Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (626)

Search Parameters:
Keywords = TH1/TH2 balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 848 KiB  
Review
Food-Derived Phytochemicals: Multicultural Approaches to Oxidative Stress and Immune Response
by Eiger Gliozheni, Yusuf Salem, Eric Cho, Samuel Wahlstrom, Dane Olbrich, Brandon Shams, Michael Alexander and Hirohito Ichii
Int. J. Mol. Sci. 2025, 26(15), 7316; https://doi.org/10.3390/ijms26157316 - 29 Jul 2025
Viewed by 238
Abstract
This review will focus on how ethnic consumption of foods such as shiitake, ginseng, turmeric, black seeds, berries, rosemary, moringa and holy basil can help act as antioxidants and immune modulators in fighting many diseases. We will investigate how these foods act on [...] Read more.
This review will focus on how ethnic consumption of foods such as shiitake, ginseng, turmeric, black seeds, berries, rosemary, moringa and holy basil can help act as antioxidants and immune modulators in fighting many diseases. We will investigate how these foods act on pathways like Nrf2/Keap1 to increase endogenous antioxidant capacity and help in reducing ROS production, based on publications found in PubMed between 1994 and 2024. In addition, we will show how these plants can cause immune system shifts by changing the makeup of the ratio of Th1/Th2 cells, reduce inflammation, and have antiangiogenic effects on cancer. This review will also show how plants can alter the gut microbiota and lead to a further decrease in oxidative stress. Overall, it will show how plants and their metabolites can potentially create a path forward for creating novel therapeutic approaches and help lead to an improved redox balance, support immune function, and enhance long-term health outcomes. Full article
Show Figures

Figure 1

23 pages, 2443 KiB  
Article
Research on Coordinated Planning and Operational Strategies for Novel FACTS Devices Based on Interline Power Flow Control
by Yangqing Dan, Hui Zhong, Chenxuan Wang, Jun Wang, Yanan Fei and Le Yu
Electronics 2025, 14(15), 3002; https://doi.org/10.3390/electronics14153002 - 28 Jul 2025
Viewed by 261
Abstract
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow [...] Read more.
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow control over multiple lines during N-1 faults, enhancing grid safety and economy. The paper establishes a steady-state mathematical model based on additional virtual nodes and provides power flow calculation methods to accurately reflect the device’s control characteristics. An entropy-weighted TOPSIS method was employed to establish a quantitative evaluation system for assessing the grid performance improvement after FACTS device integration. To address interaction issues among multiple flexible devices, an optimization planning model considering th3e coordinated effects of UPFC and VSC-HVDC was constructed. Multi-objective particle swarm optimization obtained Pareto solution sets, combined with the evaluation system, to determine the optimal configuration schemes. Considering wind power uncertainty and fault risks, we propose a system-level coordinated operation strategy. This strategy constructs probabilistic risk indicators and introduces topology switching control constraints. Using particle swarm optimization, it achieves a balance between safety and economic objectives. Simulation results in the Jiangsu power grid scenarios demonstrated significant advantages in enhancing the transmission capacity, optimizing the power flow distribution, and ensuring system security. Full article
Show Figures

