (1) Comparative analysis of the extreme climate indexes of the reanalysis dataset and the data of traditional meteorological observation stations showed that most of the extreme precipitation indexes calculated by the various reanalysis of combined data exhibited good performances. Among the reanalyzed combined products, CMPA-H, CMADS, and GPM (IMERG) exhibited good performance while the performance of TRMM (TMPA) was slightly worse. The extreme temperature indexes, TXx and TNn, calculated based on the reanalysis of combined data showed a better consistency than the indexes calculated based on the observational data of meteorological stations. The CMADS temperature dataset exhibited a higher consistency with the data obtained from meteorological stations as well as the best accuracy (84% of the stations with the error value of TXx calculated from the CMADS dataset and observed data less than 3 °C). (2) The response of typical flood events to precipitation extremes were analyzed and evaluated; the spatial distribution of the precipitation in the combined dataset was used to quantitatively analyze the response of occurrence of typical flood events to precipitation extremes, and the typical flood events were found to be mainly caused by certain factors, such as lagging flood propagation in the upstream of the basin outlet. This study indicates that it is feasible to use the reanalyzed combined data products to calculate the extreme climate indexes of the Jinsha River Basin, especially in the upper reaches of the Yangtze River where there is a lack of meteorological observation stations. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

37 pages, 6075 KiB  
Article
Assessment of Merged Satellite Precipitation Datasets in Monitoring Meteorological Drought over Pakistan
by Khalil Ur Rahman, Songhao Shang and Muhammad Zohaib
Remote Sens. 2021, 13(9), 1662; https://doi.org/10.3390/rs13091662 - 24 Apr 2021
Cited by 30 | Viewed by 5524
Abstract
The current study evaluates the potential of merged satellite precipitation datasets (MSPDs) against rain gauges (RGs) and satellite precipitation datasets (SPDs) in monitoring meteorological drought over Pakistan during 2000–2015. MSPDs evaluated in the current study include Regional Weighted Average Least Square (RWALS), Weighted [...] Read more.
The current study evaluates the potential of merged satellite precipitation datasets (MSPDs) against rain gauges (RGs) and satellite precipitation datasets (SPDs) in monitoring meteorological drought over Pakistan during 2000–2015. MSPDs evaluated in the current study include Regional Weighted Average Least Square (RWALS), Weighted Average Least Square (WALS), Dynamic Clustered Bayesian model Averaging (DCBA), and Dynamic Bayesian Model Averaging (DBMA) algorithms, while the set of SPDs is Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite Retrievals for GPM (IMERG-V06), Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA 3B42 V7), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and ERA-Interim (re-analyses dataset). Several standardized precipitation indices (SPIs), including SPI-1, SPI-3, and SPI-12, are used to evaluate the performances of RGs, SPDs, and MSPDs across Pakistan as well as on a regional scale. The Mann–Kendall (MK) test is used to assess the trend of meteorological drought across different climate regions of Pakistan using these SPI indices. Results revealed higher performance of MSPDs than SPDs when compared against RGs for SPI estimates. The seasonal evaluation of SPIs from RGs, MSPDs, and SPDs in a representative drought year (2008) revealed mildly to moderate wetness in monsoon season while mild to moderate drought in winter season across Pakistan. However, the drought severity ranges from mild to severe drought in different years across different climate regions. MAPD (mean absolute percentage difference) shows high accuracy (MAPD <10%) for RWALS-MSPD, good accuracy (10% < MAPD <20%) for WALS-MSPD and DCBA-MSPD, while good to reasonable accuracy (20% < MAPD < 50%) for DCBA in different climate regions. Furthermore, MSPDs show a consistent drought trend as compared with RGs, while SPDs show poor performance. Overall, this study demonstrated significantly improved performance of MSPDs in monitoring the meteorological drought. Full article
(This article belongs to the Special Issue Remote Sensing in Agricultural Hydrology and Water Resources Modeling)
Show Figures

