Superiority of Dynamic Weights against Fixed Weights in Merging Multi-Satellite Precipitation Datasets over Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Observation Datasets
2.3. Satellite Precipitation Datasets
2.3.1. TMPA 3B42-v7
2.3.2. PERSIANN-CDR
2.3.3. CMORPH
2.3.4. Reanalysis Precipitation Product
2.4. Methodology
2.4.1. Dynamic Clustered Bayesian Averaging (DCBA)
2.4.2. Regional Principal Component Analysis (RPCA)
2.5. Performance Evaluation of MPDs
3. Results and Discussion
3.1. Spatiotemporal Distributions of DCBA and RPCA Weights
3.2. Statistical Evaluation of DCBA and RPCA
3.2.1. Glacial Zone
3.2.2. Humid Region
3.2.3. Arid Region
3.2.4. Hyper-Arid Region
3.3. Evaluation of DCBA/RPCA against the Merging Members Using Calibrated RGs Data
3.4. Evaluation of DCBA/RPCA and Merging Members at Different Elevations
4. Conclusions
- (1)
- DCBA with dynamic weights outperformed RPCA with a fixed weight in all climate zones and different elevation regions of Pakistan.
- (2)
- DCBA and RPCA dominated all the merging members (TMPA, PERSIANN-CDR, CMORPH, and ERA-Interim) across all four climate zones and different elevations in terms of the MAE, RMSE, CC, SD, and Theil’s U.
- (3)
- The accuracies of MPDs and SPPs are all highly dependent on the elevation, and the performances of MPDs and SPPs significantly increased as the elevation decreased. The improvements in DCBA and RPCA are relatively greater with respect to the best SPP (TMPA) at low elevations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef]
- Yu, C.; Hu, D.; Liu, M.; Wang, S.; Di, Y. Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in China area. Atmos. Res. 2020, 241, 104952. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2018, 556, 865–876. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Li, J. Developing an ensemble precipitation algorithm from satellite products and its topographical and seasonal evaluations over Pakistan. Remote Sens. 2018, 10, 1835. [Google Scholar] [CrossRef]
- Lakew, H.B.; Moges, S.A.; Asfaw, D.H. Hydrological performance evaluation of multiple satellite precipitation products in the upper Blue Nile basin, Ethiopia. J. Hydrol. Reg. Stud. 2020, 27, 100664. [Google Scholar] [CrossRef]
- Ma, Y.; Hong, Y.; Chen, Y.; Yang, Y.; Tang, G.; Yao, Y.; Long, D.; Li, C.; Han, Z.; Liu, R. Performance of optimally merged multisatellite precipitation products using the dynamic bayesian model averaging scheme over the Tibetan Plateau. J. Geophys. Res. Atmos. 2018, 123, 814–834. [Google Scholar] [CrossRef]
- Zhu, Q.; Xuan, W.; Liu, L.; Xu, Y.P. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 2016, 30, 3061–3083. [Google Scholar] [CrossRef]
- Lu, X.; Tang, G.; Liu, X.; Wang, X.; Liu, Y.; Wei, M. The potential and uncertainty of triple collocation in assessing satellite precipitation products in Central Asia. Atmos. Res. 2021, 252, 105452. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104, 70–97. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y.; Khan, A.J. Development of a novel weighted average least squares-based ensemble multi-satellite precipitation dataset and its comprehensive evaluation over Pakistan. Atmos. Res. 2020, 246, 105133. [Google Scholar] [CrossRef]
- Gorooh, V.A.; Hsu, K.; Ferraro, R.; Turk, J.; Meng, H.; Nguyen, P.; Arellano, C.J.; Kalluri, S.; Sorooshian, S. Advances in Precipitation Retrieval and Applications from Low-Earth-Orbiting Satellite Information. Bull. Am. Meteorol. Soc. 2023, 104, E1764–E1771. [Google Scholar] [CrossRef]
- Berndt, E.; Dunion, J.; Duran, E.; Duran, P.; Blackwell, W.; Braun, S.; Green, D. Second Time-Resolved Observations of Precipitation Structure and Storm Intensity with a Constellation of Smallsats (TROPICS) Mission Applications Workshop; NASA: Washington, DC, USA, 2021.
