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Abstract: Typhoons are known for causing heavy precipitation, very strong winds, and storm surges.
With climate change, the occurrence, strength, and duration of typhoons are changing. Daily, weekly,
and monthly precipitation from in situ stations from the NOAA Global Historical Climatological
Network (GHCN) were compared in the Western North Pacific from 2000 to 2018 against two widely
used datasets: NASA’s TRMM TMPA and PERSIANN-CDR. Additionally, precipitation levels during
twenty-five typhoons were compared using precipitation estimates. There have been reductions in
the average number of typhoons per year from 1959 to present and by month during the months
of August, September, and October. Satellite-derived precipitation estimates from PERSIANN and
TRMM TMPA explained approximately 50% of the variation in weekly cumulative precipitation and
approximately 72% of the variation in monthly cumulative precipitation during the study period
(March 2000–December 2018) when using all available stations. When analysis was completed using
only stations close to the best track for the entire duration of a typhoon, 62% of the variation was
explained, which is comparable to the weekly and monthly cumulative comparisons. However, most
of the stations available and with sufficient data were not located in the tracks of the typhoons. It
is of utmost importance to better understand typhoon events by utilizing precipitation data from
satellite remote sensing in the Western North Pacific.

Keywords: precipitation; tropical cyclone; remote sensing; TRMM TMPA; PERSIANN-CDR; Western
North Pacific; typhoon

1. Introduction

Precipitation is one of the most widely studied phenomena worldwide because of
the role it plays in the productivity of aquatic and terrestrial environments [1]), food pro-
duction and security [2], and the climate [3]. The desire to understand the variability of
precipitation across time and space dates back to the fourth century in India [4]. Since that
time, there have been studies to measure and predict precipitation across the globe using
rain gauges [5], modeling [6], and remote sensors [7–9] The technological advancements
in the observation of precipitation have evolved from simple bucket-like rain gauges to
sophisticated satellite sensors [10]. Rainfall data are collected in the most rural and rugged
terrains without in situ rain gauges due to the development of remote sensing and predic-
tive precipitation using state-of-the-art models, with most of these data accessible via the
Internet. Furthermore, with the development of satellite remote sensors and precipitation
models, there now exist numerous estimates (described later) of precipitation [9,11]. These
estimates vary in availability, accessibility, and accuracy. While some precipitation estimates
have been shown to be more accurate over land, others are more accurate over water [12].
Some are more accurate at daily time scales while others are more accurate at monthly time
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scales [13]. As a result, the appropriateness of these estimates for the accurate representa-
tion of precipitation over a specified area and duration is called into question. For satellite
remote sensing precipitation estimates, accuracy generally implies being comparable and
equivalent to measurements from in situ rain gauges [11,13,14] based on an accumulation
period and spatial spacing of the gauges. However, there is a known discrepancy between
in situ measurements and remotely sensed precipitation estimates [11], as a rain gauge is
a point measure of rainfall and satellite sensors averaged over a certain region in space.
In addition, comparing remotely sensed satellite estimates to in situ measurements in
areas that do not currently have any or very few in situ rain gauges presents a challenge.
Measurements of precipitation by rain gauges can vary spatially and temporally due to the
type of measurement, drop size, and intensity [15]. Furthermore, during extreme weather
events such as tropical cyclones, in situ rain gauges can be affected by high wind [16] and
storm surges [17], which impact the accuracy. Additionally, precipitation estimates from
satellite products have known limitations, including underestimation in mountainous or
complex terrain [18]; the differing cloud types (depending on the type of methods used, i.e.,
IR vs. VIS/IR), which influence the brightness temperature; precipitation from convective
versus non-convective systems; and infrequent sampling [19].

Our approach to better understand typhoons and the precipitation associated with
them was to first investigate how the number of typhoons has changed over time and then
to estimate the precipitation during several of these typhoon events. Daily precipitation
estimates were compared during typhoon events in the Western North Pacific from 2000 to
2018 using NASA’s Tropical Rainfall Measuring Mission (TRMM TMPA), Multi-Satellite
Precipitation Analysis (TMPA), and Precipitation Estimation from Remotely Sensed Infor-
mation using Artificial Neural Networks–Climate Data Records (PERSIANN-CDR). There
have been many studies conducted to investigate these specific precipitation products,
and some studies have used similar products to study specific typhoons. For example,
in a 2014 study [20], daily precipitation estimates from PERSIANN Cloud Classification
System (CCS) were mapped to track the precipitation for the 2014 Typhoon Haiyan. Both
Lanfont et al., 2004 [21] and Feng and Shu 2018 [22] utilized TRMM TMPA precipitation
to better understand precipitation patterns for tropical cyclones. Lonfat et al., 2004 used
TRMM TMPA precipitation estimates for precipitation patterns for 260 tropical cyclones
worldwide. They used satellite precipitation to improve quantitative precipitation fore-
casts (QPF), as estimating absolute precipitation is very difficult. Additionally, Guzman
and Jiang [23] used both TRMM TMPA and NASA’s Global Precipitation Measurement
(GPM) to understand how precipitation during TCs have changed from 1998 to 2016. They
were able to show that precipitation during TCs have increased across all the TC-prone
basins, especially within the Western North Pacific (NWP), using only precipitation from
satellite estimates.