Figure 1

24 pages, 5477 KiB  
Article
Satellite-Based Precipitation Datasets Evaluation Using Gauge Observation and Hydrological Modeling in a Typical Arid Land Watershed of Central Asia
by Jiabin Peng, Tie Liu, Yue Huang, Yunan Ling, Zhengyang Li, Anming Bao, Xi Chen, Alishir Kurban and Philippe De Maeyer
Remote Sens. 2021, 13(2), 221; https://doi.org/10.3390/rs13020221 - 11 Jan 2021
Cited by 32 | Viewed by 4999
Abstract
Hydrological modeling has always been a challenge in the data-scarce watershed, especially in the areas with complex terrain conditions like the inland river basin in Central Asia. Taking Bosten Lake Basin in Northwest China as an example, the accuracy and the hydrological applicability [...] Read more.
Hydrological modeling has always been a challenge in the data-scarce watershed, especially in the areas with complex terrain conditions like the inland river basin in Central Asia. Taking Bosten Lake Basin in Northwest China as an example, the accuracy and the hydrological applicability of satellite-based precipitation datasets were evaluated. The gauge-adjusted version of six widely used datasets was adopted; namely, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (CDR), Climate Hazards Group Infrared Precipitation with Stations (CHIRPS), Global Precipitation Measurement Ground Validation National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) Morphing Technique (CMORPH), Integrated Multi-Satellite Retrievals for GPM (GPM), Global Satellite Mapping of Precipitation (GSMaP), the Tropical Rainfall Measuring Mission (TRMM) and Multi-satellite Precipitation Analysis (TMPA). Seven evaluation indexes were used to compare the station data and satellite datasets, the soil and water assessment tool (SWAT) model, and four indexes were used to evaluate the hydrological performance. The main results were as follows: 1) The GPM and CDR were the best datasets for the daily scale and monthly scale rainfall accuracy evaluations, respectively. 2) The performance of CDR and GPM was more stable than others at different locations in a watershed, and all datasets tended to perform better in the humid regions. 3) All datasets tended to perform better in the summer of a year, while the CDR and CHIRPS performed well in winter compare to other datasets. 4) The raw data of CDR and CMORPH performed better than others in monthly runoff simulations, especially CDR. 5) Integrating the hydrological performance of the uncorrected and corrected data, all datasets have the potential to provide valuable input data in hydrological modeling. This study is expected to provide a reference for the hydrological and meteorological application of satellite precipitation datasets in Central Asia or even the whole temperate zone. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrology and Water Resources Management)
Show Figures

Graphical abstract

27 pages, 5820 KiB  
Article
Evaluation of Precipitation Products by Using Multiple Hydrological Models over the Upper Yellow River Basin, China
by Xiaoxiang Guan, Jianyun Zhang, Qinli Yang, Xiongpeng Tang, Cuishan Liu, Junliang Jin, Yue Liu, Zhenxin Bao and Guoqing Wang
Remote Sens. 2020, 12(24), 4023; https://doi.org/10.3390/rs12244023 - 9 Dec 2020
Cited by 35 | Viewed by 3896
Abstract
In this study, 6 widely used precipitation products APHRODITE, CPC_UNI_PRCP, CN05.1, PERSIANN-CDR, Princeton Global Forcing (PGF), and TRMM 3B42 V7 (TMPA), were evaluated against gauge observations (CMA data) from 1998 to 2014, and applied to streamflow simulation over the Upper Yellow River basin [...] Read more.
In this study, 6 widely used precipitation products APHRODITE, CPC_UNI_PRCP, CN05.1, PERSIANN-CDR, Princeton Global Forcing (PGF), and TRMM 3B42 V7 (TMPA), were evaluated against gauge observations (CMA data) from 1998 to 2014, and applied to streamflow simulation over the Upper Yellow River basin (UYRB), using 4 hydrological models (DWBM, RCCC-WBM, GR4J, and VIC). The relative membership degree (u), as the comprehensive evaluation index in the hydrological evaluation, was calculated by the optimum fuzzy model. The results showed that the spatial pattern of precipitation from the CMA dataset and the other 6 precipitation products were very consistent with each other. The satellite-derived rainfall products (SDFE), like PSERSIANN-CDR and TMPA, depicted considerably finer and more detailed spatial heterogeneity. The SDFE and reanalysis (RA) products could estimate the monthly precipitation very well at both gauge and basin-average scales. The runoff simulation results indicated that the APHRODITE and TMPA were superior to the other 4 precipitation datasets, obtaining much higher scores, with average u values of 0.88 and 0.77. The precipitation estimation products tended to show better performance in streamflow simulation at the downstream hydrometric stations. In terms of performance of hydrological models, the RCCC–WBM model showed the best potential for monthly streamflow simulation, followed by the DWBM. It indicated that the monthly models were more flexible than daily conceptual or distributed models in hydrological evaluation of SDFE or RA products, and that the difference in precipitation estimates from various precipitation datasets were more influential in the GR4J and VIC models. Full article
Show Figures

