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Abstract: Based on the complex topography and climate conditions over the Tianshan Mountains
(TSM) in Xinjiang, China, the new precipitation product, the Global Precipitation Measurement
(GPM) (IMERG), and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) 3B42 (TMPA),
were evaluated and compared. The evaluation was based on daily-scale data from April 2014 to
March 2015 and analyses at annual, seasonal and daily scales were performed. The results indicated
that, overall, the annual precipitation in the Tianshan area tends to be greater in the north than in
the south and greater in the west than in the east. Compared with the ground reference dataset,
GPM and TRMM datasets represent the spatial variation of annual and seasonal precipitation over the
TSM well; however, both measurements underestimate the annual precipitation. Seasonal analysis
found that the spatial variability of seasonal precipitation has been underestimated. For the daily
assessment, the coefficient of variation (CV), correlation coefficient (R) and relative bias (RB) were
calculated. It was found that the GPM and TRMM data underestimated the larger CV. The TRMM
data performed better on the daily variability of precipitation in the TSM. The R and RB data indicate
that the performance of GPM is generally better than that of TRMM. The R value of GPM is generally
greater than that of TRMM, and the RB value is closer to 0, indicating that it is closer to the measured
value. As for the ability to detect precipitation events, the GPM products have significantly improved
the probability of detection (POD) (POD values are all above 0.8, the highest is 0.979, increased by
nearly 17%), and the critical success index (CSI) (increased by nearly 9% in the TSM) is also better
than TRMM, although it is only slightly weaker than TRMM in terms of the false alarm ratio (FAR)
and frequency bias index (FBI). Overall, GPM underestimates the low rainfall rate by 6.4% and
high rainfall rate by 22.8% and overestimates middle rain rates by 29.1%. However, GPM is better
than TRMM in capturing all types of rainfall events. Based on these results, GPM-IMERG presents
significant improvement over its predecessor TRMM 3B42. Considering the performance of GPM in
different subregions, a lot of work still needs to be done to improve the performance of the satellite
before being used for research.
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1. Introduction

Precipitation is a fundamental component of the global water cycle. It provides important
information for climate research, water resource management and many other applications, and
plays an important role in the interaction between the hydrosphere, atmosphere, and biosphere [1].
Due to the great spatial and temporal variability of precipitation, accurate precipitation measurements
remain challenging, especially in regions with complex topography [2,3]. Three methods have been
commonly used to measure precipitation: rain gauges, weather radars and satellite sensor. A rain
gauge measures precipitation directly and is considered to be the most accurate method of determining
rainfall; however, as the ground stations are sparsely distributed, rain gauges have accuracy limitations
because they measure rainfall at a single point, which is insufficient to accurately describe the spatial
variability of precipitation [4].

The emergence of multisatellite inversion technology provides a new method for rapidly
capturing precipitation information. Satellite data are the most effective means of precipitation
observation on a global scale [5]. Because precipitation observation satellites generally have the
characteristics of real-time, average spatial distribution, wide coverage, and high temporal and spatial
resolution, they have gradually been applied to various meteorological and hydrological research [6,7].
Among them, the Tropical Rainfall Measuring Mission (TRMM) has been widely used due to its
relatively high accuracy [8–13]. As the successor of TRMM, the Global Precipitation Measurement
(GPM) Mission initiated by NASA and JAXA was launched in April 2014. It can explore the characteristics
of global precipitation in a more detailed and advanced way [14,15].

In recent years, numerous studies have been conducted worldwide to evaluate the performance of
GPM. For example, Jiang et al. [5] used the humid Mishui basin in the mid-latitude of southern China as
the research area to evaluate the products of GPM-IMERG’s early, late and final run and reported that
the IMERG datasets are superior to TMPA. Wang et al. [16] compared and assessed different versions
of GPM-IMERG, providing global and regional evaluation results for GPM algorithm developers
and insights for users of the global GPM product. Mahmoud et al. [17] verified the performance
of GPM over the United Arab Emirates (UAE) based on observation data from surface rain gauges.
They believed that the final-run-product of GPM-IMERG not only better reflected the rainfall variability
and patterns in UAE but also had potential uses for complementing or replacing the ground rainfall
measurements. Wu et al. [18] quantitatively evaluated the accuracy of GPM and TMPA over the Yangtze
River basin, indicating that both IMERGV5 and 3B42V7 overestimated precipitation in low-elevation
areas. A few studies exist regarding the product’s ability to detect and estimate precipitation and
extreme precipitation. Prakash et al. [3] compared 17-year TMPA data with GPM-IMERG data to
study these products’ abilities to detect and estimate heavy rainfall across India. It was concluded
that the quality of GPM research product for detecting the frequency of rainstorm events across India
significantly improved TMPA during the southwest monsoon season. Fang et al. [19] reported that
the GPM and TMPA capture the spatial patterns of extreme precipitation in China. GPM is generally
better than TMPA. Zhang et al. [4] reported that satellite products (IMERG/GSMAP) generally capture
the temporal and spatial patterns of rainstorms, but both underestimate the accumulated precipitation
of storms.

