Energy Transition in the GCC: From Oil Giants to Green Leaders?
Abstract
1. Introduction
2. Literature Review
2.1. Renewable Energy Consumption, Economic Growth, and Investment
2.2. Renewable Energy Consumption, Institutional Stability, and Governance
2.3. Renewable Energy Consumption, Sustainability, and Structure of Energy System
2.4. Renewable Energy Consumption, Infrastructure, and Human Capital
3. Materials and Methods
3.1. Data and Variable Description
3.2. Model Specification
3.3. Estimation Procedure
3.3.1. Fixed and Random Effect Models
3.3.2. Robust Estimation with Driscoll–Kraay Standard Errors
3.3.3. Dynamic Panel Estimation Using Difference Generalized Method of Moments (GMM)
4. Results and Discussion
4.1. Descriptive Statistics and Correlations
4.2. Model Selection (Hausman Test)
4.3. Fixed Effect Results
4.4. Robustness Checks (Driscoll–Kraay and GMM)
5. Conclusions, Recommendations, and Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Hausman Test Specification
- : Coefficient vector from the random effect estimator.
- : Coefficient vector from the fixed effect estimator.
- : Covariance matrix of the RE estimates.
- : Covariance matrix of the FE estimates.
- Null Hypothesis (H0): The random effect model is appropriate (no correlation between individual effects and regressors).
- Alternative Hypothesis (H1): The fixed effect model is appropriate (correlation exists between individual effects and regressors).
- Decision Rule: If the p-value < 0.05, reject the null hypothesis and use the fixed effect model.
Appendix B. Random Effect Results
Variable | Coefficient | z | p > |z| |
FEX | 0.0006 | 1.37 | 0.172 |
CO2 | 0.0016 | 1.60 | 0.110 |
EMD | −0.1937 | −1.21 | 0.226 |
FID | 0.0816 | 0.79 | 0.427 |
POL | 0.0789 *** | 4.32 | 0.000 |
LAW | −0.0123 | −0.26 | 0.792 |
FBS | 0.0050 *** | 4.06 | 0.000 |
HC | 0.0058 | 0.75 | 0.451 |
ESS | 0.0616 *** | 15.91 | 0.000 |
URB | 0.0007 | 1.39 | 0.163 |
MFP | −0.0008 * | −1.83 | 0.068 |
Cons | −0.0861 | −0.68 | 0.494 |
R2 | 0.84 | ||
Wald chi2(11) | 750.81 (0.000) | ||
Estimation was performed by authors using Stata 13. Note: p < 0.10 (*), p < 0.01 (***). |
References
- Cappellaro, F.; D’Agosta, G.; De Sabbata, P.; Barroco, F.; Carani, C.; Borghetti, A.; Lambertini, L.; Nucci, C.A. Implementing energy transition and SDGs targets throughout energy community schemes. J. Urban Ecol. 2022, 8, juac023. [Google Scholar] [CrossRef]
- Caineng, Z.; Shixiang, L.; Hanlin, L.; Feng, M. Revolution and significance of “Green Energy Transition” in the context of new quality productive forces: A discussion on theoretical understanding of “Energy Triangle”. Pet. Explor. Dev. 2024, 51, 1611–1627. [Google Scholar]
- Wang, C. High-quality development of China’s new energy industry: Progress, challenges and countermeasures. Contemp. Econ. Manag 2024, 46, 1–9. [Google Scholar]
- Nassar, A.K. Strategic energy transition in the Gulf Cooperation Council: Balancing economic, social, political, and environmental dynamics for sustainable development. Int. J. Green Energy 2025, 22, 1570–1586. [Google Scholar] [CrossRef]
- Alnaser, N.W.; Albuflasa, H.M.; Alnaser, W.E. The transition in solar and wind energy use in Gulf Cooperation Council countries (GCCC). Renew. Energy Environ. Sustain. 2022, 7, 4. [Google Scholar] [CrossRef]
- Al-Sarihi, A.; Mansouri, N. Renewable energy development in the Gulf cooperation council countries: Status, barriers, and policy options. Energies 2022, 15, 1923. [Google Scholar] [CrossRef]
- Islam, M.T.; Ali, A. Sustainable green energy transition in Saudi Arabia: Characterizing policy framework, interrelations and future research directions. Next Energy 2024, 5, 100161. [Google Scholar] [CrossRef]