Figure 1

19 pages, 14428 KiB  
Article
Bivalent Oral Vaccine Using Attenuated Salmonella Gallinarum Delivering HA and NA-M2e Confers Dual Protection Against H9N2 Avian Influenza and Fowl Typhoid in Chickens
by Muhammad Bakhsh, Amal Senevirathne, Jamal Riaz, Jun Kwon, Ram Prasad Aganja, Jaime C. Cabarles, Sang-Ik Oh and John Hwa Lee
Vaccines 2025, 13(8), 790; https://doi.org/10.3390/vaccines13080790 - 25 Jul 2025
Viewed by 346
Abstract
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lon [...] Read more.
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lonpagLasd) as a delivery system for H9N2 antigens to induce an immunoprotective response against both H9N2 and FT. To enhance immune protection against H9N2, a prokaryotic and eukaryotic dual expression plasmid, pJHL270, was employed. The hemagglutinin (HA) consensus sequence from South Korean avian influenza A virus (AIV) was cloned under the Ptrc promoter for prokaryotic expression, and the B cell epitope of neuraminidase (NA) linked with matrix protein 2 (M2e) was placed for eukaryotic expression. In vitro and in vivo expressions of the H9N2 antigens were validated by qRT-PCR and Western blot, respectively. Results: Oral immunization with JOL3121 induced a significant increase in SG and H9N2-specific serum IgY and cloacal swab IgA antibodies, confirming humoral and mucosal immune responses. Furthermore, FACS analysis showed increased CD4+ and CD8+ T cell populations. On day 28 post-immunization, there was a substantial rise in the hemagglutination inhibition titer in the immunized birds, demonstrating neutralization capabilities of immunization. Both IFN-γ and IL-4 demonstrated a significant increase, indicating a balance of Th1 and Th2 responses. Intranasal challenge with the H9N2 Y280 strain resulted in minimal to no clinical signs with significantly lower lung viral titer in the JOL3121 group. Upon SG wildtype challenge, the immunized birds in the JOL3121 group yielded 20% mortality, while 80% mortality was recorded in the PBS control group. Additionally, bacterial load in the spleen and liver was significantly lower in the immunized birds. Conclusions: The current vaccine model, designed with a host-specific pathogen, SG, delivers a robust immune boost that could enhance dual protection against FT and H9N2 infection, both being significant diseases in poultry, as well as ensure public health. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Graphical abstract

25 pages, 1758 KiB  
Review
Leaf Saponins of Quillaja brasiliensis as Powerful Vaccine Adjuvants
by Víctor Morais, Norma Suarez, Samuel Cibulski and Fernando Silveira
Pharmaceutics 2025, 17(8), 966; https://doi.org/10.3390/pharmaceutics17080966 - 25 Jul 2025
Viewed by 234
Abstract
Vaccine adjuvants are non-immunogenic agents that enhance or modulate immune responses to co-administered antigens and are essential to modern vaccines. Despite their importance, few are approved for human use. The rise of new pathogens and limited efficacy of some existing vaccines underscore the [...] Read more.
Vaccine adjuvants are non-immunogenic agents that enhance or modulate immune responses to co-administered antigens and are essential to modern vaccines. Despite their importance, few are approved for human use. The rise of new pathogens and limited efficacy of some existing vaccines underscore the need for more advanced and effective formulations, particularly for vulnerable populations. Aluminum-based adjuvants are commonly used in vaccines and effectively promote humoral immunity. However, they mainly induce a Th2-biased response, making them suboptimal for diseases requiring cell-mediated immunity. In contrast, saponin-based adjuvants from the Quillajaceae family elicit a more balanced Th1/Th2 response and generate antigen-specific cytotoxic T cells (CTL). Due to ecological damage and limited availability caused by overharvesting Quillaja saponaria Molina barks, efforts have intensified to identify alternative plant-derived saponins with enhanced efficacy and lower toxicity. Quillaja brasiliensis (A.St.-Hil. and Tul.) Mart. (syn. Quillaja lancifolia D.Don), a related species native to South America, is considered a promising renewable source of Quillajaceae saponins. In this review, we highlight recent advances in vaccine adjuvant research, with a particular focus on saponins extracted from Q. brasiliensis leaves as a sustainable alternative to Q. saponaria saponins. These saponin fractions are structurally and functionally comparable, exhibiting similar adjuvant activity when they were formulated with different viral antigens. An alternative application involves formulating saponins into nanoparticles known as ISCOMs (immune-stimulating complexes) or ISCOM-matrices. These formulations significantly reduce hemolytic activity while preserving strong immunoadjuvant properties. Therefore, research advances using saponin-based adjuvants (SBA) derived from Q. brasiliensis and their incorporation into new vaccine platforms may represent a viable and sustainable solution for the development of more less reactogenic, safer, and effective vaccines, especially for diseases that require a robust cellular immunity. Full article
(This article belongs to the Special Issue Advances in Vaccine Delivery and Vaccine Administration)
Show Figures

