Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (320)

Search Parameters:
Keywords = THz technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3942 KiB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Viewed by 428
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

24 pages, 4549 KiB  
Review
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals
by Jianjun Yu and Jiali Chen
Micromachines 2025, 16(7), 828; https://doi.org/10.3390/mi16070828 - 20 Jul 2025
Viewed by 504
Abstract
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) [...] Read more.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group′s advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic–electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna–lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330–500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity–distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication′s viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity. Full article
Show Figures

Figure 1

17 pages, 820 KiB  
Article
Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread
by Ye Wang, Chuxin Chen, Ran Zhang and Yiqiao Mei
Electronics 2025, 14(14), 2830; https://doi.org/10.3390/electronics14142830 - 15 Jul 2025
Viewed by 247
Abstract
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz [...] Read more.
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz massive multiple-input multiple-output (MIMO) systems induce a pronounced beam split effect, leading to a serious array gain loss. To mitigate the beam split effect, this paper considers a delay-phase precoding (DPP) architecture in which a true-time-delay (TTD) network is introduced between radio-frequency (RF) chains and phase shifters (PSs) in the standard hybrid precoding architecture. Then, we propose a fast Riemannian conjugate gradient optimization-based alternating minimization (FRCG-AltMin) algorithm to jointly optimize the digital precoding, analog precoding, and delay matrix, aiming to maximize the spectral efficiency. Different from the existing method, which solves an approximated version of the analog precoding design problem, we adopt an FRCG method to deal with the original problem directly. Simulation results demonstrate that our proposed algorithm can improve the spectral efficiency, and achieve superior performance over the existing algorithm for wideband THz massive MIMO systems with angular spread. Full article
Show Figures

Figure 1

12 pages, 3178 KiB  
Article
Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping
by Ali Farooq, Wen Xu, Jie Zhang, Hua Wen, Qiujin Wang, Xingjia Cheng, Yiming Xiao, Lan Ding, Altayeb Alshiply Abdalfrag Hamdalnile, Haowen Li and Francois M. Peeters
Physics 2025, 7(3), 27; https://doi.org/10.3390/physics7030027 - 14 Jul 2025
Viewed by 317
Abstract
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of [...] Read more.
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of ML MoS2 placed on a sapphire substrate, where the pump photon energy is larger than the bandgap of ML MoS2. The pump laser source is provided by a compact semiconductor laser with a 445 nm wavelength. Through the measurement of THz time-domain spectroscopy, we obtain the complex optical conductivity for ML MoS2, which are found to be fitted exceptionally well with the Drude–Smith formula. Therefore, we expect that the reduction in conductivity in ML MoS2 is mainly due to the effect of electronic backscattering or localization in the presence of the substrate. Meanwhile, one can optically determine the key electronic parameters of ML MoS2, such as the electron density ne, the intra-band electronic relaxation time τ, and the photon-induced electronic localization factor c. The dependence of these parameters upon CW laser pump intensity is examined here at room temperature. We find that 445 nm CW laser pumping results in the larger ne, shorter τ, and stronger c in ML MoS2 indicating that laser excitation has a significant impact on the optoelectronic properties of ML MoS2. The origin of the effects obtained is analyzed on the basis of solid-state optics. This study provides a unique and tractable technique for investigating photo-excited carriers in ML MoS2. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