Graphical abstract

31 pages, 6205 KiB  
Article
A Regional Blended Precipitation Dataset over Pakistan Based on Regional Selection of Blending Satellite Precipitation Datasets and the Dynamic Weighted Average Least Squares Algorithm
by Khalil Ur Rahman and Songhao Shang
Remote Sens. 2020, 12(24), 4009; https://doi.org/10.3390/rs12244009 - 8 Dec 2020
Cited by 8 | Viewed by 3723
Abstract
Substantial uncertainties are associated with satellite precipitation datasets (SPDs), which are further amplified over complex terrain and diverse climate regions. The current study develops a regional blended precipitation dataset (RBPD) over Pakistan from selected SPDs in different regions using a dynamic weighted average [...] Read more.
Substantial uncertainties are associated with satellite precipitation datasets (SPDs), which are further amplified over complex terrain and diverse climate regions. The current study develops a regional blended precipitation dataset (RBPD) over Pakistan from selected SPDs in different regions using a dynamic weighted average least squares (WALS) algorithm from 2007 to 2018 with 0.25° spatial resolution and one-day temporal resolution. Several SPDs, including Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite Retrievals for GPM (IMERG), Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B42-v7, Precipitation Estimates from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), ERA-Interim (reanalysis dataset), SM2RAIN-CCI, and SM2RAIN-ASCAT are evaluated to select appropriate blending SPDs in different climate regions. Six statistical indices, including mean bias (MB), mean absolute error (MAE), unbiased root mean square error (ubRMSE), correlation coefficient (R), Kling–Gupta efficiency (KGE), and Theil’s U coefficient, are used to assess the WALS-RBPD performance over 102 rain gauges (RGs) in Pakistan. The results showed that WALS-RBPD had assigned higher weights to IMERG in the glacial, humid, and arid regions, while SM2RAIN-ASCAT had higher weights across the hyper-arid region. The average weights of IMERG (SM2RAIN-ASCAT) are 29.03% (23.90%), 30.12% (24.19%), 31.30% (27.84%), and 27.65% (32.02%) across glacial, humid, arid, and hyper-arid regions, respectively. IMERG dominated monsoon and pre-monsoon seasons with average weights of 34.87% and 31.70%, while SM2RAIN-ASCAT depicted high performance during post-monsoon and winter seasons with average weights of 37.03% and 38.69%, respectively. Spatial scale evaluation of WALS-RPBD resulted in relatively poorer performance at high altitudes (glacial and humid regions), whereas better performance in plain areas (arid and hyper-arid regions). Moreover, temporal scale performance assessment depicted poorer performance during intense precipitation seasons (monsoon and pre-monsoon) as compared with post-monsoon and winter seasons. Skill scores are used to quantify the improvements of WALS-RBPD against previously developed blended precipitation datasets (BPDs) based on WALS (WALS-BPD), dynamic clustered Bayesian model averaging (DCBA-BPD), and dynamic Bayesian model averaging (DBMA-BPD). On the one hand, skill scores show relatively low improvements of WALS-RBPD against WALS-BPD, where maximum improvements are observed in glacial (humid) regions with skill scores of 29.89% (28.69%) in MAE, 27.25% (23.89%) in ubRMSE, and 24.37% (28.95%) in MB. On the other hand, the highest improvements are observed against DBMA-BPD with average improvements across glacial (humid) regions of 39.74% (36.93%), 38.27% (33.06%), and 39.16% (30.47%) in MB, MAE, and ubRMSE, respectively. It is recommended that the development of RBPDs can be a potential alternative for data-scarce regions and areas with complex topography. Full article
(This article belongs to the Special Issue Remote Sensing in Agricultural Hydrology and Water Resources Modeling)
Show Figures