However, there have been only a few studies conducted comparing different satellite
remote sensing precipitation products across several typhoon events. Typhoons are known
for causing heavy precipitation, very strong winds, and storm surges. These lead to
flooding, heavy run-off, and landslides, which often result in water contamination, heavy
sedimentation, and collapse of buildings and other man-made structures. With climate
change, the occurrence, strength, and duration of typhoons is changing, and it is generally
acknowledged that typhoons are becoming stronger [24,25].

Our approach is focusing on the NWP to investigate precipitation across several
typhoon events using the PERSIANN-CDR, TRMM TMPA, and I -situ gauges. There are
several reasons that we chose to use these products for this study:

PERSIANN-CDR:

1. Long data records—Provides daily precipitation data from 1983 to the present;
2. Large spatial coverage—Quasi-global (60◦S–60◦N; 180◦W–180◦E) spatial coverage

and 0.25◦ × 0.25◦ spatial resolution;
3. Proven use in variety of environments—Used for estimating precipitation around the

world in varied topographical areas, complex terrains, and over oceans;
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4. Tested across years—Widely used (more than 2000 publications) and easily accessible
to the public;

5. Verification and validation—It has been corrected using an in situ gauge network.

TRMM TMPA:

1. 10+ year record—Provides daily precipitation data from 1998 to 2019;
2. Large spatial coverage—Quasi-global (50◦S to 50◦N; 180◦W to 180◦E) spatial coverage

and 0.25◦ × 0.25◦ spatial resolution;
3. Proven use in a variety of environments and for tropical cyclones—Used for estimating

precipitation around the world in varied topographical areas, complex terrain, and
over oceans;

4. Tested across years—Widely used (more than 160 publications since 2007) and easily
accessible to the public;

5. Verification and validation—It has been corrected using an in situ gauge network at
the monthly scale.

There were two main objectives of this study: (1) to determine whether typhoon oc-
currence in the NWP has changed over time; (2) to determine which precipitation product,
namely PERSIANN, TRMM TMPA, or in situ gage data, should be used to estimate precipi-
tation during typhoons in the NWP. Since in situ rain gage data are generally accepted as
accurate, the satellite-based precipitation products were compared to these data. To deter-
mine which precipitation product should be used, we conducted a comparison of remotely
sensed precipitation with in situ precipitation results to provide a general understanding
of how well the satellite products estimated in situ rainfall for gauges located within the
best track areas. The results allowed us to understand how well satellite products estimate
in situ precipitation in general across the entire study period (2000–2018). By completing
this analysis, we can better understand how well satellite precipitation observations really
compares during “normal” conditions and extreme (typhoon) conditions.

2. Methods

The distribution of Western North Pacific Tropical Cyclones published in the 2018
Annual Tropical Cyclone Report [26] was used to display the average number of typhoons
(defined by maximum sustained winds greater than 64 knots) by month and year from
1959 to 2018. The best track data from the Naval Oceanography Portal [27] from 2000
through 2018 were also utilized. Only the best track data for the Western North Pa-
cific for storms that developed into typhoons were used (Figure 1). The area of interest
(AOI) for our study extended from 10◦S 100◦E to 50◦N 180◦E, encompassing the pri-
mary location of typhoon development in the Western North Pacific Ocean. This large
area was the focus due to the complexity and variation in typhoon development and
tracking [21,28–30]. Twenty-five typhoons occurring in the region from 2000 through 2018
were studied (Table 1). These typhoons varied in duration, time of occurrence, and area
affected. Example cumulative rainfall results from TRMM TMPA maps for a subset of
typhoons with best track and gauge locations are shown in Figure 2.

Daily precipitation data from the NOAA Global Historical Climatological Network
(GHCN) [31] were used to provide in situ observations for comparison against satellite
remote sensing estimates. Both the TRMM TMPA Near Real-Time 3B42 daily precipitation
product [32] and the PERSIANN-CDR daily precipitation product [14,33] were used, as
both products have been widely used for finer-scale analyses over both terrestrial and
marine environments [34–36]. Additionally, both products have long temporal records
(TRMM TMPA: 2000–present; PERSIANN CDR: 1983–present), high spatial resolution
(0.25◦ × 0.25◦), and have been used to estimate precipitation over the tropics with convec-
tive systems [9]. TRMM TMPA is a precipitation product that combines precipitation esti-
mates from microwave, radar, and IR data to produce a high temporal (3-hourly and daily)
and spatial (0.25◦ × 0.25◦) resolution dataset that is available across the globe (50◦S–50◦N)
and is corrected with gauge climatology from the Global Precipitation Climatology Project
(GPCP) [37].
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Table 1. Information about the twenty-five typhoons, including the duration, locations affected, and
Oceanic Niño Index (ONI) value for each typhoon.

