Evaluation and Application of Reanalyzed Combined Data under Extreme Climate Conditions: A Case Study of a Typical Flood Event in the Jinsha River
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Study Area Data and Extreme Precipitation Indexes
2.2.1. Observational Data from Ground-Based Meteorological Stations
2.2.2. Hourly Precipitation Grid Dataset Resulting from the Combination of Automatic Weather Station Data from China and the Climate Prediction Center (CPC) Morphing Technique (CMPA-H)
2.2.3. CMADS Dataset
2.2.4. TMPA and IMERG Satellite Precipitation Products
2.2.5. A 0.5° × 0.5° Grid Dataset of Daily Surface Temperature in China
2.2.6. Runoff Data
2.2.7. Extreme Precipitation Indexes
3. Accuracy Analysis and Evaluation of Reanalyzed Combined Datasets in Calculating Extreme Precipitation Indexes
3.1. Comparative Analysis of the Spatial Distribution of Extreme Precipitation Indexes
3.2. Analysis of Extreme Precipitation Indexes in the Basin
4. Analysis and Evaluation of the Accuracy of Reanalyzed Combined Datasets in Calculating Extreme Temperature Indexes
4.1. Comparative Analysis of the Spatial Distribution of Extreme Temperature Indexes
4.2. Analysis of the Extreme Temperature Indexes in the Basin
5. Analysis of the Typical Flood Events of 22 September Based on Reanalysis of Combined Data
5.1. Analysis and Evaluation of the Typical Flood Event Response to Precipitation Extremes
5.2. Analysis and Evaluation of the Response of Typical Flood Events to Temperature Extremes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Xu, T. Flood and waterlogging in the Yangtze River Basin in 2016. Yangtze River 2017, 48, 78–80. (In Chinese) [Google Scholar]
- Du, H. Probabilistic and Statistical Analysis of Extreme Flood in Huaihe River Basin under Climate Change. Ph.D. Thesis, Wuhan University, Wuhan, China, 2014. (In Chinese). [Google Scholar]
- Cai, W. Trend Characteristics and Extreme Distribution of Extreme Climatic Events in China. Ph.D. Thesis, University of International Business and Economics, Beijing, China, 2016. (In Chinese). [Google Scholar]
- Wang, L.; Liu, G.; Ren, Y. Analysis on the trend of extreme temperature and precipitation in tianjin. J. Irrig. Drain. 2016, 35, 100–104. (In Chinese) [Google Scholar]
- Wang, Q. Changes of Extreme Temperature and Precipitation Events over the Yangtze River Basin from 1962 to 2011. Ph.D. Thesis, Northwest Normal University, Gansu, China, 2014. [Google Scholar]
- Shi, G. Temporal and Spatial Characteristics of Climate Change in the Yangtze River Basin during 1970–2014; Jiangxi Normal University: Jiangxi, China, 2016. [Google Scholar]
- Zhang, C. Comparative study on climate characteristics of dry-hot valley of Jinsha River and dry-hot valley of upper Minjiang River; Chinese Academy of Forestry: Beijing, China, 2009. [Google Scholar]
- Tao, L. Study on the characteristics of extreme heavy rainfall on June 28 at Baihetan Hydropower Station in the lower jinsha River. Plateau Mt. Meteorol. Res. 2020, 40, 30–35. [Google Scholar]
- Zhang, J. Temporal and spatial distribution of extreme rainfall events in the Yangtze River Basin. Yangtze River 2019, 50, 81–86. [Google Scholar]
