A Regional Blended Precipitation Dataset over Pakistan Based on Regional Selection of Blending Satellite Precipitation Datasets and the Dynamic Weighted Average Least Squares Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Glacial Region
2.1.2. Humid Region
2.1.3. Arid Region
2.1.4. Hyper-Arid Region
2.2. Precipitation Trend in Pakistan
2.3. Datasets
2.3.1. Rain Gauges (RGs) Data
2.3.2. Satellite Precipitation Datasets (SPDs)
2.4. Methods
2.4.1. Selection of an Appropriate Set of SPDs for Each Climate Region
2.4.2. Weighted Average Least Squares (WALS) Algorithm
2.4.3. Time Series Forecasting of SPDs Weights
2.4.4. Performance Assessment of the Dynamic Regional Blended Precipitation Dataset (BPD) based on Weighted Average Least Squares (WALS-RBPD)
3. Results and Discussion
3.1. Appropriate Set of SPDs for Each Climate Region
3.2. Spatial Distribution of WALS-RBPD Weights
3.3. Temporal Distribution of WALS-RBPD Weights
3.4. Performance Assessment of WALS-RBPD on the Spatial Scale
3.4.1. Glacial Region
3.4.2. Humid Region
3.4.3. Arid Region
3.4.4. Hyper-Arid Region
3.5. Performance Assessment of WALS-RBPD on the Temporal Scale
3.6. Comparison of WALS-RBPD with Previously Developed Blended Datasets across Pakistan
4. Conclusions
- (1)
- The performance of IMERG was superior to all other blending members in the glacial, humid, and arid regions, while SM2RAIN-ASCAT had higher accuracy in the hyper-arid region. The average weights of IMERG (SM2RAIN-ASCAT) were 29.03% (23.90%), 30.12% (24.19%), 31.30% (27.84%), and 27.65% (32.02%) across glacial, humid, arid, and hyper-arid regions, respectively.
- (2)
- On the one hand, IMERG dominated the monsoon and pre-monsoon seasons with average weights of 34.87% and 31.70%. On the other hand, SM2RAIN-ASCAT depicted high performance during post-monsoon and winter seasons with average weights of 37.03% and 38.69%.
- (3)
- The performance assessment of WALS-RBPD on the spatial scale depicted considerable improvements and reduction in errors as compared with other previously developed BPDs, i.e., WALS-, DCBA-, and DBMA-BPDs. The results presented the topographic dependency of WALS-RBPD, i.e., relatively poorer performances at high elevation characterized by complex terrain, while better performances at low elevated plain regions.
- (4)
- WALS-RBPD revealed a dependency on precipitation magnitude and intensity. Relatively poorer performances were observed during the monsoon and pre-monsoon periods, which significantly improved during the post-monsoon to winter seasons.
- (5)
- The employment of SM2RAIN-ASCAT and SM2RAIN-CCI (bottom-up) added a significant contribution for improving the BPD performance, especially in the glacial and humid regions. The conventional “top-down” SPDs overestimated the precipitation across the glacial and humid regions, while the bottom-up SPDs contrarily underestimated the precipitation. This contrast did not amplify the errors in the glacial and humid regions and resulted in relatively better performances as compared with previous BPDs.
- (6)
- The SS values calculated based on comparing WALS-RBPD against WALS-BPD revealed considerable improvements across all climate regions. Maximum improvements were observed in glacial (humid) regions, for example, 29.89% (28.69%) in MAE, 27.25% (23.89%) in ubRMSE and 24.37% (28.95%) in MB. On the other hand, the hyper-arid region experienced minimal improvements, i.e., 18.55% in MB, 17.82% in MAE, and 14.79% in ubRMSE.
- (7)
- The SS values of WALS-RBPD against DCBA-BPD depicted significant improvements. The higher improvements observed across the glacial (humid) regions are 29.05% (30.28%) in MB, 36.96% (32.22%) in MAE, and 30.12% (26.25%) in ubRMSE. Theil’s U also depicted relatively higher improvements with 22.99% and 20.58% in the glacial and humid regions. Moreover, improvements (minimal) across the hyper-arid region were 22.06%, 26.95%, 20.05%, and 14.13% in MB, MAE, ubRMSE, and Theil’s U, respectively.