Year Month Duration Name ONI

2000 August 10 Bilis −0.5
2002 June, July 17 Chata’an 0.7, 0.8
2002 July 15 Halong 0.8
2002 December 11 Pongsona 1.1
2003 April 22 Kujira 0.0
2004 April 17 Sudal 0.2
2004 June, July 17 Ting Ting 0.3, 0.5
2004 August, September 19 Chaba 0.6, 0.7
2007 March, April 7 Kong-rey 0.0, −0.2
2008 December 10 Dolphin −0.7
2009 September 5 Ketsana 0.7
2013 October 12 Francisco −0.2
2013 November 9 Haiyan −0.2
2014 July 12 Neoguri 0.1
2014 July, August 20 Halong 0.1, 0.0
2015 May 19 Dolphin 1.0
2015 June, July 15 Chan-hom 1.2, 1.5
2016 July 7 Nepartak −0.3
2017 October 9 Lan −0.9
2018 March, April 10 Jelawat −0.6, −0.5
2018 June, July 9 Prapiroon 0.1
2018 July 10 Maria 0.1
2018 July 6 Wukong 0.1
2018 August 10 Soulik 0.1
2018 August 8 Cimaron 0.1

PERSIANN uses an algorithm based on infrared GridSat-B1 satellite data and is ad-
justed using the GPCP to produce daily, high spatial resolution (0.25◦ × 0.25◦) precipitation
estimates that extend across the globe (60◦S–60◦N) [14].

The total or cumulative precipitation for each typhoon was calculated using the daily
precipitation estimates starting with the beginning of the typhoon development through to
the end of the typhoon. For example, the 2000 Typhoon Bilis had a start date of 18 August
2000 and an end date of 27 August 2000. Daily precipitation values within that date
range were added together to determine the total or cumulative precipitation for the
2000 Typhoon Bilis.

Widely accepted error metrics were used—namely the correlation coefficient (CC),
r-squared (r2), and root mean square error (RMSE)—to evaluate the comparison between in
situ precipitation from gauges, TRMM TMPA, and PERSIANN. Cumulative precipitation
results at the daily, weekly, and monthly time scales were compared. Each gauge location
corresponded to one pixel for TRMM TMPA and one for PERSIANN. Comparisons at
each time scale occurred using data from 1 March 2000 through to 31 December 2018.
Comparisons between in situ gauges, TRMM TMPA, and PERSIANN precipitation were
conducted for each typhoon.

In Section 3.1, only data from the distribution of Western North Pacific Tropical
Cyclones published in the 2018 Annual Tropical Cyclone Report [26] are shown. The
number of typhoons defined by maximum sustained winds greater than 64 knots was
averaged by month and year to show the interannual and intra-annual variations from
1959 through 2018.

In Section 3.2, we compare gauge precipitation to satellite remote sensing data across
the entire study period from 2000 through 2018. We used the gauge locations to determine
which pixel from TRMM TMPA and PERSIAN would be used for the comparison. Then, we
compared cumulative precipitation at the daily, weekly, and monthly time scales. For these
comparisons, we utilized correlation coefficient, r-squared, and root mean square error
methods to measure the accuracy of the estimates. These statistics are the most commonly
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used to compare the accuracy of satellite remote sensing data to gauge data. This portion
of the analyses was meant to show how accurate the satellite remote sensing products
are during normal conditions via the daily, weekly, and monthly time scales from 2000
through 2018.
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Figure 2. Cumulative precipitation maps of six of the storms analyzed showing best track locations
and all gauges in the map.

In Section 3.3, we use the correlation coefficient, r-squared, and root mean square
error results to compare the accuracy of the satellite estimates to gauge estimates during
typhoons. The analysis was conducted to determine how well the satellite precipitation
products estimated in situ rain gauges. A total of 41 stations (Table 2) were selected
using the following criteria: (1) stations located within 1◦ of the best track data (Figure 1);
(2) stations that were missing minimal data for the time interval measured (i.e., only stations
that had at least 25 days of data to calculate cumulative monthly rainfall); (3) stations that
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did not have any quality flags. These criteria drastically reduced the number of stations
that were able to be used for the analysis.

Table 2. Station descriptions for the forty-one in situ rain gauges located within 1◦ of the best track
locations with 329 or more days of data available (2000–2018).