Graphical abstract

22 pages, 5287 KiB  
Article
From TRMM to GPM: How Reliable Are Satellite-Based Precipitation Data across Nigeria?
by Pius Nnamdi Nwachukwu, Frederic Satge, Samira El Yacoubi, Sebastien Pinel and Marie-Paule Bonnet
Remote Sens. 2020, 12(23), 3964; https://doi.org/10.3390/rs12233964 - 3 Dec 2020
Cited by 31 | Viewed by 4116
Abstract
In this study, 16 satellite-based precipitation products (SPPs) comprising satellite, gauge and reanalysis datasets were assessed on a monthly time step using precipitation data from 11 gauge stations across Nigeria within the 2000–2012 period as reference. Despite the ability of some of the [...] Read more.
In this study, 16 satellite-based precipitation products (SPPs) comprising satellite, gauge and reanalysis datasets were assessed on a monthly time step using precipitation data from 11 gauge stations across Nigeria within the 2000–2012 period as reference. Despite the ability of some of the SPPs to reproduce the salient north–south pattern of the annual rainfall field, the Kling–Gupta efficiency (KGE) results revealed substantial discrepancies among the SPP estimates. Generally, the SPP reliability varies spatially and temporally, with all SPPs performing better over part of central Nigeria during the dry season. When we compared the real-time and adjusted satellite-based products, the results showed that the adjusted products had a better KGE score. The assessment also showed that the reliability of integrated multi-satellite retrievals for Global Precipitation Mission (IMERG) products was consistent with that of their predecessor Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA). Finally, the best overall scores were obtained from multi-source weighted-ensemble precipitation (MSWEP) v.2.2 and IMERG-F v.6. Both products are therefore suggested for further hydrological studies. Full article
Show Figures

Figure 1

15 pages, 39028 KiB  
Article
Evaluation and Comparison of Daily GPM/TRMM Precipitation Products over the Tianshan Mountains in China
by Yin Zhang, Gulimire Hanati, Sulitan Danierhan, Qianqian Liu and Zhiyuan Xu
Water 2020, 12(11), 3088; https://doi.org/10.3390/w12113088 - 4 Nov 2020
Cited by 30 | Viewed by 3097
Abstract
Based on the complex topography and climate conditions over the Tianshan Mountains (TSM) in Xinjiang, China, the new precipitation product, the Global Precipitation Measurement (GPM) (IMERG), and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) 3B42 (TMPA), were evaluated and compared. The evaluation [...] Read more.
Based on the complex topography and climate conditions over the Tianshan Mountains (TSM) in Xinjiang, China, the new precipitation product, the Global Precipitation Measurement (GPM) (IMERG), and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) 3B42 (TMPA), were evaluated and compared. The evaluation was based on daily-scale data from April 2014 to March 2015 and analyses at annual, seasonal and daily scales were performed. The results indicated that, overall, the annual precipitation in the Tianshan area tends to be greater in the north than in the south and greater in the west than in the east. Compared with the ground reference dataset, GPM and TRMM datasets represent the spatial variation of annual and seasonal precipitation over the TSM well; however, both measurements underestimate the annual precipitation. Seasonal analysis found that the spatial variability of seasonal precipitation has been underestimated. For the daily assessment, the coefficient of variation (CV), correlation coefficient (R) and relative bias (RB) were calculated. It was found that the GPM and TRMM data underestimated the larger CV. The TRMM data performed better on the daily variability of precipitation in the TSM. The R and RB data indicate that the performance of GPM is generally better than that of TRMM. The R value of GPM is generally greater than that of TRMM, and the RB value is closer to 0, indicating that it is closer to the measured value. As for the ability to detect precipitation events, the GPM products have significantly improved the probability of detection (POD) (POD values are all above 0.8, the highest is 0.979, increased by nearly 17%), and the critical success index (CSI) (increased by nearly 9% in the TSM) is also better than TRMM, although it is only slightly weaker than TRMM in terms of the false alarm ratio (FAR) and frequency bias index (FBI). Overall, GPM underestimates the low rainfall rate by 6.4% and high rainfall rate by 22.8% and overestimates middle rain rates by 29.1%. However, GPM is better than TRMM in capturing all types of rainfall events. Based on these results, GPM-IMERG presents significant improvement over its predecessor TRMM 3B42. Considering the performance of GPM in different subregions, a lot of work still needs to be done to improve the performance of the satellite before being used for research. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