- (8)
- The highest SS values were observed between WALS-RBPD and DBMA-BPD with average improvements across the glacial (humid) regions of 39.74% (36.93%), 38.27% (33.06%), and 39.16% (30.47%) in MB, MAE, and ubRMSE. Higher improvements in KGE scores were also observed with 39.96% in the glacial region and 33.52% in the humid region. Moreover, the average skill scores of the hyper-arid region were 28.77% (MB), 24.98% (MAE), 23.87% (ubRMSE), and 15.3% (KGE score).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SPD | Satellite precipitation dataset |
RBPD | Regional blended precipitation dataset |
WALS | Weighted average least squares |
IMERG | Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite Retrievals for GPM |
TRMM | Tropical Rainfall Measurement Mission |
TMPA | Multi-Satellite Precipitation Analysis |
PERSIANN-CDR | Precipitation Estimates from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record |
SM2RAIN | Soil moisture to RAIN |
CCI | Climate change initiative |
ASCAT | Advanced SCATterometer |
MB | Mean bias |
MAE | Mean absolute error |
ubRMSE | Unbiased root mean square error |
R | Correlation coefficient |
KGE | Kling–Gupta efficiency |
DCBA | Dynamic clustered Bayesian model averaging |
DBMA | Dynamic Bayesian model averaging |
GCOS | Global Climate Observing System |
GPCP | Global Precipitation Climatology Project |
CMAP | Climate Prediction Center Merged Analysis of Precipitation |
PCA | Principal component analysis |
CMORPH | Climate Prediction Center morphing technique |
RGs | Rain gauges |
HKH | Hindukush-Karakoram-Himalaya |
GR | Glacial region |
HR | Humid region |
AR | Arid region |
HAR | Hyper-arid region |
PMD | Pakistan Meteorology Department |
WAPDA | Water and Power Development Authority |
SIHP | Snow and Ice Hydrology Project |
WMO | World Meteorological Organization |
ARIMA | Autoregressive integrated moving average |
BMA | Bayesian model averaging |
DOY | Day of the year |
AR | Autoregressive |
MA | Moving averaging |
SS | Skill score |
RRG | Representative rain gauge |
OK | Ordinary Kriging |
References
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y.; Khan, Z. Application of Dynamic Clustered Bayesian Model Averaging (DCBA) algorithm for merging multi-satellite precipitation products over Pakistan. J. Hydrometeorol. 2020, 21, 17–37. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, X.; Chen, H.; Yang, H.; Zhang, Y. A flexible two-stage approach for blending multiple satellite precipitation estimates and rain gauge observations: An experiment in the northeastern Tibetan Plateau. Hydrol. Earth Syst. Sci. Discuss. 2020. in review. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. An Appraisal of Dynamic Bayesian Model Averaging-based Merged Multi-Satellite Precipitation Datasets Over Complex Topography and the Diverse Climate of Pakistan. Remote Sens. 2020, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y.; Khan, A.J. Development of a novel weighted average least squares-based ensemble multi-satellite precipitation dataset and its comprehensive evaluation over Pakistan. Atmos. Res. 2020, 246, 105133. [Google Scholar] [CrossRef]
- Ma, Y.; Hong, Y.; Chen, Y.; Yang, Y.; Tang, G.; Yao, Y.; Long, D.; Li, C.; Han, Z.; Liu, R. Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau. J. Geophys. Res. Atmos. 2018, 123, 814–834. [Google Scholar] [CrossRef]
- Kidd, C.; Huffman, G. Global precipitation measurement. Meteorol. Appl. 2011, 18, 334–353. [Google Scholar] [CrossRef]