- Sanfilippo, A.; Vermeersch, M.; Benito, V.B. Energy transition strategies in the Gulf Cooperation Council countries. Energy Strategy Rev. 2024, 55, 101512. [Google Scholar] [CrossRef]
- Singh, H.V.; Bocca, R.; Gomez, P.; Dahlke, S.; Bazilian, M. The energy transitions index: An analytic framework for understanding the evolving global energy system. Energy Strategy Rev. 2019, 26, 100382. [Google Scholar] [CrossRef]
- Seth, S.; McGillivray, M. Composite indices, alternative weights, and comparison robustness. Soc. Choice Welf. 2018, 51, 657–679. [Google Scholar] [CrossRef]
- Greco, S.; Ishizaka, A.; Tasiou, M.; Torrisi, G. On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Soc. Indic. Res. 2019, 141, 61–94. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Yoshino, N. Sustainable solutions for green financing and investment in renewable energy projects. Energies 2020, 13, 788. [Google Scholar] [CrossRef]
- Cherp, A.; Vinichenko, V.; Jewell, J.; Brutschin, E.; Sovacool, B. Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework. Energy Res. Soc. Sci. 2018, 37, 175–190. [Google Scholar] [CrossRef]
- Fattouh, B.; El-Katiri, L. A Brief Political Economy of Energy Subsidies in the Middle East and North Africa. 2015. Available online: https://iris.who.int/handle/10665/346168 (accessed on 30 April 2025).
- World Health Organization. COP26 Special Report on Climate Change and Health: The Health Argument for Climate Action; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- IRENA. Renewable Energy Market Analysis: GCC 2023; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2023. [Google Scholar]
- Delannoy, L.; Longaretti, P.-Y.; Murphy, D.J.; Prados, E. Assessing global long-term EROI of gas: A net-energy perspective on the energy transition. Energies 2021, 14, 5112. [Google Scholar] [CrossRef]
- Al-Maamary, H.M.; Kazem, H.A.; Chaichan, M.T. The impact of oil price fluctuations on common renewable energies in GCC countries. Renew. Sustain. Energy Rev. 2017, 75, 989–1007. [Google Scholar] [CrossRef]
- Song, X.; Chen, Z. Pathways for an island energy transition under climate change: The case of Chongming Island, China. Front. Energy Res. 2023, 11, 1126411. [Google Scholar] [CrossRef]
- Alola, A.A.; Bekun, F.V.; Sarkodie, S.A. Dynamic impact of trade policy, economic growth, fertility rate, renewable and non-renewable energy consumption on ecological footprint in Europe. Sci. Total Environ. 2019, 685, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.W.; Shahbaz, M.; Sinha, A.; Sengupta, T.; Qin, Q. How renewable energy consumption contribute to environmental quality? The role of education in OECD countries. J. Clean. Prod. 2020, 268, 122149. [Google Scholar] [CrossRef]
- Bekun, F.V.; Alola, A.A. Determinants of renewable energy consumption in agrarian Sub-Sahara African economies. Energy Ecol. Environ. 2022, 7, 227–235. [Google Scholar] [CrossRef]
- Polcyn, J.; Us, Y.; Lyulyov, O.; Pimonenko, T.; Kwilinski, A. Factors influencing the renewable energy consumption in selected European countries. Energies 2021, 15, 108. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2016, 162, 733–741. [Google Scholar] [CrossRef]
- Tu, Y.-X.; Kubatko, O.; Piven, V.; Sotnyk, I.; Kurbatova, T. Determinants of renewable energy development: Evidence from the EU countries. Energies 2022, 15, 7093. [Google Scholar] [CrossRef]
- Grabara, J.; Tleppayev, A.; Dabylova, M.; Mihardjo, L.W.; Dacko-Pikiewicz, Z. Empirical research on the relationship amongst renewable energy consumption, economic growth and foreign direct investment in Kazakhstan and Uzbekistan. Energies 2021, 14, 332. [Google Scholar] [CrossRef]
- Wong, S.L.; Chang, Y.; Chia, W.-M. Energy consumption, energy R&D and real GDP in OECD countries with and without oil reserves. Energy Econ. 2013, 40, 51–60. [Google Scholar]
