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Abstract: We make use of satellite-based rainfall products from the Tropical Rainfall Measuring
Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to objectively define local onset
and demise of the Indian Summer Monsoon (ISM) at the spatial resolution of the meteorological
subdivisions defined by the Indian Meteorological Department (IMD). These meteorological
sub-divisions are the operational spatial scales for official forecasts issued by the IMD. Therefore,
there is a direct practical utility to target these spatial scales for monitoring the evolution of the ISM.
We find that the diagnosis of the climatological onset and demise dates and its variations from the
TMPA product is quite similar to the rain gauge based analysis of the IMD, despite the differences in
the duration of the two datasets. This study shows that the onset date variations of the ISM have a
significant impact on the variations of the seasonal length and seasonal rainfall anomalies in many of
the meteorological sub-divisions: for example, the early or later onset of the ISM is associated with
longer and wetter or shorter and drier ISM seasons, respectively. It is shown that TMPA dataset (and
therefore its follow up Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals
for GPM (IMERG)) could be usefully adopted for monitoring the onset of the ISM and therefore extend
its use to anticipate the potential anomalies of the seasonal length and seasonal rainfall anomalies of
the ISM in many of the Indian meteorological sub-divisions.

Keywords: Indian Summer Monsoon; GPM; TRMM satellite precipitation; meteorological
sub-divisions

1. Introduction

The seasonal evolution of the Indian Summer Monsoon (ISM) is a well-known feature of general
circulation. The seasonal shift in the lower tropospheric winds from south westerlies in the boreal
summer to north easterlies in association with the corresponding reversal in the thermal gradients
between the Indian subcontinent and the surrounding oceans is one of the most robust displays of the
seasonal cycle in the tropics [1–3].

The ISM has significant variations in the length of its season that is dictated by variations in its onset
and demise date of the season [3–6]. As a result of the variations in the seasonal length, it also affects
the seasonal accumulation of the rainfall [6]. The authors of [3,6] show that the large-scale variations of
El Niño and the Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) have some influence
on the seasonal length variations of the ISM. However, the transition from one phase to another of
these asymmetric oscillations result in complex non-linear influences on the ISM variations [6].
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The accompanying changes of the ISM rainfall is of critical importance for agriculture [7,8]. The
authors of [9] claim that 60% of the cropped area in India still solely depends on monsoon rainfall,
although this is rapidly changing with increasing investments in irrigation infrastructure [10]. The
highest concentration of rain-fed agriculture occurs in western and southern parts of the Indian
subcontinent [9]. In the recent decades, there has been a significant expansion of the arable area under
irrigation, especially in Gujarat, Madhya Pradesh, and Rajasthan. It is noteworthy, however, that the
interannual variations of the ISM rainfall has a strong influence on the productivity of the summer
season food grain production [11–13].

Although adopted methodology to diagnose the onset and demise of the ISM has been introduced
by the authors of [2], the novelty of this paper is that we are attempting for the first time to define the
onset and demise of the ISM at the granularity of the Indian meteorological sub-divisions (Figure 1).
These meteorological sub-divisions are the operational spatial scales for the official forecasts issued by
the Indian Meteorological Department (IMD). Therefore, there is a direct practical utility to target these
spatial scales for monitoring the evolution of the ISM.
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Figure 1. The outline of the 36 meteorological sub-divisions of India.

There are 36 meteorological sub-divisions that may be regarded as the spatial scales of the
operational forecasts issued by the IMD. In this study we conducted analyses in 34 of the 36
sub-divisions, which exclude Lakshadweep and Andaman and Nicobar Islands. This is because the
rainfall dataset used in this study is coarse in spatial resolution and is unable to resolve these two
islands’ meteorological sub-divisions.
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2. Datasets and Methodology

The rain gauge observations of the IMD are available for 104 years (1902–2005) [14,15]. Similarly,
the satellite-based TRMM Multi-satellite Precipitation Analysis (TMPA) is available for a 17-year period
(1998–2015) [16,17]. Both of these rainfall products are utilized to compute the onset and demise of the
ISM at 0.25◦ × 0.25◦ grid interval.