- Guo, G. Spatial and temporal distribution of extreme precipitation in summer over the Yangtze River Basin. J. Arid. Meteorol. 2021, 39, 235–243. [Google Scholar]
- Wang, C.; Liu, G.; Sun, R. Characteristics of extreme precipitation in Shandong Province from 1951 to 2013. Yellow River 2016, 38, 5–9. (In Chinese) [Google Scholar]
- O’brien, N.L.; Burn, D.H. A nonstationary peaks-over-threshold approach for modelling daily precipitation with covariate-dependent thresholds. Can. Water Resour. J. 2018, 43, 281–304. [Google Scholar] [CrossRef]
- Andelkovic, G.; Jovanovic, S.; Manojlovic, S.; Samardzic, I.; Zivkovic, L.; Sabic, D.; Gataric, D.; Dzinovic, M. Extreme Precipitation Events in Serbia: Defining the Threshold Criteria for Emergency Preparedness. Atmosphere 2018, 9, 188. [Google Scholar] [CrossRef] [Green Version]
- Biondi, D.; Greco, A.; De Luca, D.L. Fixed-area vs storm-centered Areal Reduction factors: A Mediterranean case study. J. Hydrol. 2021, 595, 125654. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Kim, D.; Kang, B. The role of rainfall spatial variability in estimating areal reduction factors. J. Hydrol. 2019, 568, 416–426. [Google Scholar] [CrossRef]
- Thorndahl, S.L.; Nielsen, J.E.; Rasmussen, M.R. Estimation of Storm-Centred Areal Reduction Factors from Radar Rainfall for Design in Urban Hydrology. Water 2019, 11, 1120. [Google Scholar] [CrossRef] [Green Version]
- De Luca, D.L.; Versace, P. Diversity of Rainfall Thresholds for early warning of hydro-geological disasters. Adv. Geosci. 2017, 44, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Al, A.; Fox, J.; Snyder, M. Evaluation of climate modeling factors impacting the variance of streamflow. J. Hydrol. 2016, 542, 125–142. [Google Scholar]
- Yin, J.; Gentine, P.; Zhou, S. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 2018, 9, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Cheng, W.; Hu, X. Response of extreme hydrological events to extreme climate in the Shule River Basin. Plateau Meteorol. 2019, 38, 583–592. (In Chinese) [Google Scholar]
- Ma, Y.; Huang, Y.; Liu, T. Change and Climatic Linkage for Extreme Flows in Typical Catchments of Middle Tianshan Mountain, Northwest China. Water 2018, 10, 1061. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xiang, T. Comparative analysis of precipitation and runoff response in Jinsha River basin before and after the impoundment of the Three Gorges Project. J. Yellow River Conserv. Tech. Inst. 2017, 29, 1–3. (In Chinese) [Google Scholar]
- Lu, L.; Wang, Q.; Wang, G. The relationship between climate change trend and runoff response in Jinsha River Basin in recent 60 years. J. North China Univ. Water Resour. Electr. Power 2016, 37, 16–21. (In Chinese) [Google Scholar]
- Li, J.; Chen, L.; Li, B. Analysis of Weather Characteristics of Heavy Precipitation in Jinshajiang River Basin. Yangtze River 2013, 44, 36–39. (In Chinese) [Google Scholar]
- Yang, L.; Mei, Y.; Ye, Y. Analysis on the evolution and response of hydrometeorological factors in the lower reaches of Jinsha River and the Three Gorges. Hydrology 2016, 36, 37–45. (In Chinese) [Google Scholar]