18 pages, 3495 KiB  
Article
Next-Generation Light Harvesting: MXene (Ti3C2Tx)-Based Metamaterial Absorbers for a Broad Wavelength Range from 0.3 μm to 18 μm
by Abida Parveen, Deepika Tyagi, Vijay Laxmi, Naeem Ullah, Faisal Ahmad, Ahsan Irshad, Keyu Tao and Zhengbiao Ouyang
Materials 2025, 18(14), 3273; https://doi.org/10.3390/ma18143273 - 11 Jul 2025
Viewed by 388
Abstract
Electromagnetic wave (EMW) absorption materials are crucial for a wide range of applications, yet most existing materials suffer from complex fabrication and narrow absorption bands, particularly under harsh environmental conditions. In this study, we introduce a broadband metamaterial absorber based on Ti3 [...] Read more.
Electromagnetic wave (EMW) absorption materials are crucial for a wide range of applications, yet most existing materials suffer from complex fabrication and narrow absorption bands, particularly under harsh environmental conditions. In this study, we introduce a broadband metamaterial absorber based on Ti3C2O2 MXene, a novel two-dimensional material that uniquely combines high electrical and metallic conductivity with hydrophilicity, biocompatibility, and an extensive surface area. Through advanced finite-difference time-domain (FDTD) simulations, the proposed absorber achieves over 95% absorption from 0.3 µm to 18 µm. Additionally, other MXene variants, including Ti3C2F2 and Ti3C2(OH)2, demonstrate robust absorption above 85%. This absorber not only outperforms previously reported structures in terms of efficiency and spectral coverage but also opens avenues for integration into applications such as infrared sensing, energy harvesting, wearable electronics, and Internet of Things (IoT) systems. Full article
Show Figures

Figure 1

17 pages, 2461 KiB  
Article
A Throughput Analysis of C+L-Band Optical Networks: A Comparison Between the Use of Band-Dedicated and Single-Wideband Amplification
by Tomás Maia and João Pires
Electronics 2025, 14(13), 2723; https://doi.org/10.3390/electronics14132723 - 6 Jul 2025
Viewed by 289
Abstract
Optical networks today constitute the fundamental backbone infrastructure of telecom and cloud operators. A possible medium-term solution to address the enormous increase in traffic demands faced by these operators is to rely on Super C+ L transmission optical bands, which can offer a [...] Read more.
Optical networks today constitute the fundamental backbone infrastructure of telecom and cloud operators. A possible medium-term solution to address the enormous increase in traffic demands faced by these operators is to rely on Super C+ L transmission optical bands, which can offer a bandwidth of about 12 THz. In this paper, we propose a methodology to compute the throughput of an optical network based on this solution. The methodology involves detailed physical layer modeling, including the impact of stimulated Raman scattering, which is responsible for energy transfer between the two bands. Two approaches are implemented for throughput evaluation: one assuming idealized Gaussian-modulated signals and the other using real modulation formats. For designing such networks, it is crucial to choose the most appropriate technological solution for optical amplification. This could either be a band-dedicated scheme, which uses a separate amplifier for each of the two bands, or a single-wideband amplifier capable of amplifying both bands simultaneously. The simulation results show that the single-wideband scheme provides an average throughput improvement of about 18% compared to the dedicated scheme when using the Gaussian modulation approach. However, with the real modulation approach, the improvement increases significantly to about 32%, highlighting the benefit in developing single-wideband amplifiers for future applications in Super C+L-band networks. Full article
(This article belongs to the Special Issue Optical Networking and Computing)
Show Figures