Figure 1

12 pages, 1018 KiB  
Article
Manufacturing Considerations in the Aerodynamic Design Process of Turbomachinery Components
by Christian Effen, Benedikt Riegel, Nicklas Gerhard, Stefan Henninger, Pascal Behrens genannt Wäcken, Peter Jeschke, Viktor Rudel and Thomas Bergs
Processes 2025, 13(8), 2363; https://doi.org/10.3390/pr13082363 - 24 Jul 2025
Viewed by 408
Abstract
This paper presents a CFD-based method for the aerodynamic design of a high-pressure compressor rotor blisk, taking into account manufacturing constraints. Focus is placed on the influence of geometric deviations caused by the dynamic constraints of the milling machine. Special attention is given [...] Read more.
This paper presents a CFD-based method for the aerodynamic design of a high-pressure compressor rotor blisk, taking into account manufacturing constraints. Focus is placed on the influence of geometric deviations caused by the dynamic constraints of the milling machine. Special attention is given to the leading edge region of the blade, where high curvature results in increased sensitivity in both aerodynamic behavior and manufacturability. The generic blisk geometry on which this study is based is characterized by an elliptical leading edge. For the optimization, the leading edge is described by Bézier curves that transition smoothly to the suction and pressure sides with continuous curvature and a non-dimensional length ratio. In steady-state RANS parameter studies, the length ratio is systematically varied while the chord length is kept constant. For the aerodynamic evaluation of the design’s key performance parameters such as blade pressure distribution, total pressure loss and compressor efficiency are considered. To evaluate the machine dynamics for a given design, compliance with the nominal feed rate and the deviation between the planned and actual tool tip positions were used as evaluation parameters. Compared to the reference geometry with an elliptical leading edge, the purely aerodynamic optimization achieved an isentropic efficiency improvement of +0.24 percentage points in the aerodynamic design point and a profile deviation improvement of 3 µm in the 99th quantile. The interdisciplinary optimization achieved an improvement of +0.20 percentage points and 30 µm, respectively. This comparative study illustrates the potential of multidisciplinary design approaches that balance aerodynamic performance goals with manufacturability via a novel approach for Design-to-Manufacture-to-Design. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 5140 KiB  
Article
Comparative Analysis of Chitosan, Lipid Nanoparticles, and Alum Adjuvants in Recombinant SARS-CoV-2 Vaccine: An Evaluation of Their Immunogenicity and Serological Efficacy
by Majed Ghattas, Garima Dwivedi, Anik Chevrier, Trevor Scobey, Rakan El-Mayta, Melissa D. Mattocks, Dong Wang, Marc Lavertu and Mohamad-Gabriel Alameh
Vaccines 2025, 13(8), 788; https://doi.org/10.3390/vaccines13080788 - 24 Jul 2025
Viewed by 427
Abstract
Background: Chitosan, a family of polysaccharides composed of glucosamine and N-acetyl glucosamine, is a promising adjuvant candidate for eliciting potent immune response. Methods: This study compared the adjuvant effects of chitosan to those of empty lipid nanoparticles (eLNPs) and aluminum hydroxide (alum) following [...] Read more.
Background: Chitosan, a family of polysaccharides composed of glucosamine and N-acetyl glucosamine, is a promising adjuvant candidate for eliciting potent immune response. Methods: This study compared the adjuvant effects of chitosan to those of empty lipid nanoparticles (eLNPs) and aluminum hydroxide (alum) following administration of recombinant SARS-CoV-2 spike immunogen in adult mice. Mice received the adjuvanted recombinant protein vaccine in a prime-boost regimen with four weeks interval. Subsequent analyses included serological assessment of antibody responses, evaluation of T cell activity, immune cell recruitment and cytokine profiles at injection site. Results: Compared to alum, chitosan induced a more balanced Th1/Th2 response, akin to that observed with eLNPs, demonstrating its ability to modulate both the humoral and cellular immune pathways. Chitosan induced a different proinflammatory cytokine (e.g., IL-1⍺, IL-2, IL-6, and IL-7) and chemokine (e.g., Eotaxin, IP-10, MIP-1a) profile compared to eLNPs and alum at the injection site and in the draining lymph nodes. Moreover, chitosan potentiated the recruitment of innate immune cells, with neutrophils accounting for about 40% of the infiltrating cells in the muscle, representing a ~10-fold increase compared to alum and a comparable level to eLNPs. Conclusions: These findings collectively indicate that chitosan has the potential to serve as an effective adjuvant, offering comparable, and potentially superior, properties to those of currently approved adjuvants. Full article
(This article belongs to the Special Issue Advances in Vaccine Adjuvants)
Show Figures