- Foster, T.; Mieno, T.; Brozović, N. Satellite-based monitoring of irrigation water use: Assessing measurement errors and their implications for agricultural water management policy. Water Resour. Res. 2020, 56, e2020WR028378. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, K.; Hong, Y.; Zhao, Q.; Huang, Q.; Xu, Y.; Xue, X.; Chen, S. Evaluation of the TRMM multisatellite precipitation analysis and its applicability in supporting reservoir operation and water resources management in Hanjiang basin, China. J. Hydrol. 2017, 549, 313–325. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. Hydrological evaluation of merged satellite precipitation datasets for streamflow simulation using SWAT: A case study of Potohar Plateau, Pakistan. J. Hydrol. 2020, 587, 125040. [Google Scholar] [CrossRef]
- Hinge, G.; Hamouda, M.A.; Long, D.; Mohamed, M.M. Hydrologic utility of satellite precipitation products in flood prediction: A meta-data analysis and lessons learnt. J. Hydrol. 2022, 612, 128103. [Google Scholar] [CrossRef]
- Setti, S.; Maheswaran, R.; Sridhar, V.; Barik, K.K.; Merz, B.; Agarwal, A. Inter-comparison of gauge-based gridded data, reanalysis and satellite precipitation product with an emphasis on hydrological modeling. Atmosphere 2020, 11, 1252. [Google Scholar] [CrossRef]
- Liu, X.; Yang, T.; Hsu, K.; Liu, C.; Sorooshian, S. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2017, 21, 169–181. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Hinge, G.; Mohamed, M.M.; Long, D.; Hamouda, M.A. Meta-Analysis in Using Satellite Precipitation Products for Drought Monitoring: Lessons Learnt and Way Forward. Remote Sens. 2021, 13, 4353. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Zohaib, M. Assessment of Merged satellite precipitation datasets in monitoring meteorological drought over pakistan. Remote Sens. 2021, 13, 1662. [Google Scholar] [CrossRef]
- Gao, Z.; Long, D.; Tang, G.; Zeng, C.; Huang, J.; Hong, Y. Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China’s Yangtze River basin. J. Hydrol. 2017, 550, 478–496. [Google Scholar] [CrossRef]
- Bayissa, Y.; Tadesse, T.; Demisse, G.; Shiferaw, A. Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 2017, 9, 669. [Google Scholar] [CrossRef]
- Maggioni, V.; Meyers, P.C.; Robinson, M.D. A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. J. Hydrometeorol. 2016, 17, 1101–1117. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, S.; You, S.; Huang, Y.; Wang, Q.; Zhou, Q. Comprehensive evaluation of two successive V3 and V4 IMERG final run precipitation products over Mainland China. Remote Sens. 2017, 10, 34. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y.; Khan, Z. Application of a dynamic clustered bayesian model averaging (DCBA) algorithm for merging multisatellite precipitation products over Pakistan. J. Hydrometeorol. 2020, 21, 17–37. [Google Scholar] [CrossRef]
- Shahid, M.; Rahman, K.U.; Haider, S.; Gabriel, H.F.; Khan, A.J.; Pham, Q.B.; Mohammadi, B.; Linh, N.T.T.; Anh, D.T. Assessing the potential and hydrological usefulness of the CHIRPS precipitation dataset over a complex topography in Pakistan. Hydrol. Sci. J. 2021, 66, 1664–1684. [Google Scholar] [CrossRef]
- Yumnam, K.; Guntu, R.K.; Rathinasamy, M.; Agarwal, A. Quantile-based Bayesian Model Averaging approach towards merging of precipitation products. J. Hydrol. 2022, 604, 127206. [Google Scholar] [CrossRef]