Figure 1

15 pages, 4137 KiB  
Article
Non-Destructive Thickness Measurement of Energy Storage Electrodes via Terahertz Technology
by Zhengxian Gao, Xiaoqing Jia, Jin Wang, Zhijun Zhou, Jianyong Wang, Dongshan Wei, Xuecou Tu, Lin Kang, Jian Chen, Dengzhi Chen and Peiheng Wu
Sensors 2025, 25(13), 3917; https://doi.org/10.3390/s25133917 - 23 Jun 2025
Viewed by 431
Abstract
Precision thickness control in new energy electrode coatings is a critical determinant of battery performance characteristics. This study presents a non-destructive inspection methodology employing terahertz time-domain spectroscopy (THz-TDS) to achieve high-precision coating thickness measurement in lithium iron phosphate (LFP) battery manufacturing. Industrial THz-TDS [...] Read more.
Precision thickness control in new energy electrode coatings is a critical determinant of battery performance characteristics. This study presents a non-destructive inspection methodology employing terahertz time-domain spectroscopy (THz-TDS) to achieve high-precision coating thickness measurement in lithium iron phosphate (LFP) battery manufacturing. Industrial THz-TDS systems mostly adopt fixed threshold filtering or Fourier filtering, making it disssssfficult to balance noise suppression and signal fidelity. The developed approach integrates three key technological advancements. Firstly, the refractive index of the material is determined through multi-peak amplitude analysis, achieving an error rate control within 1%. Secondly, a hybrid signal processing algorithm is applied, combining an optimized Savitzky–Golay filter for high-frequency noise suppression with an enhanced sinc function wavelet threshold technique for signal fidelity improvement. Thirdly, the time-of-flight method enables real-time online measurement of coating thickness under atmospheric conditions. Experimental validation demonstrates effective thickness measurement across a 35–425 μm range, achieving a 17.62% range extension and a 2.13% improvement in accuracy compared to conventional non-filtered methods. The integrated system offers a robust quality control solution for next-generation battery production lines. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

35 pages, 4002 KiB  
Review
Terahertz Spectroscopy for Food Quality Assessment: A Comprehensive Review
by Jie Yang, Xue Bai, Mingji Wei, Hui Jiang and Leijun Xu
Foods 2025, 14(13), 2199; https://doi.org/10.3390/foods14132199 - 23 Jun 2025
Viewed by 763
Abstract
Terahertz spectroscopy (0.1~10 THz), as a new type of non-destructive testing method with both microwave and infrared characteristics, has shown remarkable potential in the field of food quality testing in recent years. Its unique penetration, high sensitivity, and low photon energy characteristics, combined [...] Read more.
Terahertz spectroscopy (0.1~10 THz), as a new type of non-destructive testing method with both microwave and infrared characteristics, has shown remarkable potential in the field of food quality testing in recent years. Its unique penetration, high sensitivity, and low photon energy characteristics, combined with chemometrics and machine learning methods, provide an efficient solution for the qualitative and quantitative analysis of complex food ingredients. In this paper, we systematically review the principles of terahertz spectroscopy and its key applications in food testing, focusing on its research progress in pesticide residues, additives, biotoxins, and mold, adulteration identification, variety identification, and nutrient content detection. By integrating spectral data preprocessing, reconstruction algorithms, and machine learning model optimization strategies, this paper further analyzes the advantages and challenges of this technology in enhancing detection accuracy and efficiency. In addition, combined with the urgent demand for fast and nondestructive technology in the field of food detection, the future development direction of the deep integration of terahertz spectroscopy technology and artificial intelligence is envisioned, with a view to providing theoretical support and technical reference for food safety assurance and nutritional health research. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

41 pages, 7139 KiB  
Review
Analysis of Failures and Protective Measures for Core Rods in Composite Long-Rod Insulators of Transmission Lines
by Guohui Pang, Zhijin Zhang, Jianlin Hu, Qin Hu, Hualong Zheng and Xingliang Jiang
Energies 2025, 18(12), 3138; https://doi.org/10.3390/en18123138 - 14 Jun 2025
Viewed by 652
Abstract
Composite insulators are deployed globally for outdoor insulation owing to their light weight, excellent pollution resistance, good mechanical strength, ease of installation, and low maintenance costs. The core rod in composite long-rod insulators plays a critical role in both mechanical load-bearing and internal [...] Read more.
Composite insulators are deployed globally for outdoor insulation owing to their light weight, excellent pollution resistance, good mechanical strength, ease of installation, and low maintenance costs. The core rod in composite long-rod insulators plays a critical role in both mechanical load-bearing and internal insulation for overhead transmission lines, and its performance directly affects the overall operational condition of the insulator. However, it remains susceptible to failures induced by complex actions of mechanical, electrical, thermal, and environmental stresses. This paper systematically reviews the major failure modes of core rods, including mechanical failures (normal fracture, brittle fracture, and decay-like fracture) and electrical failures (flashunder and abnormal heating of the core rod). Through analysis of extensive field data and research findings, key failure mechanisms are identified. Preventive strategies encompassing material modification (such as superhydrophobic coatings, self-diagnostic materials, and self-healing epoxy resin), structural optimization (like the optimization of grading rings), and advanced inspection methods (such as IRT detection, Terahertz (THz) detection, X-ray computed tomography (XCT)) are proposed. Furthermore, the limitations of current technologies are discussed, emphasizing the need for in-depth studies on deterioration mechanisms, materials innovation, and defect detection technologies to enhance the long-term reliability of composite insulators in transmission networks. Full article
Show Figures