- Miao, C.; Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Yong, B.; Liu, D.; Gourley, J.J.; Tian, Y.; Huffman, G.J.; Ren, L.; Hong, Y. Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2015, 96, 283–296. [Google Scholar] [CrossRef]
- Prat, O.; Nelson, B. Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012). Hydrol. Earth Syst. Sci. 2015, 19, 2037. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, d.P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Mo, K.C.; Chen, L.-C.; Shukla, S.; Bohn, T.J.; Lettenmaier, D.P. Uncertainties in North American land data assimilation systems over the contiguous United States. J. Hydrometeorol. 2012, 13, 996–1009. [Google Scholar] [CrossRef]
- Derin, Y.; Anagnostou, E.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.-H.; Delrieu, G.; Hong, Y.; Hsu, Y.C. Multiregional satellite precipitation products evaluation over complex terrain. J. Hydrometeorol. 2016, 17, 1817–1836. [Google Scholar] [CrossRef]
- Mei, Y.; Anagnostou, E.N.; Nikolopoulos, E.I.; Borga, M. Error analysis of satellite precipitation products in mountainous basins. J. Hydrometeorol. 2014, 15, 1778–1793. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; van Dijk, A.I.; Renzullo, L.J.; Mulligan, M. Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and South and East Asia. J. Hydrometeorol. 2013, 14, 1323–1333. [Google Scholar] [CrossRef] [Green Version]
- Krajewski, W.F. Cokriging radar-rainfall and rain gage data. J. Geophys. Res. Atmos. 1987, 92, 9571–9580. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The global precipitation climatology project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Li, H.; Hong, Y.; Xie, P.; Gao, J.; Niu, Z.; Kirstetter, P.; Yong, B. Variational merged of hourly gauge-satellite precipitation in China: Preliminary results. J. Geophys. Res. Atmos. 2015, 120, 9897–9915. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, A.Y. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Yang, Z.; Hsu, K.; Sorooshian, S.; Xu, X.; Braithwaite, D.; Zhang, Y.; Verbist, K.M. Merging high-resolution satellite-based precipitation fields and point-scale rain gauge measurements—A case study in Chile. J. Geophys. Res. Atmos. 2017, 122, 5267–5284. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.E.; Nikolopoulos, E.I.; Anagnostou, E.N.; Quintana-Seguí, P.; Barella-Ortiz, A. A nonparametric statistical technique for combining global precipitation datasets: Development and hydrological evaluation over the Iberian Peninsula. Hydrol. Earth Syst. Sci. 2018, 22, 1371. [Google Scholar] [CrossRef] [Green Version]
- Rahman, K.; Shang, S.; Shahid, M.; Li, J. Developing an ensemble precipitation algorithm from satellite products and its topographical and seasonal evaluations over Pakistan. Remote Sens. 2018, 10, 1835. [Google Scholar] [CrossRef] [Green Version]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Beck, H.E.; McNamara, I.; Ribbe, L.; Nauditt, A.; Birkel, C.; Verbist, K.; Giraldo-Osorio, J.D.; Thinh, N.X. RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 2020, 239, 111606. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. Hydrological evaluation of merged satellite precipitation datasets for streamflow simulation using SWAT: A case study of Potohar Plateau, Pakistan. J. Hydrol. 2020, 125040. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Han, Z.; Tang, G.; Maguire, L.; Chu, Z.; Hong, Y. Comprehensive evaluation of ensemble multi-satellite precipitation dataset using the dynamic bayesian model averaging scheme over the Tibetan Plateau. J. Hydrol. 2018, 556, 634–644. [Google Scholar] [CrossRef]