Figure 1

15 pages, 10930 KiB  
Article
Leflunomide-Mediated Immunomodulation Inhibits Lesion Progression in a Vitiligo Mouse Model
by Fang Miao, Xiaohui Li, Liang Zhao, Shijiao Zhang, Mengmeng Geng, Chuhuan Ye, Ying Shi and Tiechi Lei
Int. J. Mol. Sci. 2025, 26(14), 6787; https://doi.org/10.3390/ijms26146787 - 15 Jul 2025
Viewed by 296
Abstract
Autoimmune CD8+ T cell-driven melanocyte destruction constitutes a key pathogenic mechanism in the development of vitiligo. Therefore, the pharmacological inhibition of CD8+ T cell effector functions and skin trafficking is a clinically viable therapeutic strategy. This study investigates leflunomide (LEF), an [...] Read more.
Autoimmune CD8+ T cell-driven melanocyte destruction constitutes a key pathogenic mechanism in the development of vitiligo. Therefore, the pharmacological inhibition of CD8+ T cell effector functions and skin trafficking is a clinically viable therapeutic strategy. This study investigates leflunomide (LEF), an immunomodulatory drug with established safety in autoimmune diseases, for its therapeutic potential in a tyrosine-related protein (TRP) 2-180-induced vitiligo mouse model. Through flow cytometry, immunofluorescence, ELISA, and histopathological analyses, we systematically evaluated LEF’s effects on T cell regulation, chemokine expression, and cytokine profiles. Key findings demonstrated that LEF (20 mg/kg/day) significantly attenuated depigmentation by reducing CD8+ T cell infiltration and suppressing the IFN-γ-driven expression of CXCL9/10. Furthermore, LEF restored CD4+/CD8+ T cell homeostasis and rebalanced pro-inflammatory (IFN-γ, TNF-α, IL-2) and anti-inflammatory (IL-4, IL-10) cytokines, inducing a shift from Th1 to Th2. These results position LEF as an effective immunomodulator that disrupts the IFN-γ-CXCL9/10 axis and re-establishes immune balance, offering a promising repurposing strategy for halting vitiligo progression. Full article
(This article belongs to the Special Issue Advances in Vitiligo: From Mechanisms to Treatment Innovations)
Show Figures