Station ID Latitude Longitude Elevation (m) Gauge (mm/Year)

CHM00059838 19.10 108.62 8 1072
CHM00059417 22.37 106.75 129 1182
CHM00059316 23.40 116.68 3 1208
CHM00059431 22.63 108.22 126 1231
JAW00043323 35.28 139.67 53 1245
CHM00059134 24.48 118.08 18 1299
CHM00058457 30.23 120.17 43 1364
JA000047648 35.73 140.85 28 1383

CHM00058477 30.03 122.12 37 1386
CHM00058847 26.08 119.28 14 1416
JAW00043324 34.15 132.23 3 1484
CHM00058921 25.97 117.35 204 1555
CHM00058834 26.63 118.00 128 1589
JA000047971 27.10 142.18 8 1633

CHM00058752 27.78 120.65 38 1650
GQC00914156 13.52 144.85 107 1680
CQC00914855 15.12 145.72 66 1802
JAW00042215 26.27 127.75 84 1819
GQC00914950 13.55 144.89 160 1867
CHM00059758 20.00 110.25 24 1870
CHM00059501 22.78 115.37 5 1872
CQC00914874 15.00 145.63 82 1939
RP000098232 18.37 121.63 3 2079

CHM00059632 21.95 108.62 6 2109
GQC00914727 13.35 144.77 3 2151
CHM00059855 19.23 110.47 25 2170
CHM00059663 21.87 111.97 22 2280
JA000047927 24.82 125.13 16 2319
JA000047945 25.93 131.32 24 2327

CQC00914080 15.21 145.75 252 2350
CQC00914801 14.17 145.24 179 2384
GQC00914025 13.58 144.93 190 2469
GQC00914001 13.39 144.66 3 2492
GQC00914468 13.45 144.80 18 2498
JA000047778 33.45 135.75 76 2545

GQW00041415 13.48 144.80 77 2554
JA000047936 26.20 127.68 53 2651

FMC00914892 10.03 139.80 2 2843
RP000098430 14.63 121.02 46 4077
RP000098444 13.13 123.73 17 4702

Finally, in Section 3.4, we focus on specific typhoons for the analysis to determine
whether the satellite remote sensing precipitation is more accurate when gauges are lo-
cated closer to the track of the typhoon. As with the previous sections mentioned, we
used correlation coefficient, r-squared, and root mean square error results to determine
the accuracy.

3. Results
3.1. Rates of Occurrence of Typhoons Changed over Time from 1959 to Present Day

The average number of occurrences of typhoon events (≥64 knots) per month during
the portion of the typhoon season (July through October) from 2000 to 2018 has decreased
compared to the average number of typhoons from 1959 through 1999 (Figure 3). The
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average numbers of typhoon events in the months of August, September, and October
during 1959–1999 were 3.49, 3.39, and 3.15, respectively. The average numbers of typhoons
for the same months during the 2000–2018 time period were 3.32, 2.84, and 2.68, respectively.
By examining Figure 3 more closely, it can be seen that the curve for the average number
of typhoon events for 2000–2018 for the months of August–December clearly falls below
those for 1959–1999 and 1959–2018. The gap between the two sets of curves increases from
about 0.2 in August to 0.6 in September to 0.7 in October and decreases to 0.2 and 0.1 in
November and December, respectively. The biggest gap is in the month of October and the
smallest gap is in August in the August–October typhoon season.
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Figure 3. Average number of typhoons (≥64 knots) by month for three different periods of time
(1959–1999, 1959–2018, and 2000–2018), showing that the numbers of typhoons by month have
decreased. Standard error bars are shown for the average number of typhoons for the 1959–2018 line.

The total number of typhoons (≥64 knots) occurring each year has fluctuated from
1959 to 2018 with oscillating patterns (Figure 4). While the average number of typhoons
during this period is 16.9, there are certain decades when the number of typhoons is well
above the average and well below the average. The average numbers of typhoons during
the 1959–1968, 1969–1978, 1979–1988, 1989–1998, 1999–2008, and 2009–2017 time periods
were 20.6, 15.2, 16.0, 19.3 was 16.2, and 13.8, respectively. The average number of typhoons
is well above the average for 1959–1969, with a peak of 26 in 1964, and well below the
average for 2005–2014, with a minimum in 2011 of 7.
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3.2. Comparison of Precipitation Results between In Situ Gauges and Satellite Remote Sensing
Estimates in the Western North Pacific