Satellite precipitation products have greatly facilitated the estimation of precipitation at global
and regional scales, especially in areas with few surface rain gauges and poor performance of other
traditional methods [20]. Recently, several scholars have studied the results of satellite precipitation
products from different regions around the world [1,17,21]. The results of these studies have shown that
IMERG products are closely related to regional topography and climatic conditions when describing
precipitation. For example, Wang et al. [1] showed that topography impacts the performance of
IMERG/TMPA data, overestimating precipitation in low-elevation areas and underestimating it in
high-altitude areas. Caracciolo et al. [21] found that the accuracy of GPM is related to topography.
Mahmoud et al. [17] reported that the eastern and northeastern parts of the UAE have complicated
terrain; thus, satellite products perform poorly in these areas.
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In this context, it is critical to verify the satellite datasets over different terrain and climatic
regions. Because GPM products have only been launched in recent years, the terrain of the Tianshan
mountainous (TSM) is complex, and there are few comprehensive assessments based on daily-scale
data at the subregion level, the application of GPM products in the TSM area has remained limited.
Therefore, this study evaluates and compares the estimation accuracy of the two satellite precipitation
datasets GPM-IMERG and TRMM 3B42 in the TSM. This assessment uses the China Gauge-based Daily
Precipitation Analysis (CGDPA) as the ground reference dataset, which is a set of daily precipitation
grid products in China launched by the National Meteorological Information Center (NMIC) of China
Meteorological Administration (CMA). It is a comprehensive observational daily precipitation report
database. The study period was from April 2014 to March 2015.

2. Study Area

The Tianshan Mountains (TSM) are located in Central Asia and northwest China. In China,
the TSM are located from 34.34◦ to 55.43◦ N and from 75◦ to 96.37◦ E [22]. The mountain range extends
approximately 1700 km from east to west and 400 km from north to south [23,24] and is an important
demarcation line between southern Xinjiang and northern Xinjiang in China [25], which form two
different natural landscapes. The TSM are far from the ocean, with little precipitation and extremely
uneven distribution [26]. The average annual precipitation is 180 mm in the whole region, but the
average annual precipitation of the northern slope is more than 200 mm, and that of the southern
slope is about 150 mm [27]. The daily temperature variations is large, which is a typical continental
climate [28–30]. The height and orientation of the TSM have an important influence on weather
patterns, precipitation distribution and precipitation forms [31]. The topography of the TSM is complex,
and the precipitation is closely related to the topography. The topography plays a vital role in forming
a distinct local climates. The precipitation in the north of the TSM is larger than that in the south, the
mountain area is larger than the plain, and the largest precipitation occurs in the Yili Valley. In terms of
temperature distribution, the northern slope of the TSM is colder than the southern slope, and the
western slope is colder than the eastern slope.

Based on the geographical location and climatic conditions of the study area, the Tianshan
Mountain is divided into three parts: the west, with the highest peak of 7435 m, the east (TS4) with
the maximum peak of 5445 m, and the middle section (TS3) (Figure 1) [31]. The western Tianshan
Mountains are further subdivided into northwest Tianshan (TS1) (including Boertala Valley and Yili
Valley) and southwest Tianshan (TS2) according to the seasonal and annual precipitation distribution
(Figure 2). The four subregions are consistent in precipitation change and seasonal circulation pattern.

Figure 1. Location and topographic features of Tianshan Mountains and distribution of rain gauges.
The black dashed line indicates the range of the four subregions: 1 Northwest Tianshan (TS1),
2 southwest Tianshan (TS2), 3 middle Tianshan (TS3), and 4 east Tianshan (TS4) (Base on map sources:
GS (2020) 3183).



Water 2020, 12, 3088 4 of 15

Figure 2. Spatial distribution of annual and seasonal total precipitation (mm) by the China Gauge-based
Daily Precipitation Analysis (CGDPA) (a,d,g,j,m), the Global Precipitation Measurement (GPM)
(b,e,h,k,n), and the Tropical Rainfall Measuring Mission (TRMM) (c,f,i,l,o) in the Tianshan Mountains
(TSM) of China from 1 April 2014 to 31 March 2015. Year (a–c), spring (d–f), summer (g–i), autumn (j–l),
winter (m–o).

3. Materials and Methods

3.1. Rainfall Datasets

3.1.1. GPM Data

The Global Precipitation Measurement (GPM) mission is a newly launched international satellite
network providing global rainfall and snow observations. Compared with previous satellite
precipitation products, GPM has higher accuracy and spatiotemporal resolution. On the basis
of TRMM’s success, it deployed a “core” satellite with an advanced radar/radiometer system to
measure spatial precipitation and serves as a reference standard for unified research and operational
satellite constellation precipitation measurements to improve our understanding of the Earth’s water
and energy cycle and our ability to predict extreme events for the benefit of society.

The GPM satellite carries two main sensors: the GPM Microwave Imager (GMI) and
a Dual-Frequency Precipitation Radar (DPR) [32]. The input precipitation estimates are calculated
by various passive microwave and infrared satellite sensors. According to the demand, it has three
different modes: an early, late and final run. Among them, the final-run dataset introduces monthly
gauge analysis for deviation correction, which is generally considered to be more accurate than early
and late run, and is widely used in hydrological and climate research [19].

IMERG data are one type of GPM data. The latest version of the IMERG final-run product V06
is used, which was launched in April 2014. This product has a spatial resolution of 0.1◦ × 0.1◦ and
a coverage of 60◦ N–60◦ N. (Source: https://gpm.nasa.gov/data/directory).

https://gpm.nasa.gov/data/directory
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3.1.2. TRMM Data

The Tropical Rainfall Measuring Mission (TRMM), as the predecessor of GPM, is a joint mission
launched by NASA and JAXA in 1997 to study rainfall in tropical regions. It is a research satellite that
aims to help us understand the precipitation distribution and changes in tropical regions. TRMM has
accumulated a large amount of precipitation data with high temporal and spatial resolution, and is
widely used in various precipitation studies [33–35].

TMPA data are one type of TRMM data; they have a spatial resolution of 0.25◦ × 0.25◦ and
a coverage range of 50◦ N–50◦ N. The daily dataset selected in this study was accumulated from the
research-quality 3-hourly TRMM (TMPA) rainfall estimate. (Source: https://disc.gsfc.nasa.gov/datasets).