Figure 1

16 pages, 18981 KiB  
Article
Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability
by Jinying Zhang, Bingnan Wang, Jiacheng Wang, Xinye Wang and Yexiaotong Zhang
Materials 2025, 18(12), 2778; https://doi.org/10.3390/ma18122778 - 12 Jun 2025
Viewed by 391
Abstract
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed [...] Read more.
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed structure facilitates the excitation of the K valley within the range of 0.851–0.934 THz and the K′ valley from 1.604 to 1.686 THz, while also demonstrating anomalous refraction and birefringence. The calculated emission angles, derived through momentum matching, enable transitions between single-wave and dual-wave emissions and allow for precise angle control. The introduction of the liquid crystal material NJU-LDn-4 enables continuous tuning of the dual-band spectral range under a varying electric field, broadening the operating frequency bands to the ranges of 0.757–0.996 THz and 1.426–1.798 THz, respectively. These findings suggest promising applications in tunable filter design, optical communication, photonic computing, optical sensing, and high-resolution imaging, particularly in novel optical devices requiring precise control over spectral characteristics and light propagation. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

42 pages, 9998 KiB  
Review
Routing Challenges and Enabling Technologies for 6G–Satellite Network Integration: Toward Seamless Global Connectivity
by Fatma Aktas, Ibraheem Shayea, Mustafa Ergen, Laura Aldasheva, Bilal Saoud, Akhmet Tussupov, Didar Yedilkhan and Saule Amanzholova
Technologies 2025, 13(6), 245; https://doi.org/10.3390/technologies13060245 - 12 Jun 2025
Viewed by 1899
Abstract
The capabilities of 6G networks surpass those of existing networks, aiming to enable seamless connectivity between all entities and users at any given time. A critical aspect of achieving enhanced and ubiquitous mobile broadband, as promised by 6G networks, is merging satellite networks [...] Read more.
The capabilities of 6G networks surpass those of existing networks, aiming to enable seamless connectivity between all entities and users at any given time. A critical aspect of achieving enhanced and ubiquitous mobile broadband, as promised by 6G networks, is merging satellite networks with land-based networks, which offers significant potential in terms of coverage area. Advanced routing techniques in next-generation network technologies, particularly when incorporating terrestrial and non-terrestrial networks, are essential for optimizing network efficiency and delivering promised services. However, the dynamic nature of the network, the heterogeneity and complexity of next-generation networks, and the relative distance and mobility of satellite networks all present challenges that traditional routing protocols struggle to address. This paper provides an in-depth analysis of 6G networks, addressing key enablers, technologies, commitments, satellite networks, and routing techniques in the context of 6G and satellite network integration. To ensure 6G fulfills its promises, the paper emphasizes necessary scenarios and investigates potential bottlenecks in routing techniques. Additionally, it explores satellite networks and identifies routing challenges within these systems. The paper highlights routing issues that may arise in the integration of 6G and satellite networks and offers a comprehensive examination of essential approaches, technologies, and visions required for future advancements in this area. 6G and satellite networks are associated with technical terms such as AI/ML, quantum computing, THz communication, beamforming, MIMO technology, ultra-wide band and multi-band antennas, hybrid channel models, and quantum encryption methods. These technologies will be utilized to enhance the performance, security, and sustainability of future networks. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