Daily precipitation data from 1 March 2000 to through 31 December 2018 were used
to determine how precipitation results compare between in situ rain gauge and satellite
remote sensing estimates. The daily data were used to calculate weekly and monthly
precipitation values for each station and the corresponding pixels from TRMM TMPA and
PERISANN. The correlation coefficient, r-squared, and root mean square error results are
shown in Table 3. The was a weak relationship between in situ rainfall and TRMM TMPA
or PERSIANN at the daily time scale, with only 17% of the variation explained by the
satellite estimates and RMSE of 13 mm (Table 3). However, 57% and 48% of the variation in
weekly rainfall was explained by TRMM TMPA and PERSIANN, respectively, and RMSEs
varied from 36 mm to 39 mm. Furthermore, 68% and 64% of the variation in monthly in
situ rainfall was explained by TRMM TMPA and PERSIANN, respectively, with RMSEs
ranging from 78 mm to 90 mm. The correlation coefficients were 0.754 and 0.691 for weekly
cumulative precipitation and 0.825 and 0.803 for monthly cumulative precipitation for
TRMM TMPA and PERSIANN, respectively (Table 3). Scatterplots of cumulative weekly
and monthly rainfall are shown in Figure 5 to provide more visual information about the
statistics presented above. When examining these scatterplots, one can see that the majority
of the values are zero or very close to zero, with few values over 500 mm. In fact, 75%
of the weekly gauge rainfall values were equal to or less than 47.5 mm and 75% of the
monthly gauge rainfall values were equal to or less than 216.4 mm. Additionally, rainfall
measurements from gauges on average were higher than the estimates from PERSIANN or
TRMM TMPA.
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Table 3. Correlation coefficient (CC), r-squared (r2), and root mean square error (RMSE) results for
daily, weekly, and monthly data.

Statistic Parameters
Cumulative Precipitation

Day (mm/d)_ Week (mm/w) Month (mm/m)

CC
TRMM TMPA 0.412 0.754 0.825

PERSIANN 0.430 0.691 0.803

r2

Gauge = m ∗ TRMM TMPA + b 0.170 0.568 0.680
Gauge = m ∗ PERSIANN + b 0.185 0.478 0.645

Gauge = m ∗ TRMM TMPA + Station + b 0.178 0.587 0.725
Gauge = m ∗ PERSIANN + Station + b 0.195 0.511 0.726

RMSE

Gauge = m ∗ TRMM TMPA + b 13.707 35.870 85.148
Gauge = m ∗ PERSIANN + b 13.588 39.436 89.727

Gauge = m ∗ TRMM TMPA + Station + b 13.641 39.060 78.502
Gauge = m ∗ PERSIANN + Station + b 13.501 38.170 78.407
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For example, an in situ gauge measured almost 1500 mm, while the TRMM TMPA
pixel estimated 1000 mm (see Figure 5b). However, TRMM TMPA did estimate closer to
the in situ rainfall than PERSIANN, as indicated on the scatterplots.

The root mean square error was also calculated for each in situ rain gauge for daily
cumulative (Figure 6), weekly cumulative (Figure 7), and monthly cumulative precipitation
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(Figure 8). Root mean square error values varied across stations, at 0–25 mm for daily
rainfall, 0–99 mm for weekly rainfall, and 0–187 mm for monthly rainfall. The RMSE is
a unit-based measure that shows how well the satellite precipitation results estimate the
in situ observations. The RMSE values for daily cumulative precipitation for PERSIANN
varied from 5.42 mm to 25.80 mm and for TRMM TMPA varied from 5.42 mm to 22.90 mm
across the entire AOI. One might think that the individual stations would have similar
RMSE values; however, this is not always the case, as can be seen in Figure 6a–c. For
example, in Figure 6a, 2 stations in Japan have RMSE values < 10.50 mm for PERSIANN
and RMSE values > 20 mm for TRMM TMPA. This can also be seen in the RMSE values for
the weekly cumulative precipitation results shown in Figure 6b and monthly cumulative
precipitation results shown in Figure 6c. Two of the stations in the Philippines have
RMSE values < 37 mm for PERSIANN and RMSE values > 41 mm (Figure 6b). Several
stations (stations in Japan, the islands of Japan, and in the Philippines) in Figure 6c show
larger differences in RMSE values between PERSIANN and TRMM TMPA. It appears that
these variations in RMSE are due to differences in location, elevation, and the amount
of rainfall the stations receive (Table 2). Together, these figures help show how similar
and different the estimates from satellites can be depending on the location and time
scale. At the daily time scale, there is only a range of about 20 mm in the RMSE values,
while there is a range of 187 mm in the RMSE values at the monthly time scale. When
the precipitation amounts from the stations are considered (yearly cumulative range of
1072–4702 mm from Table 2), this can help one to understand the RMSE values. The lowest
yearly cumulative precipitation is 1072 mm, which is approximately 89 mm/month and
3 mm/day. The highest yearly cumulative precipitation is 4702 mm, which is approximately
392 mm/month and 13 mm/day.

3.3. Comparison of Precipitation Results between In Situ Gauges and Satellite Remote Sensing
Estimates during Typhoons

This portion of the analysis was completed to determine how well daily precipitation
estimates from satellites compared to in situ gauges during typhoons.