- Sun, S.; Chen, L.; Xiang, Y. Climatic characteristics of area rainfall in Jinsha river basin. Plateau Mt. Meteorol. Res. 2009, 1, 7–10. (In Chinese) [Google Scholar]
- Xia, J.; Yang, S.; Wan, Y. Spatial distribution characteristics of ecological potential in Jinshajiang River Basin (Yunnan Section) based on GIS. Resour. Environ. Yangtze Basin 2009, 18, 865–870. (In Chinese) [Google Scholar]
- Zeng, X.; Ye, L.; Zhai, J. Temporal and spatial evolution of precipitation in the Jinshajiang River Basin during 961 ~ 2010. Resour. Environ. Yangtze Basin 2015, 24, 402–407. (In Chinese) [Google Scholar]
- Ren, F.; Zhang, P.; Chen, X. Spatial heterogeneity of vegetation and its impact on ecological restoration in the main stream of Jinsha River. J. Yangtze River Sci. Res. Inst. 2016, 33, 24–30. (In Chinese) [Google Scholar]
- Deng, M.; Han, S. Study on healthy tourism development mode in jinsha river basin. Res. Tour. Manag. 2017, 2, 18–19. (In Chinese) [Google Scholar]
- Liu, X. A Preliminary Study on the Characteristics of Meteorological Factors and Runoffs in Jinsha River Basin. Ph.D. Thesis, Changjiang River Scientiffic Research Institute, Wuhan, China, 2016. (In Chinese). [Google Scholar]
- Chen, Y.; Wang, W.; Wang, G. Variation characteristics of temperature and precipitation in Jinsha River Basin. Plateau Mt. Meteorol. Res. 2010, 30, 51–56. (In Chinese) [Google Scholar]
- Cen, S.; Qin, N.; Li, Y. Climatic characteristics of runoff variation in flood season over Jinsha River Basin. Resour. Sci. 2012, 34, 1538–1545. (In Chinese) [Google Scholar]
- Shen, Y.; Pan, Y.; Yu, J. Quality assessment of regional hourly precipitation fusion products in China. Trans. Atmos. Sci. 2013, 36, 37–46. (In Chinese) [Google Scholar]
- Kuang, D.; Shen, Y.; Niu, Z. Analysis on the variation characteristics of precipitation product error spatial resolution and rainfall intensity in satellite inversion. Remote Sens. Inf. 2012, 75–81. (In Chinese) [Google Scholar]
- Yu, J.; Shen, Y.; Pan, Y. Improvement of the Probability Density Matching Method for Regional Satellite Precipitation Data in China. J. Appl. Meteorol. Sci. 2013, 24, 544–553. (In Chinese) [Google Scholar]
- Shen, Y.; Zhao, P.; Pan, Y. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, Y.; Yu, J. Fusion experiment of hourly precipitation from surface observation and satellite inversion in China based on the analysis of optimal interpolation method. Acta Meteorol. Sin. Acta Meteorol. Sin. 2012, 70, 1381–1389. (In Chinese) [Google Scholar]
- Meng, X.; Wang, H.; Chen, J.; Mingxiang, Y.; Zhihua, P. High-resolution simulation and validation of soil moisture in the arid region of Northwest China. Sci. Rep. 2019, 9, 17227. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Wang, H. Significance of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) of East Asia. Water 2017, 9, 765. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H.; Shi, C.; Wu, Y.; Ji, X. Establishment and Evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS). Water 2018, 10, 1555. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Shi, C.; Liu, S. CMADS data set and its driving role in watershed hydrological models: A case study of Heihe River Basin. Pearl River 2016, 37, 1–19. (In Chinese) [Google Scholar]