12 pages, 1406 KiB  
Article
Switchable THz Bi-Functional Device for Absorption and Dual-Band Linear-to-Circular Polarization Conversion Based on Vanadium Dioxide–Graphene
by Yiqu Wang, Haohan Xie, Rong Liu and Jun Dong
Sensors 2025, 25(12), 3644; https://doi.org/10.3390/s25123644 - 10 Jun 2025
Viewed by 558
Abstract
This academic paper proposes a terahertz (THz) device featuring dynamic adjustability. This device relies on composite metamaterials made of graphene and vanadium dioxide (VO2). By integrating the electrically adjustable traits of graphene with the phase transition attributes of VO2 [...] Read more.
This academic paper proposes a terahertz (THz) device featuring dynamic adjustability. This device relies on composite metamaterials made of graphene and vanadium dioxide (VO2). By integrating the electrically adjustable traits of graphene with the phase transition attributes of VO2, the suggested metamaterial device can achieve both broadband absorption and dual-band linear-to-circular polarization conversion (LCPC) in the terahertz frequency range. When VO2 is in its metallic state and the Fermi level of graphene is set to zero electron volts (eV), the device shows remarkable broadband absorption. Specifically, it attains an absorption rate exceeding 90% within the frequency span of 2.28–3.73 terahertz (THz). Moreover, the device displays notable polarization insensitivity and high resistance to changes in the incident angle. Conversely, when VO2 shifts to its insulating state and the Fermi level of graphene stays at 0 eV, the device operates as a highly effective polarization converter. It attains the best dual-band linear-to-circular polarization conversion within the frequency ranges of 4.31–5.82 THz and 6.77–7.93 THz. Following the alteration of the Fermi level of graphene, the device demonstrated outstanding adjustability. The designed multi-functional device features a simple structure and holds significant application potential in terahertz technologies, including cloaking technology, reflectors, and spatial modulators. Full article
Show Figures

Figure 1

51 pages, 5793 KiB  
Review
Electromagnetic Techniques Applied to Cultural Heritage Diagnosis: State of the Art and Future Prospective: A Comprehensive Review
by Patrizia Piersigilli, Rocco Citroni, Fabio Mangini and Fabrizio Frezza
Appl. Sci. 2025, 15(12), 6402; https://doi.org/10.3390/app15126402 - 6 Jun 2025
Cited by 1 | Viewed by 708
Abstract
When discussing Cultural Heritage (CH), the risk of causing damage is inherently linked to the artifact itself due to several factors: age, perishable materials, manufacturing techniques, and, at times, inadequate preservation conditions or previous interventions. Thorough study and diagnostics are essential before any [...] Read more.
When discussing Cultural Heritage (CH), the risk of causing damage is inherently linked to the artifact itself due to several factors: age, perishable materials, manufacturing techniques, and, at times, inadequate preservation conditions or previous interventions. Thorough study and diagnostics are essential before any intervention, whether for preventive, routine maintenance or major restoration. Given the symbolic, socio-cultural, and economic value of CH artifacts, non-invasive (NI), non-destructive (ND), or As Low As Reasonably Achievable (ALARA) approaches—capable of delivering efficient and long-lasting results—are preferred whenever possible. Electromagnetic (EM) techniques are unrivaled in this context. Over the past 20 years, radiography, tomography, fluorescence, spectroscopy, and ionizing radiation have seen increasing and successful applications in CH monitoring and preservation. This has led to the frequent customization of standard instruments to meet specific diagnostic needs. Simultaneously, the integration of terahertz (THz) technology has emerged as a promising advancement, enhancing capabilities in artifact analysis. Furthermore, Artificial Intelligence (AI), particularly its subsets—Machine Learning (ML) and Deep Learning (DL)—is playing an increasingly vital role in data interpretation and in optimizing conservation strategies. This paper provides a comprehensive and practical review of the key achievements in the application of EM techniques to CH over the past two decades. It focuses on identifying established best practices, outlining emerging needs, and highlighting unresolved challenges, offering a forward-looking perspective for the future development and application of these technologies in preserving tangible cultural heritage for generations to come. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