Figure 1

16 pages, 398 KiB  
Article
Bebras-Based Assessment for Computational Thinking: Performance and Gender Analysis
by Juan J. Santaengracia, Belén Palop, Trinidad García, Celestino Rodríguez Pérez and Luis J. Rodríguez-Muñiz
Educ. Sci. 2025, 15(7), 899; https://doi.org/10.3390/educsci15070899 - 14 Jul 2025
Viewed by 895
Abstract
This study presents the design and validation process of a new Bebras-based instrument to assess computational thinking (CT) in 7th-grade students. An initial version of the test, composed of 18 multiple-choice items, was piloted with 80 students and revised based on their performance [...] Read more.
This study presents the design and validation process of a new Bebras-based instrument to assess computational thinking (CT) in 7th-grade students. An initial version of the test, composed of 18 multiple-choice items, was piloted with 80 students and revised based on their performance and classroom feedback. The final version, composed of 17 tasks balanced across CT components and difficulty levels, was administered to 1513 students from 86 Spanish schools. No significant gender differences were found in overall performance, supporting the potential of Bebras tasks to provide equitable assessment. An exploratory factor analysis revealed a dominant factor explaining 20% of the variance, and additional evidence (Lord’s index = 10.61) supported the use of a one-dimensional model despite the ambiguous dimensionality of the domain. BBACT offers a balanced and theoretically grounded tool for assessing CT in compulsory education and lays the foundation for future work exploring its validity and application across diverse contexts. Full article
(This article belongs to the Section Curriculum and Instruction)
Show Figures

Figure 1

29 pages, 5942 KiB  
Article
The Seismic Performance of Earthen Historical Buildings in Seismic-Prone Regions: The Church of Santo Tomás de Aquino in Rondocan as a Complex Example
by Elesban Nochebuena-Mora, Nuno Mendes, Matteo Salvalaggio and Paulo B. Lourenço
Appl. Sci. 2025, 15(13), 7624; https://doi.org/10.3390/app15137624 - 7 Jul 2025
Viewed by 446
Abstract
Adobe churches are representative of Andean architectural heritage, yet their structural vulnerability to seismic events remains a significant concern. This study evaluates the seismic performance of the 17th-century Church of Santo Tomás de Aquino in Rondocan, Peru, an adobe building that underwent conservation [...] Read more.
Adobe churches are representative of Andean architectural heritage, yet their structural vulnerability to seismic events remains a significant concern. This study evaluates the seismic performance of the 17th-century Church of Santo Tomás de Aquino in Rondocan, Peru, an adobe building that underwent conservation work in the late 1990s. The assessment combines in situ inspections and experimental testing with advanced nonlinear numerical modeling. A finite-element macro-model was developed and calibrated using sonic and ambient vibration tests to replicate the observed structural behavior. Nonlinear static (pushover) analyses were performed in the four principal directions to identify failure mechanisms and to evaluate seismic capacity using the Peruvian seismic code. Kinematic limit analyses were conducted to assess out-of-plane mechanisms using force- and displacement-based criteria. The results revealed critical vulnerabilities in the rear façade and lateral walls, particularly in terms of out-of-plane collapse, while the main façade exhibited a higher capacity but a brittle failure mode. This study illustrates the value of advanced numerical simulations, calibrated with field data, as effective tools for assessing seismic vulnerability in historic adobe buildings. The outcomes highlight the necessity of strengthening measures to balance life safety requirements with preservation goals. Full article
Show Figures