3.1.3. CGDPA Data

The China Gauge-based Daily Precipitation Analysis (CGDPA) is produced and routinely calibrated
by the National Meteorological Information Center (NMIC) of China Meteorological Administration
(CMA). The CGDPA dataset has a daily spatiotemporal resolution of 0.25◦ and is used as a reference for
evaluating the GPM products. This dataset includes daily precipitation from 2419 stations (including
the National Climate Observatory, National Meteorological Observation Station I, Second-level station),
and the optimal interpolation method based on “climate background field” is applied to generate
a grid product of daily precipitation in China in real time [36].

Considering that the GPM satellite datasets started in April 2014 and the TRMM data were
stopped in April 2015, we chose the overlap period of the two satellite data from April 2014 to March
2015 as the study period. On the daily scale, a more detailed and comprehensive assessment was made
in different subregions.

3.2. Methodology

Since the resolution of GPM datasets are 0.1◦ × 0.1◦, and the resolution of TRMM and the CGDPA
datasets are 0.25◦ × 0.25◦ resolution, for convenience of analysis, we used the bilinear interpolation method
to resample the GPM dataset to 0.25◦ × 0.25◦ with the same spatial resolution [24], as shown in Figure 2.

To evaluate and compare the remote sensing satellite dataset against the ground reference dataset,
the following indicators were computed: the coefficient of variation (CV), correlation coefficient (R),
relative bias (RB) and root mean square error (RMSE). The calculation formulas are shown in Table 2.
The CV is used to measure the change of daily precipitation with respect to its daily mean. R evaluates
the degree of linear correlation between two datasets. RB describes the systematic deviation of satellite
dataset: positive values indicate that the rainfall is overestimated, while negative values indicate
that the rainfall is underestimated. RMSE measures the average absolute error of the GPM/TRMM.
The smaller the RMSE value, the closer the precipitation measured by the satellite is to the measured
value [24].

Accurately describing the frequency of precipitation at various intensities is essential when
studying hydrological processes, making climate predictions and assessing land–atmosphere
interactions. In this study, the precipitation intensity evaluation was used the probability density
function (PDF) method [37]. PDF is calculated as the ratio of the number of precipitation to the total
number of precipitation between two continuous thresholds. The calculation formula is shown in
Table 2. In addition, in order to better describe the seasonal variation of precipitation, a Taylor diagram
is drawn, which reflects the ratio of R, RMSE and SD between estimated and observed precipitation.

In addition to basic statistics, to further evaluate the precipitation detection ability, based on
Table 1, the probability of detection (POD), false alarm ratio (FAR), frequency bias index (FBI) and
critical success index (CSI) are computed [24]. When the POD, FBI and CSI are close to 1 and the FAR
is close to 0, the estimation is highly accurate. The calculation formulas are shown in Table 2. In this
study, the adopted threshold is 0.5 mm, and it is assumed that the daily rainfall is less than 0.5 mm as
“no rain”.

https://disc.gsfc.nasa.gov/datasets
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Table 1. A 2 × 2 contingency table for two types of precipitation estimation.

Observed ≥ 0.5 mm Observed < 0.5 mm

Estimated ≥ 0.5 mm H F
Estimated < 0.5 mm M Z

Note: H is the observed precipitation detected correctly by the satellite, F is the observed precipitation detected
incorrectly by the satellite, M is the observed precipitation missed by the satellite, and Z represents a correct estimate
of no rain.

Table 2. List of the statistical indicators.

Name (Symbol) Formula Optimal Value

Correlation Coefficient (R) R =

n∑
i=1

(xi−x)(yi−y)√
n∑

i=1
(xi−x)2

·

n∑
i=1

(yi−y)2
1

Relative Bias (RB/%) RB =

n∑
i=1

(xi−yi)

n∑
i=1

yi

× 100% 0

Coefficient of Variation (CV/%) CV = σ
µ × 100% \

Root Mean Square Error (RMSE) RMSE =

√∑n
i=1 (xi−x)2

n
0

Probability of Detection (POD) POD = H
H+M 1

False Alarm Ratio (FAR) FAR = F
H+F 0

Frequency Bias Index (FBI) FBI = H+F
H+M 1

Critical Success Index (CSI) CSI = H
H+M+F 1

Note: n = number of samples, σ = standard deviation of the samples, µ = the sample average, xi = the estimated
precipitation by satellites, yi = the measured precipitation on the ground.

4. Results

4.1. Annual and Seasonal Assessments

Figure 2 shows the total annual precipitation and total seasonal precipitation in different seasons
based on the CGDPA, GPM and TRMM datasets in the TSM of China in 2014 accumulated from
daily precipitation data. It can be seen from Figure 2 that there are obvious spatial differences of
precipitation in different regions. The three groups of data have similar spatial patterns. According to
the observations, the annual precipitation decreased from over 600 mm in the rainy northwest TSM
area (TS1) to less than 100 mm in the east, especially in the vicinity of the Yili Valley. Although the Yili
Valley is far from the ocean, its open westward (horn-shaped) topography is conducive to receiving
humid water vapor from the Atlantic Ocean. Every year, westerly airflow enters the Yili Valley
in spring, climbing from low to high. The airflow changes from warm to cold in the Piedmont
zone, causing abundant precipitation. The spatial patterns of seasonal precipitation is higher in the
northwest and lower in the east, and the precipitation is concentrated in summer. Overall, the annual
precipitation in the TSM area shares certain common characteristics: precipitation is greater in the
north than in the south and greater in the west than in the east. There is good agreement between the
satellite precipitation estimates (GPM/TRMM) and the ground reference dataset (CGDPA) about annual
precipitation. The spatial distribution of seasonal precipitation is similar to that of annual precipitation.