21 pages, 7411 KiB  
Article
Hydrologic Validation of MERGE Precipitation Products over Anthropogenic Watersheds
by Felício Cassalho, Camilo Daleles Rennó, João Bosco Coura dos Reis and Benedito Cláudio da Silva
Water 2020, 12(5), 1268; https://doi.org/10.3390/w12051268 - 29 Apr 2020
Cited by 8 | Viewed by 3496
Abstract
Satellite rainfall estimates (SRFE) are a promising alternative for the lack of reliable, densely distributed, precipitation data common in developing countries and remote locations. SRFE may be significantly improved when corrected based on rain gauge data. In the present study the first complete [...] Read more.
Satellite rainfall estimates (SRFE) are a promising alternative for the lack of reliable, densely distributed, precipitation data common in developing countries and remote locations. SRFE may be significantly improved when corrected based on rain gauge data. In the present study the first complete validation of the Tropical Rainfall Measuring Mission (TRMM) 3B42-based MERGE product is performed by means of ground truthing and hydrological modeling-based applications. Four distinct, highly anthropogenic watersheds were selected in the Upper Paraíba do Sul River Basin (UPSRB)—Brazil. The results show that when compared to TRMM Multi-Satellite Precipitation Analysis (TMPA) 3B42V7 at the watershed scale, MERGE has a higher correlation with observed data. Likewise, root mean square errors and bias are significantly lower for MERGE products. When hydrologically validated, MERGE-based streamflow simulations have shown the capacity of reproducing the overall hydrological regime with “good” to “very good” results for the downstream lowland sections. Limitations were observed in the hydrological modeling of the upstream, highly anthropogenic, dammed watersheds. However, such limitations may not be attributed to MERGE precipitation since they were also obtained for the individually calibrated rain gauge-based simulations. The results indicate that the used MERGE dataset as a hydrological model input is better suited for application in the UPSRB than the TMPA 3B42V7. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