- Chai, J.; Wu, H.; Hao, Y. Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China? Technol. Forecast. Soc. Chang. 2022, 185, 122068. [Google Scholar] [CrossRef]
- Shahbaz, M.; Loganathan, N.; Zeshan, M.; Zaman, K. Does renewable energy consumption add in economic growth? An application of auto-regressive distributed lag model in Pakistan. Renew. Sustain. Energy Rev. 2015, 44, 576–585. [Google Scholar] [CrossRef]
- Mirza, F.M.; Kanwal, A. Energy consumption, carbon emissions and economic growth in Pakistan: Dynamic causality analysis. Renew. Sustain. Energy Rev. 2017, 72, 1233–1240. [Google Scholar] [CrossRef]
- Chidiebere-Mark, N.M.; Onyeneke, R.U.; Uhuegbulem, I.J.; Ankrah, D.A.; Onyeneke, L.U.; Anukam, B.N.; Chijioke-Okere, M.O. Agricultural production, renewable energy consumption, foreign direct investment, and carbon emissions: New evidence from Africa. Atmosphere 2022, 13, 1981. [Google Scholar] [CrossRef]
- Doytch, N.; Narayan, S. Does FDI influence renewable energy consumption? An analysis of sectoral FDI impact on renewable and non-renewable industrial energy consumption. Energy Econ. 2016, 54, 291–301. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, Z.; Rahman, Z.U.; Khattak, S.I.; Khan, Z.U. Can innovation shocks determine CO2 emissions (CO2e) in the OECD economies? A new perspective. Econ. Innov. New Technol. 2021, 30, 89–109. [Google Scholar] [CrossRef]
- Adams, S.; Klobodu, E.K.M.; Opoku, E.E.O. Energy consumption, political regime and economic growth in sub-Saharan Africa. Energy Policy 2016, 96, 36–44. [Google Scholar] [CrossRef]
- Adams, S.; Klobodu, E.K.M.; Apio, A. Renewable and non-renewable energy, regime type and economic growth. Renew. Energy 2018, 125, 755–767. [Google Scholar] [CrossRef]
- Acemoglu, D.; Robinson, J. The Role of Institutions in Growth and Development. In Review of Economics and Institutions; World Bank Publications: Washington, DC, USA, 2010; Volume 1. [Google Scholar]
- Shahbaz, M.; Balsalobre, D.; Shahzad, S.J.H. The influencing factors of CO 2 emissions and the role of biomass energy consumption: Statistical experience from G-7 countries. Environ. Model. Assess. 2019, 24, 143–161. [Google Scholar] [CrossRef]
- Li, Y.; Li, S. The influence study on environmental regulation and green total factor productivity of China’s manufacturing industry. Discret. Dyn. Nat. Soc. 2021, 2021, 5580414. [Google Scholar] [CrossRef]
- Teklie, D.K.; Yağmur, M.H. The Role of Green Innovation, Renewable Energy, and Institutional Quality in Promoting Green Growth: Evidence from African Countries. Sustainability 2024, 16, 6166. [Google Scholar] [CrossRef]
- Tawiah, V.; Zakari, A.; Adedoyin, F.F. Determinants of green growth in developed and developing countries. Environ. Sci. Pollut. Res. 2021, 28, 39227–39242. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, Z.; Yang, X.; Hussain, N.; Sinha, A. Financial development and environmental degradation: Do human capital and institutional quality make a difference? Gondwana Res. 2022, 105, 299–310. [Google Scholar] [CrossRef]
- Degbedji, D.F.; Akpa, A.F.; Chabossou, A.F.; Osabohien, R. Institutional quality and green economic growth in West African economic and monetary union. Innov. Green Dev. 2024, 3, 100108. [Google Scholar] [CrossRef]
- Xuan, V.N. Toward a sustainable future: Determinants of renewable energy utilisation in Canada. Energy Rep. 2025, 13, 1308–1320. [Google Scholar] [CrossRef]
- Aldhubaib, H.A. Electrical energy future of Saudi Arabia: Challenges and opportunities. Front. Energy Res. 2022, 10, 1005081. [Google Scholar] [CrossRef]
- Reiche, D. Energy Policies of Gulf Cooperation Council (GCC) countries—Possibilities and limitations of ecological modernization in rentier states. Energy Policy 2010, 38, 2395–2403. [Google Scholar] [CrossRef]