The precipitation measured in the TRMM dataset is lower than the CGDPA measured in the
ground, while the precipitation in the GPM dataset is significantly higher and closer to the true
value. Notably, the spatial distribution of annual precipitation from GPM is subtler than that of
TRMM. The geometry and distribution of the high precipitation areas over the northwestern part of
the Tianshan Mountains is captured better in the GPM datasets than in the TRMM estimates.
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4.2. Daily Assessments

To investigate the variation characteristics of daily precipitation, the CV was calculated for each
dataset, as shown in Figure 3. The CV can reflect the change in daily precipitation relative to the
daily mean. As Figure 3 shows, in the northwest Tianshan (TS1) and middle Tianshan (TS3) areas,
the observed CV is small, while in the southwest Tianshan (TS2) and east Tianshan (TS4) areas,
the observed CV is large. Generally, larger (smaller) CV values are observed in areas with lower
(higher) daily rainfall.

Figure 3. Spatial distribution of CV values (%) of daily precipitation in Tianshan from 1 April 2014 to
31 March 2015.

The GPM and TRMM datasets significantly underestimated the larger CV over southwest Tianshan
and east Tianshan. Overall, the TRMM data are more consistent with the daily variability of precipitation
in this area.

In Figures 4 and 5, the spatial distribution of R values and relative deviation (RB) of the GPM/TRMM
and ground reference dataset (CGDPA) on a daily scale are compared. Overall, the satellite datasets
have a good correlation with the measured precipitation (CGDPA) in the east Tianshan (TS4) area.
At the same time, the lower R values are mainly found in the western and northern Tianshan Mountains.
The combination of Figures 1 and 4 shows that the R value is lower in high-elevation areas and higher
in low-elevation areas. Figure 5 shows that the positive and negative deviations of the GPM data are
relatively balanced, while TMPA appears as a negative deviation on most gauges. The GPM and TRMM
datasets tend to underestimate the daily precipitation in the TSM. In comparison, the precipitation
estimates of the GPM dataset are closer to the measured dataset, indicating that the GPM satellite is
more accurate in capturing precipitation information. Overall, except for RB, other statistical indicators
from GPM and TRMM have similar spatial trend changes. Additionally, it is not difficult to see that
these GPM indices are better than those of TRMM and that satellite precipitation datasets performs
poorly at high altitudes.

Figure 4. Correlation between GPM, TRMM and CGDPA from 1 April 2014 to 31 March 2015.
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Figure 5. Relative deviation percentage of GPM, TRMM and CGDPA from 1 April 2014 to 31 March 2015.

4.3. Annual Variability and the Seasonal Cycle

Annual variability is significant in areas with low precipitation. In order to further test the
ability of satellites to describe the temporal variability of precipitation in the TSM, we analyzed the
annual precipitation changes in different subregions based on the GPM/TRMM datasets, as shown in
Figure 6. The seasonal distribution of precipitation in the TSM is uneven. The precipitation is mainly
concentrated in summer and reaches its minimum in winter, especially in TS3 and TS4. Compared with
the ground observations, the satellite datasets portray the annual variability of precipitation well,
especially in TS2 and TS3, achieving high correlations (above 0.9). However, both of the satellite
products underestimate the annual precipitation. Overall, GPM and TRMM have similar statistical
behaviors, but GPM has a lower RMSE in the four subregions and performs better.

Figure 6. Annual variation in precipitation in four subregions of the Tianshan Mountains.

To show the statistical comparison of the seasonal variation of precipitation in the TSM and its
subregions in 2014, we plotted a standardized Taylor diagram [38] and provide a summary of the
corresponding degree between the estimated and observed precipitation by considering three statistics:
standard deviation (SD), R and RMSE. The normalized Taylor diagram uses the SD and RMSE of
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the reference value and variable value divided by the SD of the reference value, which eliminates
physical-unit quantities. The result is shown in Figure 7. Among these, the radial coordinate represents
the standard deviation, shown in black dashed lines, and the green semicircle represents the RMSE.
Meanwhile, the angular coordinate represents R value, which is shown in blue dashed lines. In these
figures, CGDPA represents the ground reference dataset (CGDPA is the reference point), and the other
values were derived from the satellite precipitation datasets in different seasons. The closer the points
of satellite precipitation are to the reference points, the better the product is.

Figure 7. Taylor diagrams for the seasonal variation of precipitation in the TSM and the four subregions.

As shown in Figure 7, overall (Figure 7a), except for winter, the correlation between the two
satellite datasets and the ground reference dataset shows the same trend as the seasonal variations,
both of which show lower levels in spring and higher levels in summer and autumn. Among the four
subregions (Figure 7b–e), TS2 shows significant seasonality, and the estimated summer spatial patterns
of precipitation in TS3 and TS4 are better than the estimates for the other three seasons, with a lower
RMSE and a higher correlation coefficient (R). All the products tend to underestimate the spatial
variability of seasonal precipitation.

4.4. Probability Density Function

Figure 8 shows the performance of the PDF calculated based on the two satellite products
(GPM/TRMM) and the ground reference dataset (CGDPA) in the TSM and its subregions. Overall,
both of the satellites have great defects in the detection of heavy precipitation events, while they have
relatively high accuracy for weak precipitation events. GPM underestimates the occurrence of both low
rain rates (<2 mm/d) and high rain rates (>20 mm/d), and it overestimates the occurrence of middle
rain rates (2–20 mm/d). In the middle rain rates (especially 2–5 mm/d), the occurrence of TRMM is
significantly the highest when compared to the other products. All the datasets show that the highest
percentage mostly occurs at the precipitation class of 2–5 mm/d, while the lowest percentage mostly
occurs at the precipitation class of >10 mm/d. TRMM tends to find more precipitation events than the
ground observations, and GPM has a similar tends compared to CGDPA at all the thresholds, which is
closer to the measured data. Thus, the performance of GPM is better than that of TRMM at capturing
all classes of rainfall events.
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Figure 8. Probability density function (PDF) of precipitation estimation in Tianshan and four subregions.