- Chao, L.; Zhang, K.; Li, Z.; Zhu, Y.; Wang, J.; Yu, Z. Geographically weighted regression based methods for merging satellite and gauge precipitation. J. Hydrol. 2018, 558, 275–289. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Hong, Y.; Yu, J.; Pan, Y.; Chen, Z.; Saharia, M. Uncertainty analysis of five satellite-based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau. Int. J. Remote Sens. 2014, 35, 6843–6858. [Google Scholar] [CrossRef]
- Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 2005, 133, 1155–1174. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, S.; Pegram, G. Combining radar and rain gauge rainfall estimates using conditional merging. Atmos. Sci. Lett. 2005, 6, 19–22. [Google Scholar] [CrossRef]
- Vila, D.A.; De Goncalves, L.G.G.; Toll, D.L.; Rozante, J.R. Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J. Hydrometeorol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, Y.; Ma, Q. A merging framework for rainfall estimation at high spatiotemporal resolution for distributed hydrological modeling in a data-scarce area. Remote Sens. 2016, 8, 599. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Shao, Q. An improved statistical approach to merge satellite rainfall estimates and raingauge data. J. Hydrol. 2010, 385, 51–64. [Google Scholar] [CrossRef]
- Ochoa-Rodriguez, S.; Wang, L.P.; Willems, P.; Onof, C. A review of radar-rain gauge data merging methods and their potential for urban hydrological applications. Water Resour. Res. 2019, 55, 6356–6391. [Google Scholar] [CrossRef]
- Sivasubramaniam, K.; Sharma, A.; Alfredsen, K. Merging radar and gauge information within a dynamical model combination framework for precipitation estimation in cold climates. Environ. Model. Softw. 2019, 119, 99–110. [Google Scholar] [CrossRef]
- Muhammad, W.; Yang, H.; Lei, H.; Muhammad, A.; Yang, D. Improving the regional applicability of satellite precipitation products by ensemble algorithm. Remote Sens. 2018, 10, 577. [Google Scholar] [CrossRef] [Green Version]
- Hanif, M.; Khan, A.H.; Adnan, S. Latitudinal precipitation characteristics and trends in Pakistan. J. Hydrol. 2013, 492, 266–272. [Google Scholar] [CrossRef]
- Asmat, U.; Athar, H. Run-based multi-model interannual variability assessment of precipitation and temperature over Pakistan using two IPCC AR4-based AOGCMs. Theor. Appl. Climatol. 2017, 127, 1–16. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. Performance assessment of SM2RAIN-CCI and SM2RAIN-ASCAT precipitation products over Pakistan. Remote Sens. 2019, 11, 2040. [Google Scholar] [CrossRef] [Green Version]
- Balkhair, K.S.; Rahman, K.U. Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale. Appl. Energy 2017, 188, 378–391. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Athar, H. Validation of satellite based precipitation over diverse topography of Pakistan. Atmos. Res. 2018, 201, 247–260. [Google Scholar] [CrossRef]
- Dimri, A.; Niyogi, D.; Barros, A.; Ridley, J.; Mohanty, U.; Yasunari, T.; Sikka, D. Western disturbances: A review. Rev. Geophys. 2015, 53, 225–246. [Google Scholar] [CrossRef]