- Liu, Y.; Fu, Q.; Song, P. Review on satellite remote sensing inversion of precipitation. Adv. Earth Sci. 2011, 11, 1162–1172. (In Chinese) [Google Scholar]
- Zhang, X. Application of Satellite Precipitation Products in the Three Gorges Watershed. Ph.D. Thesis, Sichuan University, Chengdu, China, 2018. [Google Scholar]
- Chen, X.; Zhong, R.; Wang, Z. Accuracy and hydrological utility evaluation of new generation GPM IMERG satellite remote sensing data in southern China. J. Hydraul. Eng. 2017, 48, 1147–1156. (In Chinese) [Google Scholar]
- Shen, Y.; Feng, M.; Gao, F. Daily precipitation grainization in China. J. Appl. Meteorol. 2010, 21, 279–286. [Google Scholar]
- Yang, C.; Cheng, P.; Zou, F. Flood analysis of “05.8” in the middle and upper reaches of Jinsha River. Express Water Resour. Hydropower Inf. 2010, 31, 9–10. (In Chinese) [Google Scholar]
- Shi, B.; Shu, Y. Analysis and application of flood propagation time in the lower reaches of Jinsha River and main tributaries on the right bank. J. Water Resour. Res. 2014, 35, 33–35. (In Chinese) [Google Scholar]
- Hao, S. Characteristics of rainstorm flood in jinsha river basin. Cent. South China Water Power 1991, 3, 43–51. (In Chinese) [Google Scholar]
- Liu, Y.; Li, C.; Feng, B. Flood analysis of Jinsha River “05.8”. Yangtze River 2006, 37, 91–93. (In Chinese) [Google Scholar]
- Yu, J. The first measured flood of Jinsha River—Analysis of the rainstorm flood in August 1966. Des. Hydroelectr. Power Stn. 1994, 10, 20–24. (In Chinese) [Google Scholar]
- Hydrology General Station of Sichuan Water Conservancy and Electric Power Bureau. Sichuan Hydrology Handbook; Sichuan Water Resources and Electric Power Department: Chengdu, China, 1979. (In Chinese)
- Wang, F. Historical flood characteristics of jinsha river. Sichuan Water Resour. 1999, 20, 46–48. (In Chinese) [Google Scholar]
- Yin, J.; Guo, S.; Gu, L.; Yang, G.; Wang, J.; Yang, Y. Thermodynamic response mechanism of extreme precipitation to climate change and flood effect in China. Sci. China Press 2021, 33, 4315–4325. [Google Scholar]
Classification | Indicator | Name | Definitions | Units |
---|---|---|---|---|
Precipitation index | RX1day (y) | Max one-day precipitation amount | Monthly maximum one-day precipitation | mm |
Rx5day (y) | Max five-day precipitation amount | Monthly maximum consecutive five-day precipitation | mm | |
R95p (y) | Very wet days | Annual total precipitation when daily precipitation > 95th percentile | mm | |
R99p (y) | Extremely wet days | Annual total precipitation when daily precipitation 99th percentile | mm | |
SDII (y) | Simple daily intensity index | Annual total precipitation divided by the number of wet days (defined as precipitation ≥ 1.0mm) throughout the year | mm/d | |
Daily precipitation index | CDD (y) | Consecutive dry days | Maximum number of consecutive days with daily precipitation < 1 mm | d |