4.5. Contingency Statistics

Finally, we examine rainy event detection using three statistics: POD, FAR and CSI. Table 3 lists
the POD, FAR, FBI and CSI values of the GPM and TRMM datasets against CGDPA in the TSM and
its subregions. Generally, both the GPM and TRMM have low PODs (<50%) and high FARs (>45%)
over the different subregions, especially in northern China (such as Xinjiang) [39].

Table 3. Analysis of precipitation detection capability.

Name
POD FAR FBI CSI

GPM TRMM GPM TRMM GPM TRMM GPM TRMM

Tianshan 0.979 0.836 0.237 0.201 1.282 1.046 0.751 0.690
TS1 0.902 0.716 0.474 0.451 1.716 1.304 0.497 0.451
TS2 0.952 0.740 0.381 0.336 1.537 1.115 0.600 0.538
TS3 0.843 0.640 0.510 0.461 1.721 1.186 0.449 0.414
TS4 0.816 0.730 0.552 0.485 1.822 1.417 0.407 0.433

POD shows that GPM notably improves the precipitation detection over the TSM and the four
subregions compared with the TRMM estimates. All three datasets show that the FAR is largest in
east Tianshan and smallest in southwest Tianshan, but TRMM performs better for FBI. The CSI results
show that TRMM is better than GPM in terms of rainfall detection in east Tianshan. The overall
analyses show that the performances of GPM/TRMM rainfall estimates in northwest Tianshan (TS1)
and southwest Tianshan (TS2) were better and achieved relatively higher PODs and CSIs and lower
FARs than those in the other subregions.

Overall, except for slightly higher FAR and FBI values, the POD and CSI values of GPM have
significantly improved compared to TRMM, especially the POD value. Therefore, for detecting the
precipitation frequency, GPM is better than TRMM.

5. Discussion

Previous studies have shown that satellite precipitation products do not perform well in Xinjiang,
China [40]. However, in this study, we evaluated the GPM/TRMM datasets on different temporal scales
(annual, seasonal, and daily) and it was found that GPM showed significant improvement compared
with its predecessor TRMM. From the above analyses, it can be seen that the GPM-IMERG and
TRMM datasets show obvious spatial differences in the precipitation estimation of TSM, with greater
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precipitation in the north than the south and in the west than the east (Figure 2). The seasonal pattern
is that the precipitation is more in summer and less in winter. Both satellite products can track and
observe the spatial variation of precipitation. This is consistent with other results [26]. The main reason
for the formation of this feature is that the large-scale mountain of TSM intercepted and uplifted the
water vapor from Atlantic and Arctic Ocean, resulting in obvious precipitation gradient. Both satellite
products underestimated annual precipitation, which is reasonable and has been reported in other high
mountains areas [41,42]. Because arid areas have less rainfall and low water vapor in the atmosphere,
it is difficult to detect by satellite sensors.

Based on daily evaluations, it is found that compared to TMPA, GPM products have improved
R, POD, and CSI values. Such improvements have also been found in other studies [18,19].
The enhancement of these indicators of GPM products might be related to the improvements in
the spatiotemporal resolution [21]. The GPM products provide precipitation estimates of 30 min
intervals, while TRMM products provide estimates of 3 h periods. Due to the lower temporal resolution
of TRMM products, however, some precipitation events are often missed, resulting in the lower R value.
In addition, the influence of altitude on precipitation estimation for the two satellite products still
exists. The R value is lower in high-elevation areas and higher in low-elevation areas. The performance
of GPM/TRMM in high-elevation areas is worse than in low-elevation areas.

To more comprehensively evaluate the satellite datasets, we divided TSM into four subregions
according to the geographical location and climatic conditions (Figure 1) and compared the satellite
datasets and ground reference dataset across different subregions. In TS1 and TS3, the R value between
GPM and CGDPA is greater than that of TRMM data, while in TS2 and TS4, the R value of GPM and
CGDPA is slightly smaller than that of TRMM. GPM had a lower RMSE in the four subregions and
performed better (Figure 6). Regarding seasonal changes, the two satellite products had a higher
correlation in summer and autumn, and a lower correlation in winter and spring. Among the four
subregions, TS2 showed significant seasonality (Figure 7). The reason may be that the winter and spring
seasons in the study area are affected by the Siberian air mass, the precipitation is low, the weather
is dry and cold, and the mountain surface is covered with snow. It is difficult for satellite products
to distinguish between snow and clouds. In summer and autumn, the correlation increases as the
precipitation increases under the influence of westerly winds from the Atlantic.

In addition, it is worth noting that both products overestimate moderate rainfall but underestimate
heavy rainfall. In different subregions, except for the middle rain rate, the low rain rate and high
rain rate of GPM precipitation datasets in TS1, TS2 and TS3 are better than TRMM, and are closer to
the measured values. The performance of GPM on TS4 is better than that of TRMM. On the whole,
GPM products are significantly better than TRMM products in TSM, especially in low rain rate and
middle rain rate. As shown in Table 4, Fang et al. also reported similar results [19]. One possible reason
is that the GMI and DPR sensors carried by the newly launched GPM satellite are better at detecting
low and solid rain events, while the sensors carried by its pioneer TRMM are less sensitive to this [18].