Comparisons of daily precipitation from in situ rain gauges and satellite remote
sensing estimates were completed for all twenty-five typhoons. There was a lot of variation
in how well the satellite precipitation data estimated in situ rainfall because of the duration
of the typhoons, timing of the typhoons, and available measurements from in situ gauges.
All available in situ gauges were used during each typhoon, regardless of the location.
This means that many of the rainfall measurements from the in situ gauges equaled zero
because they were either collected far away from the typhoon track or because they were
collected on days before or after the typhoon passed the area. For example, during the
2000 Typhoon Bilis, 34 in situ gauges were able to be used for comparison with TRMM
TMPA and PERSIANN results, while only 9 in situ gauges were used for the 2017 Typhoon
Lan (Table 4). This resulted in r-squared values of 0.2 and 0.3 for PERSIANN and TRMM
TMPA, respectively, for Typhoon Bilis (Table 4). Across all twenty-five typhoons, the
r-squared values ranged from 0.00 to 0.46, with the most variation explained during
the 2004 Typhoon Ting-Ting and 2007 Typhoon Kong-rey (Table 4). While 35% of the
variation was explained by TRMM TMPA during the 2004 Typhon Ting-Ting, only 25%
was explained by PERSIANN (Figure 7; Table 4). Conversely, during the 2007 Typhoon
Kong-rey, PERSIANN explained 46% of the variation, while TRMM TMPA only explained
34% (Figure 7; Table 4). Many of the observations equaled zero during both typhoons
because of when and where the observations were collected, as previously mentioned. Both
PERSIANN and TRMM TMPA underestimated daily precipitation during the typhoons,
as indicated by the linear regression lines falling below the 1:1 line on the scatterplots
(Figure 7). Overall, PERSIANN estimates were closer to the in situ gauge precipitation
during the 2004 Typhoon Ting-Ting and the 2007 Typhoon Kong-rey, as can be seen by
the linear regression lines on each scatterplot (Figure 7). Interestingly, there were many
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precipitation estimates from PERSIANN and TRMM TMPA that were much higher when
the in situ gauge values equaled zero.
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Table 4. R-square values, degree of freedom, and number of stations for each typhoon for TRMM
TMPA and PERSIANN.

Storm TRMM TMPA PERSIANN DF # of Stations

2000 Bilis 0.327 0.214 330 34
2002 Chata’an 0.081 0.230 457 31
2002 Halong 0.125 0.207 398 29

2002 Pongsona 0.038 0.083 298 30
2003 Kujira 0.144 0.073 602 30
2004 Sudal 0.092 0.040 440 28

2004 Ting-Ting 0.349 0.251 463 28
2004 Chaba 0.299 0.302 501 29

2007 Kong-rey 0.344 0.459 172 26
2008 Dolphin 0.094 0.201 228 26
2009 Ketsana 0.012 0.004 121 27

2013 Francisco 0.042 0.354 46 4
2013 Haiyan 0.004 0.011 34 4
2014 Neoguri 0.044 0.278 99 9
2014 Halong 0.233 0.331 171 9
2015 Dolphin 0.042 0.091 154 9

2015 Chan-hom 0.072 0.099 120 9
2016 Nepartak 0.023 0.000 55 9

2017 Lan 0.037 0.046 73 9
2018 Jelewat 0.115 0.217 74 11

2018 Prapiroon 0.143 0.093 66 11
2018 Maria 0.260 0.340 84 11

2018 Wukong 0.025 0.072 46 9
2018 Soulik 0.077 0.238 98 11

2018 Cimaron 0.114 0.192 78 11
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3.4. Comparison of Precipitation Results between In Situ Gauges and Satellite Remote Sensing
Estimates during a Specific Typhoon