Figure 1

13 pages, 1363 KiB  
Article
Improving Anaerobic Digestion Process of Sewage Sludge in Terms of Energy Efficiency and Carbon Emission: Pre- or Post-Thermal Hydrolysis?
by Yawen Ye, Azizi Selemani Msuya, Xiaohu Dai, Xiaoli Chai and Boran Wu
Sustainability 2025, 17(13), 6147; https://doi.org/10.3390/su17136147 - 4 Jul 2025
Viewed by 341
Abstract
Sewage sludge, a by-product of biological wastewater treatment, poses significant environmental and health risks if not properly managed. Anaerobic digestion (AD), widely used as a stabilization technology for sewage sludge, faces challenges such as rate-limiting hydrolysis steps and difficult dewatering of residual digestate. [...] Read more.
Sewage sludge, a by-product of biological wastewater treatment, poses significant environmental and health risks if not properly managed. Anaerobic digestion (AD), widely used as a stabilization technology for sewage sludge, faces challenges such as rate-limiting hydrolysis steps and difficult dewatering of residual digestate. To address these issues, thermal hydrolysis (TH) has been explored as a pretreatment or post-treatment method. This study systematically analyzes the typical sludge treatment pathways incorporating TH either as a pretreatment step to AD or as a post-treatment step, combined with incineration or land application for the final disposal. The mass balance algorithm was applied to evaluate the chemical consumption, and energy input/output calculations were conducted to assess the potential effects of TH on energy recovery. Carbon emissions were estimated using the Intergovernmental Panel on Climate Change (IPCC) methodology, considering direct, indirect, and compensated carbon emissions. The results indicate that applying TH as a post-treatment significantly reduces the carbon emissions by 65.94% compared to conventional AD, primarily due to the enhanced dewaterability and reduced chemical flocculant usage. In contrast, TH as a pretreatment step only moderates the emission reduction. The combination of post-TH with land application results in the lowest carbon emissions among the evaluated pathways, highlighting the environmental benefits of this approach. All the findings here are expected to provide insights into optimizing the technical combination mode of sludge processing pathways in terms of minimizing carbon emission. Full article
(This article belongs to the Collection Environmental Assessment, Life Cycle Analysis and Sustainability)
Show Figures

Graphical abstract

23 pages, 7060 KiB  
Article
Deposition: A DPM and PBM Approach for Particles in a Two-Phase Turbulent Pipe Flow
by Alkhatab Bani Saad, Edward Obianagha and Lande Liu
Powders 2025, 4(3), 20; https://doi.org/10.3390/powders4030020 - 4 Jul 2025
Viewed by 294
Abstract
Particle deposition is a phenomenon that occurs in many natural and industrial systems. Nevertheless, the modelling and understanding of such processes are still quite a big challenge. This study uses a discrete phase model (DPM) to determine the deposition constant for the particles [...] Read more.
Particle deposition is a phenomenon that occurs in many natural and industrial systems. Nevertheless, the modelling and understanding of such processes are still quite a big challenge. This study uses a discrete phase model (DPM) to determine the deposition constant for the particles in a liquid phase flowing in a horizontal pipe. This study also develops a steady-state population balance equation (PBE) for the particles in the flow involving deposition and aggregation and an unsteady-state PBE for particles depositing on the wall. This establishes a mathematical relationship between the deposition constant and velocity. An industrial setting of a 1000 m long pipe of 0.5 m in diameter was used for the population balance modelling (PBM). Based on the extracted deposition constant from the DPM, it was found that the particle deposition velocity increases with the continuous flow velocity. However, the number and volume of the deposit particles on the wall reduce with the increase of the continuous flow velocity. The deposition was found mainly taking place in the inlet region and reduces significantly towards the pipe outlet. The deposition was also found driven by advection of particles. Calculated deposit thickness showed that increasing the continuous flow velocity from 1 m s−1 to 5 m s−1, the thickness at the inlet would reduce to nearly 1/40th. With a 10 m s−1 flow, this would be 1/80th. Full article
Show Figures