CWD (y) | Consecutive wet days | Maximum number of consecutive days with daily precipitation ≥ 1 mm | d |
Classification | Indicator | Name | Definitions | Units |
---|---|---|---|---|
Extreme temperature index | TXx (y) | Max Tmax | Monthly maximum value of daily maximum temp. | °C |
TNx (y) | Max Tmin | Monthly maximum value of daily minimum temp. | °C | |
TXn (y) | Min Tmax | Monthly minimum value of daily maximum temp. | °C | |
TNn (y) | Min Tmin | Monthly minimum value of daily minimum temp. | °C | |
Daily temperature index | FD0 (y) | Frost days | Annual count when TN (daily minimum) < 0 °C | d |
ID0 (y) | Ice days | Annual count when TX (daily maximum) < 0 °C | d |
Upstream Sub-Basin | Downstream Sub-Basin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Observation | CMPA-H | CMADS | GPM | TRMM | Observation | CMPA-H | CMADS | GPM | TRMM | ||
RX1day (2016) | Maximum (mm) | 50.5 | 62.6 | 69.22 | 55.2 | 63.6 | 112.9 | 80.9 | 95.24 | 109.5 | 91.4 |
Site | Weixi | Litang | Litang | Dege | Daocheng | Kunming | Leibo | Huaping | Dali | Zhaotong | |
Deviation (mm) | - | 12.1 | 18.72 | 4.7 | 13.1 | - | −32 | −17.66 | −3.4 | −21.5 | |
RX5day (2016) | Maximum (mm) | 101.4 | 108.8 | 120.79 | 106.4 | 134.7 | 194 | 144.5 | 144.43 | 144.5 | 160.5 |
Site | Weixi | Jiulong | Weixi | Deqin | Litang | Kunming | Yuanmou | Muli | Yuanmou | Leibo | |
Deviation (mm) | - | 7.4 | 19.39 | 5 | 33.3 | - | −49.5 | −49.57 | −49.5 | −33.5 | |
R95p (2016) | Maximum (mm) | 336 | 236.9 | 291.9 | 292 | 198.8 | 551.3 | 340.3 | 381.3 | 309.6 | 290.7 |
Site | Weixi | Litang | Weixi | Weixi | Batang | Huili | Huaping | Huaping | Liangshan (Xichang) | Chuxiong | |
Deviation (mm) | - | −99.1 | −44.1 | −44 | −137.2 | - | −211 | −170 | −241.7 | −260.6 | |
R99p (2016) | Maximum (mm) | 117.1 | 119.8 | 109.5 | 84.9 | 77 | 224.8 | 135.8 | 176 | 109.5 | 120.9 |
Site | Litang | Litang | Weixi | Xinlong | Batang | Chuxiong | Leibo | Huaping | Dali | Liangshan (Xichang) | |
Deviation (mm) | - | 2.7 | −7.6 | −32.2 | −40.1 | - | −89 | −48.8 | −115.3 | −103.9 | |
SDII (2016) | Maximum (mm/days) | 10.1 | 8.4 | 8.9 | 7.8 | 9.4 | 18.3 | 11.4 | 13.9 | 10.7 | 14.1 |
Site | Weixi | Daocheng | Weixi | Weixi | Jiulong | Huaping | Huaping | Huaping | Huaping | Leibo | |
Deviation (mm/day) | - | −1.7 | −1.2 | −2.3 | −0.7 | - | −6.9 | −4.4 | −7.3 | −4.2 |
Upstream Sub-Basin | Downstream Sub-Basin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Observation | CMPA-H | CMADS | GPM | TRMM | Observation | CMPA-H | CMADS | GPM | TRMM | ||
CDD (2016) | Maximum (days) | 190 | 132 | 142 | 202 | 145 | 83 | 82 | 95 | 87 | 129 |
Site | Tuotuohe | Qumalai | Qumalai | Wudaoliang | Tuotuohe | Yanyuan | Huaping | Muli | Liangshan (Xichang) | Yuexi | |
Deviation (days) | - | −58 | −48 | 12 | −45 | - | −1 | 12 | 4 | 46 | |
CWD (2016) | Maximum (days) | 22 | 28 | 21 | 14 | 12 | 11 | 19 | 14 | 37 | 25 |
Site | Jiulong | Diqing (Zhongdian) | Jiulong | Deqin | Diqing (Zhongdian) | Lijiang | Lijiang | Muli | Muli | Muli | |
Deviation (days) | - | 6 | −1 | −8 | −10 | - | 8 | 3 | 26 | 14 |
Upstream Sub-Basin | Downstream Sub-Basin | ||||||
---|---|---|---|---|---|---|---|