When the analysis was performed using specific in situ rain gauges close to the
typhoon track, more variation was explained, but only at specific stations. The cumulative
rainfall from TRMM TMPA, PERSIANN, and the in situ rain gauges for the 2002 Typhoon
Chataan are shown in Figures 8 and 9. As can be seen in the figures, there was spatial
variation between the PERSIANN and TRMM TMPA estimates, with PERSIANN estimating
higher precipitation values in many areas within the AOI (Figure 8). Furthermore, the
cumulative in situ precipitation did not reach the same amount of precipitation from the
satellites, although this was due to the locations of the stations. The highest cumulative
precipitation value from the satellite estimates occurred (spatially) outside of the best
track of the 2002 Typhoon Chataan (see Figure 2), to the west of the Philippines. The
highest cumulative precipitation value from the in situ gauges occurred in Japan (Figure 8).
To gain a better understanding of precipitation within the track of the 2002 Typhoon
Chataan, analysis was conducted using a subset of stations (Figure 9c,d). The differences in
precipitation estimates are more obvious in Figure 9, where a smaller spatial extent is shown.
The extent shown in Figure 9 shows a dramatic change in precipitation from the southwest
to the northeast direction. There are very clear differences and similarities in precipitation
between PERSIANN and TRMM TMPA. The similarities include the “boundary” of the
2002 Typhoon Chataan path in the northeast extent of the map (Figure 9a,b) and the
high cumulative precipitation in the southwest extent of the maps (Figure 9c,d). Some of
the differences between PERSIANN and TRMM TMPA are highlighted within the best
track portions of the maps, where there is an almost circular pattern for the PERSIANN
estimates versus a more heterogeneous linear pattern for the TRMM TMPA estimates.
Unfortunately, there are not many stations located within the area, but those that are fall
across the “boundary”. Since the cumulative precipitation results shown in Figures 8 and 9
do not show how the precipitation values varied across the duration of the typhoon, time
series plots with inset scatterplots are provided to provide a precipitation comparison
(Figures 10 and 11). The time series and scatterplots provided are for all of the stations
within the extent of Figure 9c,d for which more than 50% of the data were available during
the typhoon. Stations CQC00914855 (15.12◦N, 145.72◦E), CQC00914080 (15.21◦N, 145.75◦E),
and CQC00914801 (14.17◦N, 145.24◦E) are all stations that are located north of the boundary
of the 2002 Typhoon Chataan, as seen in Figure 9. The elevation and annual precipitation
vary in Figure 7. Scatterplots of satellite precipitation and in situ gauge precipitation during
the 2004 Typhoon Ting-Ting (left) show value ranges across the stations from 66 m to
252 m and 1802 mm/year to 2385 mm/year (Table 2). Due to the track of the typhoon,
the daily precipitation was lower at these stations than the stations located further south
(compare Figures 10 and 11). Stations GQW00041415 (13.48◦N, 144.80◦E), GQC00914468
(13.45◦N, 144.80◦E), and GQC00914025 (13.58◦N, 144.93◦E) are all located on the island
of Guam, which is within the track of the typhoon. Elevation ranged from 18 m to 190 m
and annual precipitation ranged from 2469 mm/year to 2554 mm/year at these stations
(Table 4). Since these stations were located within the typhoon track, there were much
higher daily cumulative precipitation measurements and estimates (Figure 11). There was
greater variation in rainfall from 3 July through 6 July, when the typhoon crossed over
Guam. Interestingly, TRMM TMPA estimated higher precipitation on 4 July 2002, while the
in situ gauges measured higher precipitation on 5 July (GQQ00041415 and GQC00914025 in
Figure 11) and 6 July 2002 (GQC00914468 on Figure 11). The most variation explained by the
satellite estimates was from PERSIANN (r2 = 0.615, p-value < 0.05) at station GQC00914025
(Figure 11). TRMM TMPA only explained at most 12% of the variation in in situ rainfall
values from the same station, but the result was not significant (Table 5).
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Figure 11. Time series and scatterplots of daily cumulative precipitation for in situ gauges
(CQC00914855, CQC00914080, CQC00914801), PERSIANN, and TRMM TMPA during the 2002
Typhoon Chataan.

Table 5. R-squared values for daily cumulative rainfall estimates during the 2002 Typhoon Chataan
for PERSIANN and TRMM TMPA.

Station ID PERSIANN TRMM TMPA

CQC00914855 0.204 * −0.003
CQC00914080 0.305 * 0.000
CQC00914801 0.035 −0.065
GQW00041415 0.482 * 0.110
GQC00914468 0.389 * −0.032
GQC00914025 0.615 * 0.124

CQC00914877 a 0.399 * 0.044
Note: * p-value < 0.05; a figure not shown.

4. Discussion

Developing a better understanding of precipitation variation during typhoons is of the
utmost importance in understanding the effects that these typhoons have on communities
and the global climate [38]. However, determining which precipitation estimates are more
accurate and should be used in specific instances (i.e., terrestrial vs. aquatic, mountainous
vs. flat terrain) is no easy task. In this paper, comparisons were made between two well-
known and commonly used precipitation datasets to understand precipitation variation
from 2000 to 2018 and during twenty-five typhoons in the Western North Pacific. This was
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achieved by comparing precipitation results from in situ rain gauges with rainfall results
from satellites.

Satellite-derived precipitation estimates from PERSIANN and TRMM TMPA explained
approximately 20% of the variation (RMSE ~ 14 mm) in daily precipitation, 50% of the
variation (RMSE ~ 40 mm) in weekly cumulative precipitation, and approximately 72%
of the variation (RMSE ~ 85 mm) in monthly cumulative precipitation during the study
period (March 2000–December 2018) when using stations located within the best track area.
The correlation coefficients were 0.41 and 0.43 for daily precipitation, 0.754 and 0.691 for
weekly cumulative precipitation, and 0.825 and 0.803 for monthly cumulative precipitation
for TRMM TMPA and PERSIANN, respectively. These results are comparable to other
similar comparisons of PERSIANN and TRMM TMPA to in situ rainfall estimates [39].
Ayugi et al., 2019 [39] obtained RMSE values ranging from 44 mm to 110 mm for PER-
SIANN and TRMM TMPA. The root mean square error values for PERSIANN and TRMM
TMPA at daily, weekly, and monthly time scales varied across stations, with the highest
values being more than 150 mm at the monthly time scale. These results are comparable
with other research studies comparing PERSIANN and TRMM TMPA to in situ rainfall
estimates [39].