Figure 1

12 pages, 2253 KiB  
Article
PPARgamma Modulates CD4+ T-Cell Differentiation and Allergic Inflammation in Allergic Rhinitis: A Potential Therapeutic Target
by Xiaoqing Rui, Suyu Ruan, Yu Zhang, Ranran Fu, Pengfei Sun, Danzeng Lamu and Weihua Wang
Biomedicines 2025, 13(7), 1616; https://doi.org/10.3390/biomedicines13071616 - 1 Jul 2025
Viewed by 281
Abstract
Objectives: Given the emerging role of peroxisome proliferator-activated receptor gamma (PPARgamma) in immune regulation and the increasing prevalence of allergic rhinitis (AR), we sought to understand how modulation of the PPARgamma pathway impacts the balance of CD4+ T-cell subsets, particularly [...] Read more.
Objectives: Given the emerging role of peroxisome proliferator-activated receptor gamma (PPARgamma) in immune regulation and the increasing prevalence of allergic rhinitis (AR), we sought to understand how modulation of the PPARgamma pathway impacts the balance of CD4+ T-cell subsets, particularly regulatory T cells (Tregs) and T helper (TH)1, TH2, and TH17 cells, which are key players in the pathogenesis of AR. This knowledge is crucial for developing novel therapeutic strategies targeting the PPARgamma-CD4+ T-cell axis to manage AR more effectively. Methods: We used PPARgammaf/fLyz2-Cre mice for PPARgamma deletion. In an ovalbumin (OVA)-induced AR mouse model, PPARgamma+/-f/fLyz2-Cre mice were assessed for allergic symptoms, splenic Tregs, and nasal eosinophils. Additionally, the effects of a PPARgamma agonist on the polarization of naïve CD4+ T cells were examined. Results: PPARgamma+/-f/fLyz2-Cre mice showed worsened allergic symptoms, reduced splenic Tregs, and increased nasal mucosa eosinophilic infiltration. PPARgamma agonist treatment promoted naïve CD4+ T-cell polarization into Tregs and inhibited their differentiation into TH1, TH2, and TH17 subsets. Conclusions: Our findings indicate that PPARgamma plays a crucial role in regulating TH-cell subsets in AR. PPARgamma agonists could be a potential therapeutic strategy to mitigate allergic inflammation in AR by promoting Treg development and suppressing pathogenic TH-cell responses. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

22 pages, 926 KiB  
Article
Energy Transition in the GCC: From Oil Giants to Green Leaders?
by Jihen Bousrih and Manal Elhaj
Energies 2025, 18(13), 3460; https://doi.org/10.3390/en18133460 - 1 Jul 2025
Cited by 1 | Viewed by 353
Abstract
During the 28th Conference of the Parties (COP28), organized under the United Nations Framework Convention on Climate Change and hosted by the United Arab Emirates, member nations reached a global agreement to begin transitioning away from fossil fuel dependence, forcing the Gulf Cooperation [...] Read more.
During the 28th Conference of the Parties (COP28), organized under the United Nations Framework Convention on Climate Change and hosted by the United Arab Emirates, member nations reached a global agreement to begin transitioning away from fossil fuel dependence, forcing the Gulf Cooperation Council (GCC) countries to balance their commitment to a green transition with the need to secure short-term energy supplies. This study highlights the challenges facing the GCC’s efforts to expand renewable energy, even as the region continues to have a significant influence over international energy markets. This study utilizes dynamic panel estimation over the period 2003 to 2022, focusing on the core pillars of the Energy Transition Index to analyze the evolving renewable energy use in the GCC. The results present a clear and optimistic perspective on the region’s renewable energy prospects. Despite the continued dependence on fossil fuels, the findings indicate that, if effectively managed, oil and gas revenues can serve as strategic instruments to support the transition toward cleaner energy sources. These insights offer policymakers robust guidance for long-term energy planning and highlight the critical importance of international collaboration in advancing the GCC’s sustainable energy transition. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