Overall, the terrain of Tianshan Mountains was complex, and the meteorological stations were
sparse. The interpolation of rain gauge data leads to the uncertainty of precipitation estimation in
TSM. Therefore, it is necessary to estimate the satellite precipitation for TSM research. The study area
here is divided according to geographical location and climatic conditions, and its performance is
evaluated and analyzed based on the daily GPM and TRMM datasets from 2014 to 2015. Despite the
uncertainties, the findings are still very valuable. Compared with TRMM datasets, GPM has higher
temporal and spatial resolution and larger coverage, which is of great significance to the future research
and application of meteorology, hydrology and natural disasters. In our next work, the TSM will be
divided according to the different surface types and topographic factors, and monthly datasets will be
used to analyze, evaluate and calibrate the satellite datasets in the TSM for a long time series to obtain
more accurate precipitation information.
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Table 4. The performance of CGDPA, GPM and TRMM in TSM and its subregions.

The Frequency of Precipitation (%) CGDPA GPM TRMM

Tianshan
low rain rate 18.22 11.84 28.85

middle rain rate 53.10 82.24 71.15
high rain rate 28.68 5.92 0.00

TS1
low rain rate 30.77 34.15 47.04

middle rain rate 56.59 62.46 52.96
high rain rate 12.64 3.38 0.00

TS2
low rain rate 30.94 32.62 47.27

middle rain rate 54.26 65.54 52.73
high rain rate 14.80 1.85 0.00

TS3
low rain rate 37.77 51.74 69.35

middle rain rate 47.87 48.26 30.65
high rain rate 14.36 0.00 0.00

TS4
low rain rate 35.09 53.87 72.47

middle rain rate 47.37 45.56 27.53
high rain rate 17.54 0.57 0.00

6. Conclusions

Based on daily-scale data, this study evaluated the GPM/TRMM products over the TSM from 1
April 2014 to 31 March 2015, using the CGDPA dataset as the reference. Three main statistical indicators
(CV, R and RB) were used to compare GPM with TRMM and verify their abilities for measuring annual,
seasonal and daily precipitation. We also studied the PDF and the satellite products’ precipitation
detection abilities. The main findings are as follows:

1 In 2014, GPM/TRMM captured the spatial variability of annual precipitation detected in the TSM
area well, showing high precipitation in the TS1 and low precipitation in the TS4. The seasonal
precipitation distribution is similar to that of annual precipitation. Both GPM and TRMM
underestimated the annual precipitation, but GPM had a lower RMSE than TRMM. According to
the seasonal analysis, both products underestimate the spatial variability of seasonal precipitation.
Middle Tianshan and east Tianshan have the best estimated summer precipitation, with lower
RMSE and higher R.

2 On a daily scale, GPM and TRMM obviously underestimate the larger CV values. Overall,
GPM performs better than TRMM in detecting precipitation events. GPM is superior to TRMM
with regard to the POD and CSI, where the POD is significantly higher. As for the FAR and
FBI, TRMM is slightly better than GPM. The detection capabilities of the GPM/TRMM for
precipitation events in the middle and east of Tianshan are significantly lower than in the
northwest and southwest.

3 The influence of terrain on precipitation: the study found that the influence of terrain on satellite
precipitation estimation still exists. The R value is lower in high-elevation area and higher in
low-elevation area, indicating that more improvement should be made in high-elevation areas.

4 By comparing the PDF, GPM shows a trend of underestimating low rain rate and high rain rate
events but overestimating middle rain rate events, while TRMM tends to find more events than
the ground observations. Compared with TRMM, GPM’s PDF values on all thresholds are similar
to the CGDPA trends; therefore, the GPM dataset performs better than TRMM at capturing all
types of rainfall events.

5 Performance of GPM/TRMM in subregions: In TS1 and TS3, the correlation between GPM and
CGDPA is greater than that of TRMM, while in TS2 and TS4, the R value of GPM is slightly less
than that of TRMM. GPM has lower RMSE in all subregions and performs better.
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The results of this study show that GPM exhibits significant improvements compared to its
predecessor, TRMM 3B42V7. It can show more spatial details and has a better application prospect.
Considering the performance of GPM in different subregions and the underestimation of high-elevation
precipitation, the data need to be further corrected to better reflect the precipitation information of
high-latitude and high-altitude area in arid areas so as to alleviate the difficulties of collecting ground
observation data in complex terrain and scarce data area.

Author Contributions: Conceptualization, Y.Z., G.H., S.D. and Z.X.; methodology, Y.Z. and S.D.;
writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z., S.D. and Q.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (U1603342, 41961002).

Acknowledgments: We would like to thank State Key Laboratory of Desert and Oasis Ecology of Xinjiang Institute
of Ecology and Geography for guidance and full support. The authors also thank the National Meteorological
Information Center (NMIC) of China Meteorological Administration (CMA) and the National Aeronautics and
Space Administration (NASA) for providing climate data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, X.; Ding, Y.; Zhao, C.; Wang, J. Similarities and improvements of GPM IMERG upon TRMM
3B42 precipitation product under complex topographic and climatic conditions over Hexi region,
Northeastern Tibetan Plateau. Atmos. Res. 2019, 218, 347–363. [CrossRef]

2. Lu, D.; Yong, B. Evaluation and Hydrological Utility of the Latest GPM IMERG V5 and GSMaP V7
Precipitation Products over the Tibetan Plateau. Remote Sens. 2018, 10, 2022. [CrossRef]

3. Prakash, S.; Mitra, A.K.; Pai, D.S.; Aghakouchak, A. From TRMM to GPM: How well can heavy rainfall be
detected from space? Adv. Water Resour. 2016, 88, 1–7. [CrossRef]