- Muhammad, W.; Yang, H.; Lei, H.; Muhammad, A.; Yang, D. Improving the regional applicability of satellite precipitation products by ensemble algorithm. Remote Sens. 2018, 10, 577. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S. A regional blended precipitation dataset over pakistan based on regional selection of blending satellite precipitation datasets and the dynamic weighted average least squares algorithm. Remote Sens. 2020, 12, 4009. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Beck, H.E.; McNamara, I.; Ribbe, L.; Nauditt, A.; Birkel, C.; Verbist, K.; Giraldo-Osorio, J.D.; Thinh, N.X. RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 2020, 239, 111606. [Google Scholar] [CrossRef]
- Wu, H.; Yang, Q.; Liu, J.; Wang, G. A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China. J. Hydrol. 2020, 584, 124664. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zheng, D.; Zhang, K.; Ma, Q.; Zhao, Y.; Ge, Y. Merging multiple satellite-based precipitation products and gauge observations using a novel double machine learning approach. J. Hydrol. 2021, 594, 125969. [Google Scholar] [CrossRef]
- Satgé, F.; Defrance, D.; Sultan, B.; Bonnet, M.-P.; Seyler, F.; Rouché, N.; Pierron, F.; Paturel, J.-E. Evaluation of 23 gridded precipitation datasets across West Africa. J. Hydrol. 2020, 581, 124412. [Google Scholar] [CrossRef]
- Hussain, A.; Jadoon, K.Z.; Rahman, K.U.; Shang, S.; Shahid, M.; Ejaz, N.; Khan, H. Analyzing the impact of drought on agriculture: Evidence from Pakistan using standardized precipitation evapotranspiration index. Nat. Hazards 2023, 115, 389–408. [Google Scholar] [CrossRef]
- Hanif, M.; Khan, A.H.; Adnan, S. Latitudinal precipitation characteristics and trends in Pakistan. J. Hydrol. 2013, 492, 266–272. [Google Scholar] [CrossRef]
- Hirose, M.; Takayabu, Y.N.; Hamada, A.; Shige, S.; Yamamoto, M.K. Impact of long-term observation on the sampling characteristics of TRMM PR precipitation. J. Appl. Meteorol. Clim. 2017, 56, 713–723. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; Rasmussen, K.L.; Zuluaga, M.D.; Brodzik, S.R. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys. 2015, 53, 994–1021. [Google Scholar] [CrossRef]
- Haider, K.; Khokhar, M.F.; Chishtie, F.; RazzaqKhan, W.; Hakeem, K.R. Identification and future description of warming signatures over Pakistan with special emphasis on evolution of CO2 levels and temperature during the first decade of the twenty-first century. Environ. Sci. Pollut. Res. 2017, 24, 7617–7629. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Shahid, S.; Ismail, T.B.; Wang, X.-J. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor. Appl. Climatol. 2019, 136, 899–913. [Google Scholar] [CrossRef]
- Saleem, F.; Zeng, X.; Hina, S.; Omer, A. Regional changes in extreme temperature records over Pakistan and their relation to Pacific variability. Atmos. Res. 2021, 250, 105407. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Ahmed, R. Variability in meteorological parameters and their impact on evapotranspiration in a humid zone of Pakistan. Meteorol. Appl. 2020, 27, e1859. [Google Scholar] [CrossRef]
- Malik, S.M.; Awan, H.; Khan, N. Mapping vulnerability to climate change and its repercussions on human health in Pakistan. Glob. Health 2012, 8, 31. [Google Scholar] [CrossRef]
- Dilawar, A.; Chen, B.; Arshad, A.; Guo, L.; Ehsan, M.I.; Hussain, Y.; Kayiranga, A.; Measho, S.; Zhang, H.; Wang, F.; et al. Towards understanding variability in droughts in response to extreme climate conditions over the different agro-ecological zones of Pakistan. Sustainability 2021, 13, 6910. [Google Scholar] [CrossRef]