30 pages, 6215 KiB  
Article
An Appraisal of Dynamic Bayesian Model Averaging-based Merged Multi-Satellite Precipitation Datasets Over Complex Topography and the Diverse Climate of Pakistan
by Khalil Ur Rahman, Songhao Shang, Muhammad Shahid and Yeqiang Wen
Remote Sens. 2020, 12(1), 10; https://doi.org/10.3390/rs12010010 - 18 Dec 2019
Cited by 29 | Viewed by 3725
Abstract
Merging satellite precipitation products tends to reduce the errors associated with individual satellite precipitation products and has higher potential for hydrological applications. The current study evaluates the performance of merged multi-satellite precipitation dataset (daily temporal and 0.25° spatial resolution) developed using the Dynamic [...] Read more.
Merging satellite precipitation products tends to reduce the errors associated with individual satellite precipitation products and has higher potential for hydrological applications. The current study evaluates the performance of merged multi-satellite precipitation dataset (daily temporal and 0.25° spatial resolution) developed using the Dynamic Bayesian Model Averaging algorithm across four different climate regions, i.e., glacial, humid, arid and hyper-arid regions, of Pakistan during 2000–2015. Four extensively evaluated SPPs over Pakistan, i.e., Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42V7, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Climate Prediction Center MORPHing technique (CMORPH), and Era-Interim, are used to develop the merged multi-satellite precipitation dataset. Six statistical indices, including Mean Bias Error, Mean Absolute Error, Root Mean Square Error, Correlation Coefficient, Kling-Gupta efficiency, and Theil’s U coefficient, are used to evaluate the performance of merged multi-satellite precipitation dataset over 102 ground precipitation gauges both spatially and temporally. Moreover, the ensemble spread score and standard deviation are also used to depict the spread and variation of precipitation of merged multi-satellite precipitation dataset. Skill scores for all statistical indices are also included in the analyses, which shows improvement of merged multi-satellite precipitation dataset against Simple Model Averaging. The results revealed that DBMA-MSPD assigned higher weights to TMPA (0.32) and PERSIANN-CDR (0.27). TMPA presented higher skills in glacial and humid regions with average weights of 0.32 and 0.37 as compared to PERSIANN-CDR of 0.27 and 0.25, respectively. TMPA and Era-Interim depicted higher skills during pre-monsoon and monsoon seasons, with average weights of 0.31 and 0.52 (TMPA) and 0.25 and 0.21 (Era-Interim), respectively. Merged multi-satellite precipitation dataset overestimated precipitation in glacial/humid regions and showed poor performance, with the poorest values of mean absolute error (2.69 mm/day), root mean square error (11.96 mm/day), correlation coefficient (0.41), Kling-Gupta efficiency score (0.33) and Theil’s U (0.70) at some stations in glacial/humid regions. Higher performance is observed in hyper-arid region, with the best values of 0.71 mm/day, 1.72 mm/day, 0.84, 0.93, and 0.37 for mean absolute error, root mean square error, correlation coefficient, Kling-Gupta Efficiency score, and Theil’s U, respectively. Merged multi-Satellite Precipitation Dataset demonstrated significant improvements as compared to TMPA across all climate regions with average improvements of 45.26% (mean bias error), 30.99% (mean absolute error), 30.1% (root mean square error), 11.34% (correlation coefficient), 9.53% (Kling-Gupta efficiency score) and 8.86% (Theil’s U). The ensemble spread and variation of DBMA-MSPD calculated using ensemble spread score and standard deviation demonstrates high spread (11.38 mm/day) and variation (12.58 mm/day) during monsoon season in the humid and glacial regions, respectively. Moreover, the improvements of DBMA-MSPD quantified against fixed weight SMA-MSPD reveals supremacy of DBMA-MSPD, higher improvements (40–50%) in glacial and humid regions. Full article
(This article belongs to the Special Issue Remote Sensing in Agricultural Hydrology and Water Resources Modeling)
Show Figures