4. Zhang, A.; Xiao, L.; Min, C.; Chen, S.; Kulie, M.; Huang, C.; Liang, Z. Evaluation of latest GPM-Era
high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event.
Atmos. Res. 2019, 216, 76–85. [CrossRef]

5. Jiang, S.; Ren, L.; Xu, C.-Y.; Yong, B.; Yuan, F.; Liu, Y.; Yang, X.; Zeng, X. Statistical and hydrological evaluation
of the latest Integrated Multi-satellitE Retrievals for GPM (IMERG) over a midlatitude humid basin in
South China. Atmos. Res. 2018, 214, 418–429. [CrossRef]

6. Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A Review of Global Precipitation Data
Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [CrossRef]

7. Zhang, Q.; Shi, P.; Singh, V.P.; Fan, K.; Huang, J. Spatial downscaling of TRMM-based precipitation data
using vegetative response in Xinjiang, China. Int. J. Climatol. 2017, 37, 3895–3909. [CrossRef]

8. Chen, S.; Hu, J.; Zhang, Z.; Behrangi, A.; Hong, Y.; Gebregiorgis, A.S.; Cao, J.; Hu, B.; Xue, X.; Zhang, X.
Hydrologic Evaluation of the TRMM Multisatellite Precipitation Analysis Over Ganjiang Basin in Humid
Southeastern China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4568–4580. [CrossRef]

9. Hong, Y.; Adler, R.F.; Negri, A.; Huffman, G.J. Flood and landslide applications of near real-time satellite
rainfall products. Nat. Hazards 2007, 43, 285–294. [CrossRef]

10. Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.;
Wolff, D.B. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [CrossRef]

11. Li, X.-H.; Zhang, Q.; Xu, C.-Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological
model for water balance computations in Xinjiang catchment, Poyang lake basin. J. Hydrol. 2012,
426, 28–38. [CrossRef]

12. Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its
utility in hydrologic prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [CrossRef]

13. Yang, N.; Zhang, K.; Hong, Y.; Zhao, Q.; Huang, Q.; Xu, Y.; Xue, X.; Chen, S. Evaluation of the TRMM
multisatellite precipitation analysis and its applicability in supporting reservoir operation and water resources
management in Hanjiang basin, China. J. Hydrol. 2017, 549, 313–325. [CrossRef]

http://dx.doi.org/10.1016/j.atmosres.2018.12.011
http://dx.doi.org/10.3390/rs10122022
http://dx.doi.org/10.1016/j.advwatres.2015.11.008
http://dx.doi.org/10.1016/j.atmosres.2018.09.018
http://dx.doi.org/10.1016/j.atmosres.2018.08.021
http://dx.doi.org/10.1002/2017RG000574
http://dx.doi.org/10.1002/joc.4964
http://dx.doi.org/10.1109/JSTARS.2015.2483484
http://dx.doi.org/10.1007/s11069-006-9106-x
http://dx.doi.org/10.1175/JHM560.1
http://dx.doi.org/10.1016/j.jhydrol.2012.01.013
http://dx.doi.org/10.1175/2007JHM944.1
http://dx.doi.org/10.1016/j.jhydrol.2017.04.006


Water 2020, 12, 3088 14 of 15

14. Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.;
Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [CrossRef]

15. Liu, C.; Zipser, E.J. The global distribution of largest, deepest, and most intense precipitation systems.
Geophys. Res. Lett. 2015, 42, 3591–3595. [CrossRef]

16. Wang, C.; Tang, G.; Han, Z.; Guo, X.; Hong, Y. Global intercomparison and regional evaluation of GPM
IMERG Version-03, Version-04 and its latest Version-05 precipitation products: Similarity, difference and
improvements. J. Hydrol. 2018, 564, 342–356. [CrossRef]

17. Mahmoud, M.T.; Hamouda, M.A.; Mohamed, M.M. Spatiotemporal evaluation of the GPM satellite
precipitation products over the United Arab Emirates. Atmos. Res. 2019, 219, 200–212. [CrossRef]

18. Wu, Y.; Zhang, Z.; Huang, Y.; Jin, Q.; Chen, X.; Chang, J. Evaluation of the GPM IMERG v5 and TRMM 3B42
v7 Precipitation Products in the Yangtze River Basin, China. Water 2019, 11, 1459. [CrossRef]

19. Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products
for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [CrossRef]

20. Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in
hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [CrossRef]

21. Caracciolo, D.; Francipane, A.; Viola, F.; Noto, L.V.; Deidda, R. Performances of GPM satellite precipitation
over the two major Mediterranean islands. Atmos. Res. 2018, 213, 309–322. [CrossRef]

22. Li, Q.; Yang, T.; Zhang, F.; Qi, Z.; Li, L. Snow depth reconstruction over last century: Trend and distribution
in the Tianshan Mountains, China. Glob. Planet. Chang. 2019, 173, 73–82. [CrossRef]

23. Ji, X.; Chen, Y. Characterizing spatial patterns of precipitation based on corrected TRMM B-3(43) data over
the mid Tianshan Mountains of China. J. Mt. Sci. 2012, 9, 628–645. [CrossRef]

24. Mou Leong, T.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation
products over Malaysia. Atmos. Res. 2018, 202, 63–76. [CrossRef]

25. Lu, X.; Wei, M.; Tang, G.; Zhang, Y. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM
satellite precipitation products by use of ground-based data over Xinjiang, China. Environ. Earth Sci. 2018,
77, 209. [CrossRef]

26. Fan, M.; Xu, J.; Chen, Y.; Li, W. Simulating the precipitation in the data-scarce Tianshan Mountains,
Northwest China based on the Earth system data products. Arab. J. Geoences 2020, 13, 637. [CrossRef]

27. Zhao, C.; Yao, S.; Li, Q. The Distribution of Precipitation and Rain Days over the Tianshan Mountains in
Northwest of China. Earth Environ. Sci. 2020, 428, 012063. [CrossRef]

28. Feng, G.; Yuhu, Z.; Qiuhua, C.; Peng, W.; Huirong, Y.; Yunjun, Y.; Wanyuan, C. Comparison of two long-term
and high-resolution satellite precipitation datasets in Xinjiang, China. Atmos. Res. 2018, 212, 150–157.