- Asmat, U.; Athar, H.; Nabeel, A.; Latif, M. An AOGCM based assessment of interseasonal variability in Pakistan. Clim. Dyn. 2018, 50, 349–373. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG); Algorithm Theoretical Basis Document (ATBD) Version 5.2; NASA/GSFC: Greenbelt, MD, USA, 2018.
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W. A new method for rainfall estimation through soil moisture observations. Geophys. Res. Lett. 2013, 40, 853–858. [Google Scholar] [CrossRef]
- Ciabatta, L.; Massari, C.; Brocca, L.; Gruber, A.; Reimer, C.; Hahn, S.; Paulik, C.; Dorigo, W.; Kidd, R.; Wagner, W. SM2RAIN-CCI: A new global long-term rainfall data set derived from ESA CCI soil moisture. Earth Syst. Sci. Data 2018, 10, 267. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Brocca, L.; Filippucci, P.; Hahn, S.; Ciabatta, L.; Massari, C.; Camici, S.; Schüller, L.; Bojkov, B.; Wagner, W. SM2RAIN-ASCAT (2007–2018): Global daily satellite rainfall from ASCAT soil moisture. Earth Syst. Sci. Data Discuss 2019, 11, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Magnus, J.R.; De Luca, G. Weighted-average least squares (WALS): A survey. J. Econ. Surv. 2016, 30, 117–148. [Google Scholar] [CrossRef] [Green Version]
- Magnus, J.R.; Powell, O.; Prüfer, P. A comparison of two model averaging techniques with an application to growth empirics. J. Econom. 2010, 154, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.G.; Katz, R.W.; Murphy, A.H. Time series models to simulate and forecast wind speed and wind power. J. Clim. Appl. Meteorol. 1984, 23, 1184–1195. [Google Scholar] [CrossRef]
- Ediger, V.Ş.; Akar, S.; Uğurlu, B. Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model. Energy Policy 2006, 34, 3836–3846. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1976. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Melard, G.; Pasteels, J.-M. Automatic ARIMA modeling including interventions, using time series expert software. Int. J. Forecast. 2000, 16, 497–508. [Google Scholar] [CrossRef]
- Bliemel, F. Theil’s Forecast Accuracy Coefficient: A Clarification; SAGE Publications Sage CA: Los Angeles, CA, USA, 1973. [Google Scholar]
- Ebert, E.E. Methods for verifying satellite precipitation estimates. In Measuring Precipitation from Space; Springer: Berlin/Heidelberg, Germany, 2007; pp. 345–356. [Google Scholar]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Romilly, T.G.; Gebremichael, M. Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci. 2011, 15, 1505. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Y.; Satgé, F.; Hussain, M.B.; Martinez-Carvajal, H.; Bonnet, M.-P.; Cárdenas-Soto, M.; Roig, H.L.; Akhter, G. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan. Theor. Appl. Climatol. 2018, 131, 1119–1132. [Google Scholar] [CrossRef]
- Ward, E.; Buytaert, W.; Peaver, L.; Wheater, H. Evaluation of precipitation products over complex mountainous terrain: A water resources perspective. Adv. Water Resour. 2011, 34, 1222–1231. [Google Scholar] [CrossRef]
- Wilson, L.J.; Beauregard, S.; Raftery, A.E.; Verret, R. Calibrated surface temperature forecasts from the Canadian ensemble prediction system using Bayesian model averaging. Mon. Weather Rev. 2007, 135, 1364–1385. [Google Scholar] [CrossRef] [Green Version]
- Beighley, R.E.; Ray, R.; He, Y.; Lee, H.; Schaller, L.; Andreadis, K.; Durand, M.; Alsdorf, D.; Shum, C. Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin. Hydrol. Process. 2011, 25, 3216–3229. [Google Scholar] [CrossRef]