26 pages, 1778 KiB  
Systematic Review
Postbiotics Formulation and Therapeutic Effect in Inflammation: A Systematic Review
by Kinga Zdybel, Angelika Śliwka, Magdalena Polak-Berecka, Paweł Polak and Adam Waśko
Nutrients 2025, 17(13), 2187; https://doi.org/10.3390/nu17132187 - 30 Jun 2025
Viewed by 710
Abstract
Background: Postbiotics are bioactive compounds derived from inactivated probiotic microorganisms that show potential for preventing and treating inflammatory diseases. This review aimed to evaluate the evidence on their therapeutic effects in inflammatory conditions. Methods: A search of PubMed, Scopus, and Web [...] Read more.
Background: Postbiotics are bioactive compounds derived from inactivated probiotic microorganisms that show potential for preventing and treating inflammatory diseases. This review aimed to evaluate the evidence on their therapeutic effects in inflammatory conditions. Methods: A search of PubMed, Scopus, and Web of Science databases from 2014 to 2024 identified 39 eligible studies. Article selection was conducted using the Rayyan platform, risk of bias was assessed with the Cochrane ROB 2 tool, and results were visualized with ROBVIS. Bibliometric networks were constructed using VOSviewer. Due to data heterogeneity, a meta-analysis was not performed; therefore, results were described and presented graphically. Results: The most commonly used microorganisms belonged to the Lactobacillaceae and Bifidobacteriaceae families, with heat inactivation as the predominant method. Postbiotics exert multifaceted anti-inflammatory effects by modulating cytokine expression, influencing immune cell signaling pathways, and strengthening epithelial barrier integrity. They regulate immune mechanisms such as the Th1/Th2 and Treg/Th17 balance, indicating their potential in treating inflammatory bowel diseases, autoimmune diseases, and metabolic syndrome. However, the heterogeneity of studies, their limitations, and risk of bias require cautious interpretation. Conclusions: Future research should focus on standardizing postbiotic preparations, conducting long-term clinical trials, and analyzing synergistic effects of different strains. Postbiotics offer a promising approach to managing inflammation, with potential applications in functional foods and nutraceuticals. Full article
Show Figures

Figure 1

16 pages, 4389 KiB  
Article
Multivalent COBRA Hemagglutinin and Neuraminidase Influenza Vaccines Adjuvanted with TLR9 Agonist CpG 1018
by Pedro L. Sanchez, Amanda Lynch and Ted M. Ross
Vaccines 2025, 13(7), 662; https://doi.org/10.3390/vaccines13070662 - 20 Jun 2025
Viewed by 1289
Abstract
Background/Objectives: There is a need for effective seasonal influenza virus vaccines that provide broad and long-lasting protection against influenza virus infections. Methods: In this study, next-generation influenza hemagglutinin (HA) and neuraminidase (NA) vaccine candidates designed using the computationally optimized broadly reactive antigen (COBRA) [...] Read more.
Background/Objectives: There is a need for effective seasonal influenza virus vaccines that provide broad and long-lasting protection against influenza virus infections. Methods: In this study, next-generation influenza hemagglutinin (HA) and neuraminidase (NA) vaccine candidates designed using the computationally optimized broadly reactive antigen (COBRA) methodology were formulated with the TLR9 agonist, CpG 1018. These adjuvanted COBRA HA/NA vaccines were administered intramuscularly or intranasally to mice with pre-existing anti-influenza immunity or immunologically naïve mice. Results: Mice with pre-existing immune responses to historical influenza virus strains vaccinated intranasal (IN) with COBRA HA/NA vaccines adjuvanted with CpG 1018 had enhanced IgG titers in their bronchoalveolar lavages (BALF) compared to unadjuvanted vaccines. These mice also had increased serum IgG titers that were like antibody titers observed in mice that were vaccinated intramuscularly. Mice that were vaccinated intranasally with this adjuvanted vaccine also had antibodies with significantly higher hemagglutination inhibition activity against a broad range of H1N1 and H3N2 influenza viruses and more HA and NA specific antibody-secreting cells compared to unadjuvanted vaccine. Following the H1N1 influenza virus challenge, pre-immune mice that were vaccinated with the COBRA HA/NA vaccine with CpG 1018 were protected from morbidity and mortality and had no detectable viral lung titers. Conclusions: Overall, CpG 1018 adjuvanted COBRA HA/NA elicited enhanced protective antibodies compared to the unadjuvanted vaccine against several drifted H1N1 and H3N2 influenza viruses in pre-immune mice that were either intramuscularly or intranasally vaccinated with a balanced Th1/Th2 immune response. Full article
(This article belongs to the Section Influenza Virus Vaccines)
Show Figures

Figure 1

Back to TopTop