29. Yang, M.; Li, Z.; Anjum, M.N.; Gao, Y. Performance Evaluation of Version 5 (V05) of Integrated Multi-Satellite
Retrievals for Global Precipitation Measurement (IMERG) over the Tianshan Mountains of China. Water
2019, 11, 1139. [CrossRef]

30. Gao, L.; Wei, J.; Wang, L.; Bernhardt, M.; Schulz, K. A high-resolution air temperature data set for the Chinese
Tian Shan in 1979–2016. Earth Syst. Sci. Data 2018, 10, 2097–2114. [CrossRef]

31. Guo, L.; Li, L. Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains,
China. Int. J. Climatol. 2015, 35, 1379–1393. [CrossRef]

32. Prakash, S.; Mitra, A.K.; Aghakouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of
GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2016,
556, 865–876. [CrossRef]

33. Peng, B.; Shi, J.; Ni-Meister, W.; Zhao, T.; Ji, D. Evaluation of TRMM Multisatellite Precipitation Analysis
(TMPA) Products and Their Potential Hydrological Application at an Arid and Semiarid Basin in China.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3915–3930. [CrossRef]

34. Elhamid, A.M.I.A.; Eltahan, A.M.H.; Mohamed, L.M.E.; Hamouda, I.A. Assessment of the two satellite-based
precipitation products TRMM and RFE rainfall records using ground based measurements. AEJ Alex. Eng. J.
2020, 59, 1049–1058. [CrossRef]

35. He, Z.; Yang, L.; Tian, F.; Ni, G.; Hou, A.; Lu, H. Intercomparisons of Rainfall Estimates from TRMM and GPM
Multisatellite Products over the Upper Mekong River Basin. J. Hydrometeorol. 2017, 18, 413–430. [CrossRef]

36. Shen, Y.; Xiong, A. Validation and comparison of a new gauge-based precipitation analysis over
mainland China. Int. J. Climatol. 2016, 36, 252–265. [CrossRef]

http://dx.doi.org/10.1175/BAMS-D-13-00164.1
http://dx.doi.org/10.1002/2015GL063776
http://dx.doi.org/10.1016/j.jhydrol.2018.06.064
http://dx.doi.org/10.1016/j.atmosres.2018.12.029
http://dx.doi.org/10.3390/w11071459
http://dx.doi.org/10.1016/j.atmosres.2019.03.001
http://dx.doi.org/10.1016/j.jhydrol.2014.07.044
http://dx.doi.org/10.1016/j.atmosres.2018.06.010
http://dx.doi.org/10.1016/j.gloplacha.2018.12.008
http://dx.doi.org/10.1007/s11629-012-2283-z
http://dx.doi.org/10.1016/j.atmosres.2017.11.006
http://dx.doi.org/10.1007/s12665-018-7378-6
http://dx.doi.org/10.1007/s12517-020-05509-1
http://dx.doi.org/10.1088/1755-1315/428/1/012063
http://dx.doi.org/10.3390/w11061139
http://dx.doi.org/10.5194/essd-10-2097-2018
http://dx.doi.org/10.1002/joc.4063
http://dx.doi.org/10.1016/j.jhydrol.2016.01.029
http://dx.doi.org/10.1109/JSTARS.2014.2320756
http://dx.doi.org/10.1016/j.aej.2020.03.035
http://dx.doi.org/10.1175/JHM-D-16-0198.1
http://dx.doi.org/10.1002/joc.4341


Water 2020, 12, 3088 15 of 15

37. Yang, X.; Yong, B.; Hong, Y.; Chen, S.; Zhang, X. Error analysis of multi-satellite precipitation estimates with
an independent raingauge observation network over a medium-sized humid basin. Hydrol. Sci. J. 2016,
61, 1813–1830. [CrossRef]

38. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos.
2001, 106, 7183–7192. [CrossRef]

39. Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment of
Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016,
176, 121–133. [CrossRef]

40. Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China.
Remote Sens. 2016, 8, 472. [CrossRef]

41. Ma, Z.; Xu, J.; Zhu, S.; Yang, J.; Hong, Y. AIMERG: A new Asian precipitation dataset (0.1◦/half-hourly,
2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE. Earth Syst. Sci. Data 2020,
12, 1525–1544. [CrossRef]

42. Sharma, S.; Chen, Y.; Zhou, X.; Yang, K.; Khadka, N. Evaluation of GPM-Era Satellite Precipitation Products on
the Southern Slopes of the Central Himalayas Against Rain Gauge Data. Remote Sens. 2020, 12, 1836. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/02626667.2015.1040020
http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.1016/j.atmosres.2016.02.020
http://dx.doi.org/10.3390/rs8060472
http://dx.doi.org/10.5194/essd-12-1525-2020
http://dx.doi.org/10.3390/rs12111836
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area 
	Materials and Methods 
	Rainfall Datasets 
	GPM Data 
	TRMM Data 
	CGDPA Data 

	Methodology 

	Results 
	Annual and Seasonal Assessments 
	Daily Assessments 
	Annual Variability and the Seasonal Cycle 
	Probability Density Function 
	Contingency Statistics 

	Discussion 
	Conclusions 
	References