- Dinku, T.; Connor, S.J.; Ceccato, P. Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America. In Satellite Rainfall Applications for Surface Hydrology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 193–204. [Google Scholar]
- Scheel, M.; Rohrer, M.; Huggel, C.; Santos Villar, D.; Silvestre, E.; Huffman, G. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol. Earth Syst. Sci. 2011, 15, 2649–2663. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Hsu, K.-L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef] [Green Version]
- Lark, R.; Cullis, B.; Welham, S. On spatial prediction of soil properties in the presence of a spatial trend: The empirical best linear unbiased predictor (E-BLUP) with REML. Eur. J. Soil Sci. 2006, 57, 787–799. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M. Evaluation through independent measurements: Complex terrain and humid tropical region in Ethiopia. In Satellite Rainfall Applications for Surface Hydrology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 205–214. [Google Scholar]
- Hong, Y.; Gochis, D.; Cheng, J.-T.; Hsu, K.-L.; Sorooshian, S. Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeorol. 2007, 8, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Villarini, G.; Krajewski, W.F. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys. 2010, 31, 107–129. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Nasrollahi, N.; Habib, E. Accounting for uncertainties of the TRMM satellite estimates. Remote Sens. 2009, 1, 606–619. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Gebremichael, M. Estimating actual rainfall from satellite rainfall products. Atmos. Res. 2009, 92, 481–488. [Google Scholar] [CrossRef]
- Tapiador, F.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G.; Kidd, C.; Kucera, P.; Kummerow, C.; Masunaga, H.; Petersen, W. Global precipitation measurements for validating climate models. Atmos. Res. 2017, 197, 1–20. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xu, C.-Y. Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake basin. Theor. Appl. Climatol. 2014, 115, 713–729. [Google Scholar] [CrossRef]
Precipitation Datasets | Spatial Resolution | Temporal Resolution | Retrieval Algorithm | References |
---|---|---|---|---|
IMERG | 0.10° | 1-day | Goddard profiling algorithm | Huffman et al. [45] |
TMPA | 0.25° | 1-day | GPCC monthly gauge observation to correct the bias of 3B42RT | Huffman et al. [12] |
PERSIANN-CDR | 0.25° | 1-day | Adaptive artificial neural network | Ashouri et al. [46] |
ERA-Interim (reanalysis dataset) | 0.25° | 1-day | 4D-Var analysis | Dee et al. [11] |
SM2RAIN-CCI | 0.25° | 1-day | Soil moisture to RAIN algorithm | Ciabatta et al. [48] |
SM2RAIN-ASCAT | 0.25° | 1-day | Soil moisture to RAIN algorithm | Brocca et al. [50] |
Statistical Indices | Formula | Optimal Value |
---|---|---|
Mean bias (MB) | 0 | |
Mean absolute error (MAE) | 0 | |
Unbiased root mean square error (ubRMSE) | where | 0 |
Correlation coefficient (R) | 1 | |
Kling–Gupta efficiency (KGE) score | Where and , | 1 |
Theil’s U | 0 |
SPDs | Glacial | Humid | Arid | Hyper-Arid | ||||
---|---|---|---|---|---|---|---|---|
MAE (mm/day) | R | MAE (mm/day) | R | MAE (mm/day) | R | MAE (mm/day) | R | |
IMERG | 1.89 | 0.77 | 2.34 | 0.84 | 1.77 | 0.93 | 1.13 | 0.95 |
TMPA | 2.32 | 0.65 | 2.79 | 0.76 | 2.05 | 0.89 | 1.62 | 0.92 |
PERSIANN-CDR | 4.26 | 0.46 | 4.71 | 0.54 | 3.06 | 0.69 | 2.26 | 0.77 |