54 pages, 17044 KiB  
Review
Perspectives and Research Challenges in Wireless Communications Hardware for the Future Internet and Its Applications Services
by Dimitrios G. Arnaoutoglou, Tzichat M. Empliouk, Theodoros N. F. Kaifas, Constantinos L. Zekios and George A. Kyriacou
Future Internet 2025, 17(6), 249; https://doi.org/10.3390/fi17060249 - 31 May 2025
Viewed by 927
Abstract
The transition from 5G to 6G wireless systems introduces new challenges at the physical layer, including the need for higher frequency operations, massive MIMO deployment, advanced beamforming techniques, and sustainable energy harvesting mechanisms. A plethora of feature articles, review and white papers, and [...] Read more.
The transition from 5G to 6G wireless systems introduces new challenges at the physical layer, including the need for higher frequency operations, massive MIMO deployment, advanced beamforming techniques, and sustainable energy harvesting mechanisms. A plethora of feature articles, review and white papers, and roadmaps elaborate on the perspectives and research challenges of wireless systems, in general, including both unified physical and cyber space. Hence, this paper presents a comprehensive review of the technological challenges and recent advancements in wireless communication hardware that underpin the development of next-generation networks, particularly 6G. Emphasizing the physical layer, the study explores critical enabling technologies including beamforming, massive MIMO, reconfigurable intelligent surfaces (RIS), millimeter-wave (mmWave) and terahertz (THz) communications, wireless power transfer, and energy harvesting. These technologies are analyzed in terms of their functional roles, implementation challenges, and integration into future wireless infrastructure. Beyond traditional physical layer components, the paper also discusses the role of reconfigurable RF front-ends, innovative antenna architectures, and user-end devices that contribute to the adaptability and efficiency of emerging communication systems. In addition, the inclusion of application-driven paradigms such as digital twins highlights how new use cases are shaping design requirements and pushing the boundaries of hardware capabilities. By linking foundational physical-layer technologies with evolving application demands, this work provides a holistic perspective aimed at guiding future research directions and informing the design of scalable, energy-efficient, and resilient wireless communication platforms for the Future Internet. Specifically, we first try to identify the demands and, in turn, explore existing or emerging technologies that have the potential to meet these needs. Especially, there will be an extended reference about the state-of-the-art antennas for massive MIMO terrestrial and non-terrestrial networks. Full article
(This article belongs to the Special Issue Joint Design and Integration in Smart IoT Systems)
Show Figures

Figure 1

9 pages, 4016 KiB  
Communication
Longitudinal Polarization Vortices Generated via Terahertz Ring Resonator
by Mingyu Ji, Tengjiao Wang and Jingya Xie
Photonics 2025, 12(5), 505; https://doi.org/10.3390/photonics12050505 - 18 May 2025
Viewed by 441
Abstract
Vortex beams characterized by helical phase wavefronts enable innovative explorations of optical and physical interactions. This work experimentally realizes longitudinally polarized vortices with arbitrary topological charges in terahertz (THz) frequencies using a silicon ring resonator integrated with a second-order diffraction grating. The implemented [...] Read more.
Vortex beams characterized by helical phase wavefronts enable innovative explorations of optical and physical interactions. This work experimentally realizes longitudinally polarized vortices with arbitrary topological charges in terahertz (THz) frequencies using a silicon ring resonator integrated with a second-order diffraction grating. The implemented configuration enables flexible topological charge manipulation in longitudinally polarized electric fields through the excitation of quasi-transverse-magnetic (TM) waveguide modes with different frequencies. By employing a terahertz near-field measurement system, the spatial intensity patterns and phase characteristics of emitted waves are quantitatively analyzed via a precision probe. This strategy shows promising potential for applications in particle manipulation techniques and advanced imaging technologies. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

Back to TopTop