- Nawaz, Z.; Li, X.; Chen, Y.; Guo, Y.; Wang, X.; Nawaz, N. Temporal and spatial characteristics of precipitation and temperature in Punjab, Pakistan. Water 2019, 11, 1916. [Google Scholar] [CrossRef]
- Sultana, H.; Ali, N.; Iqbal, M.M.; Khan, A.M. Vulnerability and adaptability of wheat production in different climatic zones of Pakistan under climate change scenarios. Clim. Chang. 2009, 94, 123–142. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM multi-satellite precipitation analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–22. [Google Scholar]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Fernando, N.S.; Shrestha, S.; Kc, S.; Mohanasundaram, S. Investigating major causes of extreme floods using global datasets: A case of Nepal, USA & Thailand. Prog. Disaster Sci. 2022, 13, 100212. [Google Scholar]
- Santos, C.A.G.; Neto, R.M.B.; Nascimento, T.V.M.D.; da Silva, R.M.; Mishra, M.; Frade, T.G. Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983–2018). Sci. Total. Environ. 2021, 750, 141258. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Yu, Q.; MacEachern, S.N.; Peruggia, M. Clustered Bayesian Model Averaging. Bayesian Anal. 2013, 8, 883–908. [Google Scholar] [CrossRef]
- Ebert, E.E. Methods for Verifying Satellite Precipitation Estimates. In Measuring Precipitation From Space; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2007; pp. 345–356. [Google Scholar]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Ijaz, M.W.; Zhang, S. Evaluation of high-resolution satellite-based real-time and post-real-time precipitation estimates during 2010 extreme flood event in Swat River Basin, Hindukush Region. Adv. Meteorol. 2016, 2016, 2604980. [Google Scholar] [CrossRef]
- Bliemel, F. Theil’s Forecast Accuracy Coefficient: A Clarification; SAGE Publications Sage CA: Los Angeles, CA, USA, 1973. [Google Scholar]
- Shen, Y.; Xiong, A.; Hong, Y.; Yu, J.; Pan, Y.; Chen, Z.; Saharia, M. Uncertainty analysis of five satellite-based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau. Int. J. Remote Sens. 2014, 35, 6843–6858. [Google Scholar] [CrossRef]
- Sloughter, J.M.L.; Raftery, A.E.; Gneiting, T.; Fraley, C. Probabilistic Quantitative precipitation forecasting using bayesian model averaging. Mon. Weather. Rev. 2007, 135, 3209–3220. [Google Scholar] [CrossRef]
Region | Glacial | Humid | Arid | Hyper_Arid |
---|---|---|---|---|
Area (km2) | 72,774 | 137,753 | 270,484 | 322,929 |
Mean elevation (m) | 4158 | 1286 | 633 | 444 |
Mean annual precipitation (mm) | 348 | 852 | 322 | 133 |
Number of RGs | 19 | 39 | 19 | 25 |
Statistical Index | Equation | Perfect Value |
---|---|---|
Mean Absolute Error (MAE) | 0 | |
Root-Mean-Square Error (RMSE) | 0 | |
Correlation Coefficient (CC) | 1 | |
Standard Deviation (SD) | NA | |
Theil’s U | 0 |
Zone | MPD/SPP | MAE (mm/day) | RMSE (mm/day) | CC | SD (mm/day) | Theil’s U |
---|---|---|---|---|---|---|
Glacial Zone | DCBA | 1.70 | 5.92 | 0.63 | 7.49 | 0.49 |
RPCA | 2.51 | 10.56 | 0.50 | 12.44 | 0.53 | |
TMPA | 2.79 | 10.83 | 0.45 | 12.63 | 0.56 | |
ERA-Interim | 3.25 | 11.39 | 0.38 | 13.04 | 0.64 | |
PERSIANN-CDR | 3.01 | 11.01 | 0.42 | 12.78 | 0.60 | |
CMORPH | 3.60 | 11.87 | 0.34 | 13.09 | 0.67 | |
Humid Zone | DCBA | 1.59 | 7.16 | 0.77 | 7.34 | 0.38 |
RPCA | 2.51 | 10.74 | 0.63 | 10.80 | 0.45 | |
TMPA | 2.80 | 11.62 | 0.59 | 11.13 | 0.48 | |
ERA-Interim | 3.34 | 11.58 | 0.52 | 11.67 | 0.54 | |
PERSIANN-CDR | 3.05 | 11.32 | 0.56 | 11.40 | 0.51 | |
CMORPH | 3.65 | 11.84 | 0.49 | 11.93 | 0.58 | |
Arid Zone | DCBA | 1.23 | 3.45 | 0.85 | 3.28 | 0.37 |
RPCA | 2.88 | 7.02 | 0.73 | 6.42 | 0.42 | |
TMPA | 3.15 | 7.28 | 0.71 | 6.69 | 0.46 | |