ERA-Interim | 4.93 | 0.39 | 5.33 | 0.47 | 3.43 | 0.61 | 1.98 | 0.80 |
SM2RAIN-ASCAT | 3.15 | 0.58 | 3.54 | 0.68 | 2.49 | 0.82 | 1.52 | 0.94 |
SM2RAIN-CCI | Nil | Nil | 3.98 | 0.63 | 2.74 | 0.77 | 1.75 | 0.92 |
Climate Regions | Selected SPDs |
---|---|
Glacial | IMERG, TMPA, SM2RAIN-ASCAT, PERSIANN-CDR |
Humid | IMERG, TMPA, SM2RAIN-CCI, SM2RAIN-ASCAT |
Arid | IMERG, TMPA, SM2RAIN-CCI, SM2RAIN-ASCAT |
Hyper-arid | IMERG, SM2RAIN-CCI, SM2RAIN-ASCAT, ERA-INTERIM |
Climate Region | SPs | Weight (%) | Standard Error | t-Value | p-Value |
---|---|---|---|---|---|
Glacial | IMERG | 29.03 | 0.0631 | 3.7730 | 0.0000 |
TMPA | 27.48 | 0.0823 | 3.3387 | 0.0008 | |
SM2RAIN-ASCAT | 23.90 | 0.0946 | 3.2619 | 0.0011 | |
PERSIANN-CDR | 19.59 | 0.0607 | 3.2275 | 0.0013 | |
Humid | IMERG | 30.12 | 0.0843 | 3.3573 | 0.0003 |
TMPA | 25.31 | 0.0929 | 3.7244 | 0.0002 | |
SM2RAIN-ASCAT | 24.19 | 0.0724 | 3.3427 | 0.0008 | |
SM2RAIN-CCI | 20.38 | 0.0618 | 3.2999 | 0.0010 | |
Arid | IMERG | 31.30 | 0.0851 | 3.4446 | 0.0006 |
TMPA | 23.83 | 0.0920 | 2.6993 | 0.0070 | |
SM2RAIN-ASCAT | 27.84 | 0.0725 | 3.7027 | 0.0002 | |
SM2RAIN-CCI | 17.03 | 0.0573 | 3.3202 | 0.0009 | |
Hyper-arid | IMERG | 27.65 | 0.0874 | 3.3188 | 0.0009 |
SM2RAIN-ASCAT | 32.02 | 0.0939 | 3.4097 | 0.0007 | |
SM2RAIN-CCI | 23.08 | 0.0829 | 3.2692 | 0.0011 | |
ERA-Interim | 17.25 | 0.0375 | 3.1740 | 0.0015 |
Season | Climate Region | MB (mm/day) | MAE (mm/day) | ubRMSE (mm/day) | R | KGE Score | Theil’s U |
---|---|---|---|---|---|---|---|
Pre-monsoon | Glacial | 0.73 | 1.26 | 4.18 | 0.68 | 0.53 | 0.39 |
Humid | −0.15 | 1.23 | 4.73 | 0.80 | 0.51 | 0.30 | |
Arid | 0.20 | 0.60 | 1.94 | 0.88 | 0.73 | 0.25 | |
Hyper-arid | −0.21 | 0.58 | 1.86 | 0.92 | 0.90 | 0.20 | |
Monsoon | Glacial | 0.85 | 1.51 | 5.03 | 0.62 | 0.49 | 0.45 |
Humid | −0.51 | 1.60 | 5.98 | 0.74 | 0.44 | 0.38 | |
Arid | −0.33 | 0.82 | 2.49 | 0.83 | 0.67 | 0.29 | |
Hyper-arid | −0.26 | 0.66 | 2.32 | 0.90 | 0.81 | 0.24 | |
Post-monsoon | Glacial | 0.56 | 0.92 | 3.15 | 0.75 | 0.59 | 0.34 |
Humid | 0.44 | 0.96 | 3.66 | 0.87 | 0.57 | 0.25 | |
Arid | 0.28 | 0.71 | 2.23 | 0.91 | 0.79 | 0.22 | |
Hyper-arid | −0.16 | 0.44 | 1.60 | 0.93 | 0.93 | 0.18 | |
Winter | Glacial | 0.35 | 0.68 | 1.97 | 0.80 | 0.81 | 0.31 |
Humid | 0.27 | 0.51 | 1.78 | 0.91 | 0.67 | 0.21 | |
Arid | −0.09 | 0.55 | 0.90 | 0.94 | 0.84 | 0.20 | |
Hyper-arid | −0.13 | 0.32 | 0.68 | 0.96 | 0.96 | 0.15 |
Climate Region | MB (%) | MAE (%) | ubRMSE (%) | R (%) | KGE Score (%) | Theil’s U (%) | |
---|---|---|---|---|---|---|---|
Glacial | Maximum | 37.33 | 34.84 | 37.63 | 14.52 | 23.75 | 21.62 |
Minimum | 12.05 | 11.79 | 12.57 | 5.45 | 13.37 | 8.16 | |
Average | 24.37 | 29.89 | 27.25 | 10.18 | 15.99 | 13.09 | |
Median | 25.34 | 28.81 | 27.42 | 10.52 | 14.43 | 12.19 | |
Humid | Maximum | 41.43 | 43.04 | 38.72 | 8.64 | 26.32 | 24.48 |
Minimum | 18.06 | 10.42 | 17.08 | 3.48 | 9.17 | 9.67 | |
Average | 28.95 | 28.69 | 23.89 | 6.37 | 13.19 | 16.06 | |
Median | 32.18 | 27.59 | 22.35 | 6.49 | 13.54 | 27.43 | |
Arid | Maximum | 38.86 | 33.74 | 29.39 | 8.04 | 13.43 | 24.48 |
Minimum | 16.32 | 15.62 | 11.45 | 2.22 | 7.46 | 11.76 | |
Average | 20.87 | 18.14 | 19.96 | 4.47 | 10.67 | 14.57 | |
Median | 20.02 | 19.75 | 19.20 | 4.49 | 10.66 | 13.59 | |
Hyper-arid | Maximum | 33.33 | 30.68 | 22.37 | 7.06 | 8.43 | 29.28 |
Minimum | 13.75 | 11.74 | 9.14 | 2.25 | 2.17 | 9.68 | |
Average | 18.55 | 17.82 | 14.79 | 5.61 | 6.04 | 15.94 | |