The onset and demise of the All India averaged Rainfall (AIR) is defined as the first day after the
minimum and maximum in the daily cumulative anomaly curve of AIR is reached in the year [2]. The
daily cumulative anomaly C′m(i) of AIR for day i of year m is computed as:

C′m(i) =
i∑

n=1

[Am(n) −
=
C] (1)

where,
=
C =

1
MN

∑M

m=1

∑N

n=1
A(m, n) (2)

Am(n) is the daily AIR for day n of year m, and
=
C is the climatology of the annual mean of AIR over N

(= 365 or 366) days for M years.
Before proceeding further, it is important to mention that we average the gridded rainfall analysis

to obtain the corresponding time series of the daily rainfall for each of the meteorological sub-divisions.
We proceed to define the local onset and demise at each of the meteorological sub-divisions by first
computing the climatological local onset (o(i)x) and demise (d(i)x) from the daily cumulative anomaly
(cl′x(i)) of the daily climatology of rain at a given meteorological sub-division in the same way as for
the AIR:

cl′x(i) =
i∑

n=1

[
rx(n) −

=
cx

]
(3)

where, rx is the climatological rain at a given meteorological sub-division x for day n and
=
cx is the

corresponding annual mean climatology of rain:

=
cx =

1
MN

∑M

m=1

∑N

n=1
r(m, n)x (4)

Similarly, we define the climatological onset (O(i)x) and demise (D(i)x) dates from the daily
cumulative anomaly of the daily climatological AIR. We then compute the difference (bx) between the
climatological local (o(j)x) and climatological AIR onset (O(i)) dates as:

bx = o(j)x −O(i) (5)

and similarly, the difference (dx) between the climatological local (d(j)x) and AIR demise (D(i))
dates as:

dx = d(j)x −D(i) (6)

The climatological departures of local with AIR-based onset/demise dates gives a robust estimate
of the phase lag (in days) with the transients being averaged out. We then define local onset (lcm(i)x) and
demise (ldm(i)x) dates for a given year m and meteorological sub-division x from the daily cumulative
rainfall anomaly for the year m by finding conservatively (the nearest) minimum and maximum near
the immediate vicinity of (Om(i) ± kbx) and (Dm(i) ± pdx), where, k =

(
1 + qσbx

)
and p =

(
1 + rσbx

)
.

σbx , σdx , are the standard deviations of bx and dx, q and r are fractions that are incrementally increased
from zero [3].
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3. Results

3.1. Climatology

As an illustration of the methodology, we show in Figure 2 the diagnosis of the onset and demise
of the ISM from the daily rainfall climatology for each of the 34 sub-divisions from the IMD dataset.
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Figure 2. Time series of daily rainfall climatology (IMD) of the 34-meteorological sub-divisions of India
(MSDs; blue dots) and the corresponding cumulative daily anomaly curve (red line) with onset (OD)
and Demise (DD) dates marked in Julian days. The onset and demise are marked by dotted red lines
that mark the inflection points where the slope of the cumulative daily anomaly curve changes.

These figures clearly demonstrate the objectivity of the method with the inflection points in the
cumulative anomaly curve for each of the meteorological sub-divisions being distinct. These diagnosed
climatological onset and demise dates from the IMD datasets are so robust that their diagnosis is
qualitatively and quantitatively similar when they are diagnosed from the TMPA datasets that are
available over a much shorter time period (Figure 3a,b).

The following notable features can be made from Figure 3a,b:

1. The meteorological sub-divisions in the northeast have the earliest onset date of the ISM followed
by southern Karnataka. This is also regarded as pre-monsoon rainfall, as they tend to occur in
early April.

2. The most delayed onset of the ISM occurs in Tamil Nadu and Puducherry in southeast India
followed by Jammu and Kashmir.

3. The earliest withdrawal of the ISM happens in northwestern parts of India in Rajasthan, Punjab,
Haryana, Himachal Pradesh.

4. Likewise, the demise of the ISM is uniformly very delayed across the meteorological sub-divisions
of southeastern India (e.g., Tamil Nadu, Rayalaseema, Andhra Pradesh, Karnataka).