Due to the lack of spatial coverage and temporal coverage of in situ rainfall measure-
ments close to the typhoon best track data, at most 35% (TRMM TMPA) or 46% (PERSIANN)
of the variation in in situ rainfall was explained by satellite estimates. However, being able
to explain 35% of the variation using TRMM TMPA or PERSIANN during a typhoon was
a higher rate than at the daily time scale for values from all available stations. When the
analysis was completed using only stations close to the best track for the entire duration
of a typhoon, 62% of the variation was explained, which was comparable to the weekly
and monthly cumulative comparisons. While 62% of the variation does not seem high, it
is much higher than expected given the estimates were made during the 2002 Typhoon
Chataan. While being able to use in situ gauges to accurately estimate precipitation during
typhoons is ideal, this is very unlikely in the Western North Pacific due to the locations of
the stations. We focused attention on the 2002 Typhoon Chataan to highlight the potential
accuracy of satellite precipitation estimates had stations are located within a typhoon track.
However, most of the stations available that with enough data were not located in the
tracks of the typhoons. This means that it is of the utmost importance to better understand
the typhoon events by utilizing precipitation values from satellite remote sensing data in
the Western North Pacific.

Our results show that there have been reductions in the average number of typhoons
per year from 1959 to the present day and per month during the months of August,
September, and October, which in some ways contradicts some studies. Specifically, we see
a contradiction with the study by Stowasser et al., 2007 [40]. In their study, they modelled
tropical cyclones under warmer conditions. They utilized the same best track data that we
used with the starting year of 1970 (versus 1959 for our study) and found more tropical
storms from 1971 to 2003 than from 1991 to 2000. However, it is important to recognize that
we only utilized typhoon data and not all tropical cyclones. Additionally, we only utilized
best track data and no modelled data, and the study period was different. According to
previous research, these changes were likely due to multi-decadal oscillations in sea surface
temperature (SST) [41] and sea level pressure [42] in the region. Chan [41] showed that
during years with higher SST, there was a higher frequency of intense typhoons because of
more convection. While the intensity of a typhoon is not always indicative of the amount
of precipitation associated with the typhoon, often warm temperatures result in higher
precipitation from typhoons in the Western North Pacific [43]. Further investigation is
needed to determine whether having less typhoons in the Western North Pacific means
less precipitation or more precipitation. However, past research suggest that precipitation
is becoming more extreme and persisting longer. Research conducted by Tu and Chou
(2013) [44] and Chu et al. (2014) [45] looked at changes in precipitation over Taiwan and
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showed that the frequency of rainfall events follows a decreasing trend for non-typhoon
events versus an increasing trend for typhoon events.

Based on our research, we obtained promising results using satellite remote sensing
products to estimate precipitation during typhoons. Our results showed good agreement
between satellite precipitation and in situ gauge precipitation when there were gauges
located within the best tracks of the typhoons. In fact, during specific typhoons with
gauge data from locations within the best track, the results were better than for the overall
comparison of daily precipitation estimates across the entire study period of 2000–2018.
However, there were more times that a typhoon passed over an area with no gauges
available to make a comparison. As such, it is very important to recognize that comparing
satellite estimates to in situ gauges is not always possible to determine the accuracy of
satellite remote sensing products. As stated in the introduction, generally for satellite
remote sensing precipitation estimates to be considered accurate and precise, they need
to be comparable and equivalent to in situ rain gauges. This is the approach we used to
determine which product estimated precipitation more accurately. However, in these types
of situations where accurate representations of precipitation are needed in areas where
no in situ rain gauges are located, satellite remote sensing products need to carry more
weight and be trusted. To build this trust, more comparisons are needed of remotely sensed
precipitation estimates during normal and extreme events to determine how precipitation
is changing. Two recent studies that we would like to highlight in this regard are those
Guzman and Jiang [23] and Yang et al. [46]. Guzman and Jiang (2021) very recently
published a paper in Nature Communications showing a global increase in the tropical
cyclone rain rate from 1998 to 2016 using only NASA TRMM TMPA data. They concluded
that the positive trend in precipitation over time was due to increases in sea surface
temperature and total precipitable water. They were able to look at precipitation during
tropical cyclones in all active ocean basins across the study period. They found that the
greatest changes in precipitation occurred in the Western North Pacific. Furthermore, they
found that the inner-core rainfall rate decreased while there was increased rainfall in the
rainband region. Additionally, in a recent study by Yang et al. (2021), the authors found
that the storm intensity greatly influenced where the precipitation fell and the amount of
precipitation using satellite remote sensing products. Yang et al. used a new approach
involving the characteristics of tropical cyclones to understand precipitation. Precipitation
data from the TRMM satellite sensor have been extensively used in the past over land
surfaces to quantify extremes [47] and have been compared to data from rain gauges in
India [48], the United States [49], and Vietnam [13].

We need to continue to build upon this knowledge repository of precipitation during
extreme events by using multiple remotely sensed products and in situ gauges (when
available) across spatial and temporal scales.
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