ERA-Interim | 3.65 | 7.91 | 0.63 | 7.18 | 0.54 | |
PERSIANN-CDR | 3.40 | 7.64 | 0.67 | 6.94 | 0.50 | |
CMORPH | 3.91 | 8.18 | 0.61 | 7.41 | 0.57 | |
Hyper-Arid Zone | DCBA | 1.06 | 3.15 | 0.84 | 2.59 | 0.36 |
RPCA | 2.06 | 5.66 | 0.80 | 6.40 | 0.43 | |
TMPA | 2.32 | 5.97 | 0.76 | 6.66 | 0.46 | |
ERA-Interim | 2.82 | 6.53 | 0.68 | 7.17 | 0.53 | |
PERSIANN-CDR | 2.57 | 6.24 | 0.72 | 6.91 | 0.50 | |
CMORPH | 3.04 | 6.84 | 0.65 | 7.43 | 0.57 |
Elevation (m) | MPD/SPP | MAE (mm/day) | RMSE (mm/day) | CC | SD (mm/day) | Theil’s U |
---|---|---|---|---|---|---|
>4000 | DCBA | 1.50 | 5.92 | 0.68 | 7.84 | 0.46 |
RPCA | 2.60 | 10.10 | 0.55 | 12.88 | 0.50 | |
TMPA | 2.99 | 10.26 | 0.49 | 13.10 | 0.53 | |
ERA-Interim | 3.48 | 10.82 | 0.42 | 13.56 | 0.60 | |
PERSIANN-CDR | 3.21 | 10.48 | 0.46 | 13.29 | 0.57 | |
CMORPH | 3.84 | 11.24 | 0.37 | 13.69 | 0.63 | |
4000–3000 | DCBA | 1.75 | 5.57 | 0.65 | 7.78 | 0.48 |
RPCA | 2.57 | 10.24 | 0.50 | 12.60 | 0.50 | |
TMPA | 2.68 | 10.49 | 0.47 | 12.79 | 0.53 | |
ERA-Interim | 3.14 | 11.06 | 0.40 | 13.21 | 0.61 | |
PERSIANN-CDR | 2.86 | 10.69 | 0.43 | 12.96 | 0.58 | |
CMORPH | 3.47 | 11.54 | 0.36 | 13.29 | 0.65 | |
3000–2000 | DCBA | 1.62 | 6.39 | 0.70 | 6.76 | 0.48 |
RPCA | 2.56 | 10.68 | 0.55 | 10.53 | 0.50 | |
TMPA | 2.89 | 10.98 | 0.52 | 10.78 | 0.53 | |
ERA-Interim | 3.37 | 11.52 | 0.45 | 11.24 | 0.60 | |
PERSIANN-CDR | 3.11 | 11.18 | 0.49 | 10.98 | 0.57 | |
CMORPH | 3.68 | 11.90 | 0.41 | 11.38 | 0.63 | |
2000–1000 | DCBA | 1.57 | 6.36 | 0.74 | 7.06 | 0.40 |
RPCA | 2.36 | 10.19 | 0.62 | 11.06 | 0.45 | |
TMPA | 2.62 | 10.52 | 0.58 | 11.35 | 0.49 | |
ERA-Interim | 3.16 | 11.10 | 0.51 | 11.87 | 0.57 | |
PERSIANN-CDR | 2.90 | 10.80 | 0.55 | 11.60 | 0.53 | |
CMORPH | 3.48 | 11.42 | 0.47 | 12.08 | 0.61 | |
1000–500 | DCBA | 1.47 | 6.46 | 0.78 | 6.33 | 0.37 |
RPCA | 2.56 | 9.64 | 0.70 | 9.66 | 0.42 | |
TMPA | 2.82 | 10.03 | 0.66 | 9.97 | 0.46 | |
ERA-Interim | 3.39 | 10.55 | 0.58 | 10.51 | 0.53 | |
PERSIANN-CDR | 3.10 | 10.27 | 0.62 | 10.25 | 0.50 | |
CMORPH | 3.70 | 10.81 | 0.55 | 10.78 | 0.56 | |
500–0 | DCBA | 1.30 | 4.50 | 0.81 | 4.14 | 0.36 |
RPCA | 2.20 | 7.65 | 0.75 | 7.77 | 0.41 | |
TMPA | 2.77 | 7.91 | 0.67 | 8.05 | 0.45 | |
ERA-Interim | 3.25 | 8.46 | 0.60 | 8.54 | 0.52 | |
PERSIANN-CDR | 3.00 | 8.20 | 0.64 | 8.29 | 0.49 | |
CMORPH | 3.51 | 8.75 | 0.57 | 8.78 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejaz, N.; Khan, A.H.; Shahid, M.; Zaman, K.; Balkhair, K.S.; Alghamdi, K.M.; Rahman, K.U.; Shang, S. Superiority of Dynamic Weights against Fixed Weights in Merging Multi-Satellite Precipitation Datasets over Pakistan. Water 2024, 16, 597. https://doi.org/10.3390/w16040597
Ejaz N, Khan AH, Shahid M, Zaman K, Balkhair KS, Alghamdi KM, Rahman KU, Shang S. Superiority of Dynamic Weights against Fixed Weights in Merging Multi-Satellite Precipitation Datasets over Pakistan. Water. 2024; 16(4):597. https://doi.org/10.3390/w16040597
Chicago/Turabian StyleEjaz, Nuaman, Aftab Haider Khan, Muhammad Shahid, Kifayat Zaman, Khaled S. Balkhair, Khalid Mohammed Alghamdi, Khalil Ur Rahman, and Songhao Shang. 2024. "Superiority of Dynamic Weights against Fixed Weights in Merging Multi-Satellite Precipitation Datasets over Pakistan" Water 16, no. 4: 597. https://doi.org/10.3390/w16040597
APA StyleEjaz, N., Khan, A. H., Shahid, M., Zaman, K., Balkhair, K. S., Alghamdi, K. M., Rahman, K. U., & Shang, S. (2024). Superiority of Dynamic Weights against Fixed Weights in Merging Multi-Satellite Precipitation Datasets over Pakistan. Water, 16(4), 597. https://doi.org/10.3390/w16040597