5. The climatology of the onset and demise dates from both TMPA and IMD datasets are similar
over most meteorological sub-divisions. However, there are exceptions like the onset dates in
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southeastern India (e.g., Rayalaseema, Tamil Nadu) and northern India (e.g., Uttar Pradesh) that
have differences in the onset dates of over 10 days between the two datasets. The demise dates
are, however, comparatively more similar between the two datasets in these regions.
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3.2. Interannual Variability

One of the strong motivations to monitor the onset and demise of the ISM is because of its
year-to-year variations [2,3]. Given these interannual variations, the monitoring of the evolution of
the ISM becomes important since for example, the cultivation cycle of the summer (Kharif) crops are
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dependent on the arrival of the ISM rains. Additionally, the influence of the variations of the onset
date of the ISM on seasonal rainfall anomaly (Figure 4a) and the seasonal length of the ISM (Figure 4b)
are other persuasions to monitor the onset of the ISM.
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(a,c) rainfall and (b,d) length anomalies using (a,b) IMD, (c,d) TMPA rainfall datasets. Only statistically
significant values at 90% significance level is shaded. SRA and SL in the panel titles refer to Seasonal
Rainfall Anomaly and Seasonal Length, respectively. Note that the correlations range from 0 to −1.

Figure 4a shows that in many of the meteorological sub-divisions of India, the onset date variations
are linearly correlated with the corresponding seasonal rainfall anomalies. These negative correlations
suggest that early or later onset of the ISM in the sub-division is associated with corresponding
excess or deficit seasonal rainfall anomaly of the ISM, respectively. Similarly, the negative correlations
between the onset date variations and seasonal length anomalies in Figure 4b suggest that early or
later onset of the ISM is associated with longer or shorter seasonal length of the ISM, respectively.
These relationships are maintained when the correlations are computed with the TMPA instead of the
IMD rainfall datasets (Figure 4c,d). It is interesting to note that the onset date variations have a strong
bearing on the seasonal rainfall anomalies of the ISM in the southern peninsular, eastern, northeastern
parts of India with a conspicuous absence of influence in some sub-divisions over central parts of India
(Figure 4a,c). In contrast, the influence of the onset date variations on the seasonal length of the ISM is
stronger than its influence on seasonal rainfall anomalies and more uniform across India (Figure 4b,d).

4. Conclusions

In this paper, we have demonstrated the use of remotely sensed rainfall datasets to diagnose and
monitor the evolution of the Indian Summer Monsoon (ISM) in each of the meteorological sub-divisions.
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The resolution adaptability of the proposed methodology to diagnose the onset and demise dates of
the ISM is put to use in this study to adapt to the scales of the meteorological sub-divisions, which is
the operational spatial resolution for the forecasts issued by the Indian Meteorological Department.
The proposed methodology for the diagnosis of the onset and demise of the ISM is simple as it relies
on a single variable, namely, daily rainfall and makes it an appropriate choice for using the remotely
sensed TRMM multi-satellite Precipitation Analysis (TMPA) dataset.

The proposed methodology for the diagnosis of onset and demise of the ISM is objective as it
seeks the minima and maxima in the daily cumulative anomaly curve of the aggregated rainfall in
the meteorological sub-division. All of the sub-divisions display sharp inflection points in the daily
cumulative anomaly curve to provide with unambiguous onset and demise dates of the ISM.

We find that in a majority of the meteorological sub-divisions, the onset date of the ISM is
associated with corresponding anomalies of seasonal length and seasonal rainfall anomalies. This
association links early or later onset of the ISM in the sub-division to corresponding potentially longer
and wetter or potentially shorter and drier seasonal rainfall anomalies of the ISM. However, parts of
central India display insignificant influence of the variations of the onset of the ISM to either seasonal
length or seasonal rainfall anomalies.

It is shown from this study that the TMPA dataset (and therefore its follow up, the Global
Precipitation Measurement (GPM) Integrated Multiscale Retrievals for GPM (IMERG) rainfall product)
could be usefully adopted for monitoring the onset of the ISM and therefore extend its use to anticipate
the likelihood of potential anomalies of the seasonal length and seasonal rainfall anomalies of the ISM
in many of the Indian meteorological sub-divisions.
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