Graphical abstract

24 pages, 4847 KiB  
Article
Performance Assessment of SM2RAIN-CCI and SM2RAIN-ASCAT Precipitation Products over Pakistan
by Khalil Ur Rahman, Songhao Shang, Muhammad Shahid and Yeqiang Wen
Remote Sens. 2019, 11(17), 2040; https://doi.org/10.3390/rs11172040 - 29 Aug 2019
Cited by 43 | Viewed by 5012
Abstract
Accurate estimation of precipitation from satellite precipitation products (PPs) over the complex topography and diverse climate of Pakistan with limited rain gauges (RGs) is an arduous task. In the current study, we assessed the performance of two PPs estimated from soil moisture (SM) [...] Read more.
Accurate estimation of precipitation from satellite precipitation products (PPs) over the complex topography and diverse climate of Pakistan with limited rain gauges (RGs) is an arduous task. In the current study, we assessed the performance of two PPs estimated from soil moisture (SM) using the SM2RAIN algorithm, SM2RAIN-CCI and SM2RAIN-ASCAT, on the daily scale across Pakistan during the periods 2000–2015 and 2007–2015, respectively. Several statistical metrics, i.e., Bias, unbiased root mean square error (ubRMSE), Theil’s U, and the modified Kling–Gupta efficiency (KGE) score, and four categorical metrics, i.e., probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and Bias score, were used to evaluate these two PPs against 102 RGs observations across four distinct climate regions, i.e., glacial, humid, arid and hyper-arid regions. Total mean square error (MSE) is decomposed into systematic (MSEs) and random (MSEr) error components. Moreover, the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TRMM TMPA 3B42v7) was used to assess the performance of SM2RAIN-based products at 0.25° scale during 2007–2015. Results shows that SM2RAIN-based product highly underestimated precipitation in north-east and hydraulically developed areas of the humid region. Maximum underestimation for SM2RAIN-CCI and SM2RIAN-ASCAT were 58.04% and 42.36%, respectively. Precipitation was also underestimated in mountainous areas of glacial and humid regions with maximum underestimations of 43.16% and 34.60% for SM2RAIN-CCI. Precipitation was overestimated along the coast of Arabian Sea in the hyper-arid region with maximum overestimations for SM2RAIN-CCI (SM2RAIN-ASCAT) of 59.59% (52.35%). Higher ubRMSE was observed in the vicinity of hydraulically developed areas. Theil’s U depicted higher accuracy in the arid region with values of 0.23 (SM2RAIN-CCI) and 0.15 (SM2RAIN-ASCAT). Systematic error components have larger contribution than random error components. Overall, SM2RAIN-ASCAT dominates SM2RAIN-CCI across all climate regions, with average percentage improvements in bias (27.01% in humid, 5.94% in arid, and 6.05% in hyper-arid), ubRMSE (19.61% in humid, 20.16% in arid, and 25.56% in hyper-arid), Theil’s U (9.80% in humid, 28.80% in arid, and 26.83% in hyper-arid), MSEs (24.55% in humid, 13.83% in arid, and 8.22% in hyper-arid), MSEr (19.41% in humid, 29.20% in arid, and 24.14% in hyper-arid) and KGE score (5.26% in humid, 28.12% in arid, and 24.72% in hyper-arid). Higher uncertainties were depicted in heavy and intense precipitation seasons, i.e., monsoon and pre-monsoon. Average values of statistical metrics during monsoon season for SM2RAIN-CCI (SM2RAIN-ASCAT) were 20.90% (17.82%), 10.52 mm/day (8.61 mm/day), 0.47 (0.43), and 0.47 (0.55) for bias, ubRMSE, Theil’s U, and KGE score, respectively. TMPA outperformed SM2RAIN-based products across all climate regions. SM2RAIN-based datasets are recommended for agricultural water management, irrigation scheduling, flood simulation and early flood warning system (EFWS), drought monitoring, groundwater modeling, and rainwater harvesting, and vegetation and crop monitoring in plain areas of the arid region. Full article
(This article belongs to the Special Issue Remote Sensing of Precipitation: Part II)
Show Figures

Graphical abstract

8 pages, 1960 KiB  
Technical Note
Monitoring the Indian Summer Monsoon Evolution at the Granularity of the Indian Meteorological Sub-divisions using Remotely Sensed Rainfall Products
by Amit Bhardwaj and Vasubandhu Misra
Remote Sens. 2019, 11(9), 1080; https://doi.org/10.3390/rs11091080 - 7 May 2019
Cited by 7 | Viewed by 3798
Abstract
We make use of satellite-based rainfall products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to objectively define local onset and demise of the Indian Summer Monsoon (ISM) at the spatial resolution of the meteorological subdivisions defined by the Indian [...] Read more.
We make use of satellite-based rainfall products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to objectively define local onset and demise of the Indian Summer Monsoon (ISM) at the spatial resolution of the meteorological subdivisions defined by the Indian Meteorological Department (IMD). These meteorological sub-divisions are the operational spatial scales for official forecasts issued by the IMD. Therefore, there is a direct practical utility to target these spatial scales for monitoring the evolution of the ISM. We find that the diagnosis of the climatological onset and demise dates and its variations from the TMPA product is quite similar to the rain gauge based analysis of the IMD, despite the differences in the duration of the two datasets. This study shows that the onset date variations of the ISM have a significant impact on the variations of the seasonal length and seasonal rainfall anomalies in many of the meteorological sub-divisions: for example, the early or later onset of the ISM is associated with longer and wetter or shorter and drier ISM seasons, respectively. It is shown that TMPA dataset (and therefore its follow up Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG)) could be usefully adopted for monitoring the onset of the ISM and therefore extend its use to anticipate the potential anomalies of the seasonal length and seasonal rainfall anomalies of the ISM in many of the Indian meteorological sub-divisions. Full article
(This article belongs to the Special Issue Remote Sensing of Rainfall and Snowfall - Recent Advances)
Show Figures