Median | 18.01 | 17.35 | 14.01 | 5.71 | 6.13 | 15.96 |
Climate Region | MB (%) | MAE (%) | ubRMSE (%) | R (%) | KGE Score (%) | Theil’s U (%) | |
---|---|---|---|---|---|---|---|
Glacial | Maximum | 41.45 | 48.39 | 45.71 | 26.21 | 27.59 | 34.54 |
Minimum | 14.17 | 22.52 | 18.09 | 8.63 | 10.17 | 14.06 | |
Average | 29.05 | 36.96 | 30.12 | 15.64 | 16.57 | 22.99 | |
Median | 29.92 | 35.71 | 29.31 | 14.42 | 16.03 | 22.91 | |
Humid | Maximum | 47.93 | 40.97 | 43.19 | 23.92 | 24.05 | 29.10 |
Minimum | 21.23 | 26.40 | 16.26 | 7.47 | 9.16 | 12.25 | |
Average | 30.28 | 32.22 | 26.25 | 13.06 | 15.23 | 20.58 | |
Median | 30.91 | 33.82 | 26.98 | 13.67 | 15.94 | 20.25 | |
Arid | Maximum | 41.42 | 41.73 | 34.15 | 18.18 | 19.79 | 25.27 |
Minimum | 20.30 | 20.41 | 16.72 | 4.59 | 7.28 | 10.28 | |
Average | 26.32 | 28.07 | 23.10 | 9.75 | 11.67 | 17.17 | |
Median | 25.86 | 28.13 | 24.66 | 8.33 | 12.07 | 16.28 | |
Hyper-arid | Maximum | 35.76 | 39.03 | 32.72 | 12.52 | 12.26 | 23.41 |
Minimum | 18.20 | 19.72 | 14.18 | 4.32 | 5.77 | 7.27 | |
Average | 22.06 | 26.95 | 20.05 | 7.63 | 8.65 | 14.13 | |
Median | 22.92 | 27.37 | 20.53 | 8.08 | 9.60 | 13.24 |
Climate Region | MB (%) | MAE (%) | ubRMSE (%) | R (%) | KGE Score (%) | Theil’s U (%) | |
---|---|---|---|---|---|---|---|
Glacial | Maximum | 56.59 | 61.36 | 56.92 | 35.12 | 51.87 | 30.17 |
Minimum | 22.68 | 27.41 | 25.93 | 19.25 | 25.88 | 13.25 | |
Average | 39.74 | 38.27 | 39.16 | 26.07 | 39.96 | 18.23 | |
Median | 39.34 | 37.89 | 40.89 | 28.62 | 40.47 | 18.07 | |
Humid | Maximum | 53.57 | 44.58 | 41.71 | 28.38 | 45.29 | 27.79 |
Minimum | 20.29 | 21.67 | 21.75 | 14.51 | 20.93 | 12.12 | |
Average | 36.93 | 33.06 | 30.47 | 20.24 | 33.52 | 16.09 | |
Median | 35.82 | 32.33 | 32.45 | 21.03 | 32.21 | 17.78 | |
Arid | Maximum | 49.72 | 40.89 | 37.38 | 21.03 | 39.44 | 23.46 |
Minimum | 18.58 | 18.67 | 18.66 | 10.33 | 16.49 | 9.67 | |
Average | 31.44 | 30.37 | 26.82 | 15.02 | 24.28 | 13.92 | |
Median | 30.00 | 30.53 | 25.05 | 16.23 | 23.59 | 13.05 | |
Hyper-arid | Maximum | 46.92 | 33.28 | 30.19 | 16.64 | 26.45 | 20.49 |
Minimum | 17.11 | 16.42 | 15.45 | 7.64 | 10.22 | 6.46 | |
Average | 28.77 | 24.98 | 23.87 | 11.99 | 15.73 | 10.31 | |
Median | 28.69 | 24.43 | 21.41 | 10.61 | 16.32 | 9.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, K.U.; Shang, S. A Regional Blended Precipitation Dataset over Pakistan Based on Regional Selection of Blending Satellite Precipitation Datasets and the Dynamic Weighted Average Least Squares Algorithm. Remote Sens. 2020, 12, 4009. https://doi.org/10.3390/rs12244009
Rahman KU, Shang S. A Regional Blended Precipitation Dataset over Pakistan Based on Regional Selection of Blending Satellite Precipitation Datasets and the Dynamic Weighted Average Least Squares Algorithm. Remote Sensing. 2020; 12(24):4009. https://doi.org/10.3390/rs12244009
Chicago/Turabian StyleRahman, Khalil Ur, and Songhao Shang. 2020. "A Regional Blended Precipitation Dataset over Pakistan Based on Regional Selection of Blending Satellite Precipitation Datasets and the Dynamic Weighted Average Least Squares Algorithm" Remote Sensing 12, no. 24: 4009. https://doi.org/10.3390/rs12244009
APA StyleRahman, K. U., & Shang, S. (2020). A Regional Blended Precipitation Dataset over Pakistan Based on Regional Selection of Blending Satellite Precipitation Datasets and the Dynamic Weighted Average Least Squares Algorithm. Remote Sensing, 12(24), 4009. https://doi.org/10.3390/rs12244009