Observation | 0.5° Grid | CMADS | Observation | 0.5° Grid | CMADS | ||
TXx (2016) | Maximum (°C) | 34.6 | 30.2 | 36.37 | 37.5 | 34.8 | 40.6 |
Site | Batang | Daocheng | Batang | Huaping | Leibo | Huaping | |
Deviation (°C) | - | −4.4 | 1.77 | - | −2.7 | 3.1 | |
TXn (2016) | Minimum (°C) | −16 | −15.4 | −16.3 | −6.7 | −1.9 | −8.08 |
Site | Wudaoliang | Wudaoliang | Wudaoliang | Weining | Zhaotong | Weining | |
Deviation (°C) | - | 0.6 | −0.3 | - | 4.8 | −1.38 | |
TNx (2016) | Maximum (°C) | 18.1 | 15.3 | 19.5 | 27.2 | 21.7 | 27.93 |
Site | Batang | Diqing (Zhongdian) | Batang | Yuanmou | Leibo | Yuanmou | |
Deviation (°C) | - | −2.8 | 1.4 | - | −5.5 | 0.73 | |
TNn (2016) | Minimum (°C) | −34.8 | −29.6 | −35.02 | −11.7 | −8.7 | −13.27 |
Site | Qingshuihe | Wudaoliang | Qingshuihe | Weining | Muli | Weining | |
Deviation (°C) | - | 5.2 | −0.22 | - | 3 | −1.57 |
Upstream Sub-Basin | Downstream Sub-Basin | ||||||
---|---|---|---|---|---|---|---|
Observation | 0.5° Grid | CMADS | Observation | 0.5° Grid | CMADS | ||
FD0 (2016) | Maximum (days) | 299 | 130 | 309 | 55 | 68 | 161 |
Site | Wudaoliang | Qingshuihe | Qingshuihe | Yanyuan | Lijiang | Yanyuan | |
Deviation (days) | - | −169 | 10 | - | 13 | 106 | |
ID0 (2016) | Maximum (days) | 125 | 57 | 124 | 10 | 3 | 20 |
Site | Wudaoliang | Wudaoliang | Wudaoliang | Weining | Zhaotong | Weining | |
Deviation (days) | - | −68 | −1 | - | −7 | 10 |
NO. | Name | Peak Time | Average Daily Flow (Unit: m3/s) |
---|---|---|---|
1 | 9.22 flood events | 22 September 2016 | 13,100 |
Name | Daily Precipitation of CMADS | Extreme Precipitation Threshold | |||||||
---|---|---|---|---|---|---|---|---|---|
2016.9.15 | 2016.9.16 | 2016.9.17 | 2016.9.18 | 2016.9.19 | 2016.9.20 | 2016.9.21 | 2016.9.22 | ||
Wudaoliang | 2.37 | 2.47 | 0.46 | 1.45 | 0.57 | 0 | 2.5 | 0.32 | 7.88 |
Tuotuohe | 2.45 | 4.74 | 1.76 | 0 | 0 | 0 | 0 | 1.14 | 7.15 |
Qumalai | 0 | 2.41 | 3.96 | 0.25 | 0.95 | 0 | 1.2 | 1.69 | 7.3 |
Qingshuihe | 2.58 | 1.31 | 1.19 | 1.51 | 0.28 | 0 | 0.18 | 1.78 | 7.27 |
Yushu | 0.05 | 2.18 | 1.69 | 0.57 | 0.44 | 0 | 0 | 0 | 9.08 |
Dege | 1.91 | 0.18 | 16.5 | 2.81 | 0.67 | 0 | 0.02 | 3.85 | 11.4 |
Ganzi | 3.92 | 1.34 | 26.78 | 6.69 | 7.14 | 0.36 | 0.08 | 2.51 | 12.32 |
Xinlong | 3.91 | 2.11 | 9.39 | 10.37 | 6.22 | 0 | 0.03 | 10.28 | 12.5 |
Batang | 1.37 | 2.47 | 7.05 | 11.59 | 8.47 | 0.14 | 0 | 14.55 | 15.18 |
Litang | 1.93 | 0.24 | 10.91 | 0.18 | 3.46 | 0.27 | 0.22 | 11.65 | 14.58 |
Deqin | 0.81 | 0 | 0.29 | 0.76 | 1.82 | 5.96 | 0.11 | 0.7 | 13.02 |
Daocheng | 10.09 | 12 | 0.16 | 11.81 | 30.13 | 9.7 | 0 | 0 | 16.02 |
Jiulong | 13.05 | 6.77 | 1.11 | 39.25 | 39.88 | 2.21 | 0 | 1.67 | 13.66 |
Diqing (Zhongdian) | 1.66 | 0.22 | 0.07 | 0.09 | 14.05 | 28.3 | 4.81 | 0.25 | 12.42 |
Weixi | 1.65 | 0.73 | 0 | 0.05 | 11.86 | 26 | 8.31 | 0.44 | 18.94 |
Muli | 16.39 | 0.18 | 4.74 | 8.56 | 12.33 | 13.66 | 3.61 | 0 | 15.38 |
Yuexi | 3.58 | 1.25 | 12.8 | 21.02 | 7.76 | 6.4 | 0.64 | 3.1 | 21.22 |
Lijiang | 5.38 | 0.28 | 2.61 | 3.55 | 33.03 | 29.87 | 6.56 | 0.02 | 19.26 |
Yanyuan | 13.57 | 1.34 | 9.42 | 11.7 | 14.15 | 12.83 | 4.09 | 0.08 | 18.7 |
Leibo | 0 | 0.17 | 4.43 | 16.77 | 10.84 | 7.59 | 0.01 | 3.15 | 18.74 |