Graphical abstract

18 pages, 2464 KiB  
Article
Seasonal Effect on Spatial and Temporal Consistency of the New GPM-Based IMERG-v5 and GSMaP-v7 Satellite Precipitation Estimates in Brazil’s Central Plateau Region
by Leandro Salles, Frédéric Satgé, Henrique Roig, Tati Almeida, Diogo Olivetti and Welber Ferreira
Water 2019, 11(4), 668; https://doi.org/10.3390/w11040668 - 31 Mar 2019
Cited by 45 | Viewed by 5104
Abstract
This study assesses the performance of the new Global Precipitation Measurement (GPM)-based satellite precipitation estimates (SPEs) datasets in the Brazilian Central Plateau and compares it with the previous Tropical Rainfall Measurement Mission (TRMM)-era datasets. To do so, the Integrated Multi-satellitE Retrievals for GPM [...] Read more.
This study assesses the performance of the new Global Precipitation Measurement (GPM)-based satellite precipitation estimates (SPEs) datasets in the Brazilian Central Plateau and compares it with the previous Tropical Rainfall Measurement Mission (TRMM)-era datasets. To do so, the Integrated Multi-satellitE Retrievals for GPM (IMERG)-v5 and the Global Satellite Mapping of Precipitation (GSMaP)-v7 were evaluated at their original 0.1° spatial resolution and for a 0.25° grid for comparison with TRMM Multi-satellite Precipitation Analysis (TMPA). The assessment was made on an annual, monthly, and daily basis for both wet and dry seasons. Overall, IMERG presents the best annual and monthly results. In both time steps, IMERG’s precipitation estimations present bias with lower magnitudes and smaller root-mean-square error. However, GSMaP performs slightly better for the daily time step based on categorical and quantitative statistical analysis. Both IMERG and GSMaP estimates are seasonally influenced, with the highest difficulty in estimating precipitation occurring during the dry season. Additionally, the study indicates that GPM-based SPEs products are capable of continuing TRMM-based precipitation monitoring with similar or even better accuracy than obtained previously with the widely used TMPA product. Full article
Show Figures

Figure 1

25 pages, 6137 KiB  
Article
Evaluation and Analysis of Grid Precipitation Fusion Products in Jinsha River Basin Based on China Meteorological Assimilation Datasets for the SWAT Model
by Dandan Guo, Hantao Wang, Xiaoxiao Zhang and Guodong Liu
Water 2019, 11(2), 253; https://doi.org/10.3390/w11020253 - 1 Feb 2019
Cited by 18 | Viewed by 4078
Abstract
Highly accurate and high-quality precipitation products that can act as substitutes for ground precipitation observations have important significance for research development in the meteorology and hydrology of river basins. In this paper, statistical analysis methods were employed to quantitatively assess the usage accuracy [...] Read more.
Highly accurate and high-quality precipitation products that can act as substitutes for ground precipitation observations have important significance for research development in the meteorology and hydrology of river basins. In this paper, statistical analysis methods were employed to quantitatively assess the usage accuracy of three precipitation products, China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS), next-generation Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) and Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), for the Jinsha River Basin, a region characterized by a large spatial scale and complex terrain. The results of statistical analysis show that the three kinds of data have relatively high accuracy on the average grid scale and the correlation coefficients are all greater than 0.8 (CMADS:0.86, IMERG:0.88 and TMPA:0.81). The performance in the average grid scale is superior than that in grid scale. (CMADS: 0.86(basin), 0.6 (grid); IMERG:0.88 (basin),0.71(grid); TMPA:0.81(basin),0.42(grid)). According to the results of hydrological applicability analysis based on SWAT model, the three kinds of data fail to obtain higher accuracy on hydrological simulation. CMADS performs best (NSE:0.55), followed by TMPA (NSE:0.50) and IMERG (NSE:0.45) in the last. On the whole, the three types of satellite precipitation data have high accuracy on statistical analysis and average accuracy on hydrological simulation in the Jinsha River Basin, which have certain hydrological application potential. Full article
Show Figures

Figure 1

Back to TopTop