Zhaojue | 4.85 | 1.07 | 4.65 | 36.11 | 8.06 | 8.65 | 0.52 | 0.07 | 20.12 |
Zhaotong | 20.37 | 1 | 5.91 | 17.12 | 7.42 | 2.77 | 0 | 0 | 16.62 |
Huaping | 30.71 | 14.39 | 6.84 | 44.62 | 27.28 | 27.37 | 1.99 | 0 | 41.44 |
Huili | 24.78 | 6.1 | 4.08 | 42.34 | 25.25 | 9.81 | 0.13 | 0 | 20.9 |
Weining | 10.29 | 1.93 | 0.6 | 23.38 | 24.75 | 4.83 | 0 | 0 | 17.52 |
Huize | 18.46 | 4.32 | 1.53 | 12.4 | 31.18 | 5.98 | 0 | 0.04 | 16.44 |
Yuanmou | 22.72 | 41.8 | 7.09 | 16.96 | 22.52 | 6.41 | 0.02 | 0 | 19.34 |
Chuxiong | 1.02 | 4.91 | 0.74 | 2.48 | 53.09 | 10.35 | 0.67 | 0 | 27.09 |
Kunming | 9.83 | 68.1 | 13.58 | 19.99 | 16.27 | 6.7 | 0.97 | 0 | 20.7 |
Liangshan (Xichang) | 6.8 | 1.29 | 1.26 | 32.2 | 12.07 | 7.24 | 0.13 | 0 | 26.3 |
Dali | 0.08 | 1.6 | 0.34 | 0.09 | 56.75 | 41.67 | 7.41 | 0.07 | 17.45 |
Name | Highest Temperature (CMADS) | Extreme High Temperature Threshold | |
---|---|---|---|
Typical Flood Event (2016.9.22) | Average Daily Maximum Temperature within 8 Days (2016.9.15–9.22) | ||
Wudaoliang | 4.91 | 6.1 | 14.8 |
Tuotuohe | 7.93 | 8.39 | 16.95 |
Qumalai | 10.34 | 12 | 19.2 |
Qingshuihe | 6.02 | 8.45 | 16.15 |
Yushu | 15.14 | 17.53 | 22.6 |
Dege | 10.61 | 17.55 | 25.9 |
Ganzi | 10.3 | 14.31 | 23.65 |
Xinlong | 8.31 | 10.96 | 26.85 |
Batang | 24.56 | 24.89 | 29.5 |
Litang | 12.32 | 11.49 | 18.8 |
Deqin | 13.6 | 17.72 | 20.4 |
Daocheng | 17.12 | 16.95 | 20.65 |
Jiulong | 13.56 | 13.05 | 25.1 |
Diqing (Zhongdian) | 11.83 | 16.08 | 20.2 |
Weixi | 17.83 | 22.66 | 26.45 |
Muli | 16.74 | 16.4 | 27.55 |
Yuexi | 20.75 | 20.47 | 30.3 |
Lijiang | 15.56 | 19.63 | 25.4 |
Yanyuan | 9.94 | 10.83 | 25.3 |
Leibo | 22.73 | 21.12 | 28.95 |
Zhaojue | 20.05 | 17.55 | 27.7 |
Zhaotong | 20.55 | 18.23 | 27.55 |
Huaping | 26.72 | 26.71 | 33.5 |
Huili | 22.25 | 22.3 | 28.95 |
Weining | 14.41 | 14.17 | 24.1 |
Huize | 18.64 | 18.36 | 25.75 |
Yuanmou | 25.52 | 25.73 | 34.5 |
Chuxiong | 19.81 | 20.89 | 27.5 |
Kunming | 23.43 | 26.05 | 26.85 |
Liangshan (Xichang) | 22.53 | 21.46 | 31.7 |
Dali | 21.31 | 23.59 | 27.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Luo, C.; Xiang, J.; Cai, S. Evaluation and Application of Reanalyzed Combined Data under Extreme Climate Conditions: A Case Study of a Typical Flood Event in the Jinsha River. Atmosphere 2022, 13, 263. https://doi.org/10.3390/atmos13020263
Guo D, Luo C, Xiang J, Cai S. Evaluation and Application of Reanalyzed Combined Data under Extreme Climate Conditions: A Case Study of a Typical Flood Event in the Jinsha River. Atmosphere. 2022; 13(2):263. https://doi.org/10.3390/atmos13020263
Chicago/Turabian StyleGuo, Dandan, Chi Luo, Jian Xiang, and Siyu Cai. 2022. "Evaluation and Application of Reanalyzed Combined Data under Extreme Climate Conditions: A Case Study of a Typical Flood Event in the Jinsha River" Atmosphere 13, no. 2: 263. https://doi.org/10.3390/atmos13020263
APA StyleGuo, D., Luo, C., Xiang, J., & Cai, S. (2022). Evaluation and Application of Reanalyzed Combined Data under Extreme Climate Conditions: A Case Study of a Typical Flood Event in the Jinsha River. Atmosphere, 13(2), 263. https://doi.org/10.3390/atmos13020263