- Krane, J. Political enablers of energy subsidy reform in Middle Eastern oil exporters. Nat. Energy 2018, 3, 547–552. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification tests in econometrics. Econom. J. Econom. Soc. 1978, 46, 1251–1271. [Google Scholar] [CrossRef]
- Bajrami, R.; Tafa, S.; Gashi, A.; Hashani, M. Analysing the impact of money supply on economic growth: A panel regression approach for Western Balkan countries (2000–2023). Reg. Sci. Policy Pract. 2025, 17, 100159. [Google Scholar] [CrossRef]
- Driscoll, J.C.; Kraay, A.C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Delechat, M.C.C.; Melina, M.G.; Newiak, M.M.; Papageorgiou, M.C.; Spatafora, M.N. Economic Diversification in Developing Countries: Lessons from Country Experiences with Broad-Based and Industrial Policies; International Monetary Fund: Washington, DC, USA, 2024. [Google Scholar]
- Van der Ploeg, F.; Venables, A.J. Harnessing windfall revenues: Optimal policies for resource-rich developing economies. Econ. J. 2011, 121, 1–30. [Google Scholar] [CrossRef]
- Jolo, A.M.; Ari, I.; Koç, M. Driving factors of economic diversification in resource-rich countries via panel data evidence. Sustainability 2022, 14, 2797. [Google Scholar] [CrossRef]
- Arezki, R.; Blanchard, O. Seven Questions about the Recent Oil Price Slump. IMFdirect-IMF Blog 2014, 22. Available online: https://www.imf.org/en/Blogs/Articles/2014/12/22/seven-questions-about-the-recent-oil-price-slump (accessed on 30 April 2025).
- Alola, A.A.; Akadiri, S.S.; Usman, O. Domestic material consumption and greenhouse gas emissions in the EU-28 countries: Implications for environmental sustainability targets. Sustain. Dev. 2021, 29, 388–397. [Google Scholar] [CrossRef]
- Hvidt, M. Economic Diversification in GCC Countries: Past Record and Future Trends; LSE Research Online Documents on Economics 55252; London School of Economics and Political Science, LSE Library: London, UK, 2013. [Google Scholar]
- Sadorsky, P. The impact of financial development on energy consumption in emerging economies. Energy Policy 2010, 38, 2528–2535. [Google Scholar] [CrossRef]
- Chien, F.; Ajaz, T.; Andlib, Z.; Chau, K.Y.; Ahmad, P.; Sharif, A. The role of technology innovation, renewable energy and globalization in reducing environmental degradation in Pakistan: A step towards sustainable environment. Renew. Energy 2021, 177, 308–317. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2022; International Energy Agency (IEA): Paris, France, 2022. [Google Scholar]
- IRENA. World Energy Transitions Outlook: 1.5 °C Pathway; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2022. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
Country | Renewable Energy Share in 2022 | Expected Renewable Energy Share in 2030 | Net-Zero Emission Year |
---|---|---|---|
Saudi Arabia | 0.8% | 50% | 2060 |
UAE | 7% | 30% | 2050 |
Oman | 1.6% | 30% | 2050 |
Qatar | 0.5% | 20% | No deadline announced |
Kuwait | 0.2% | 15% | 2060 |
Bahrain | 0.04% | 10% | 2060 |
Variable | Abbreviation | Definition | Source |
---|---|---|---|
Dependent variable | |||
Energy Transition | RENC | Renewable energy consumption (% of total final energy consumption) | WB-WDI |
Independent variables | |||
Economic Development and Growth | FEX | Fuel exports (% of merchandise exports) | WB-WDI |
Environmental Sustainability | CO2 | Carbon dioxide emissions per capita (production) (tons) | WB-WDI |
Security and Access | EMD | Import diversification index value | UNCTAD |
Capital and Investment | FID | Financial institutions’ depth index | IMF |
Regulation and Political Commitment | PS | Political stability and absence of violence/terrorism: estimate | WB-WDI |
Institution and Governance | LAW | Rule of law: estimate | WB-WDI |
Infrastructure and Innovative Business Environment | FBS | Fixed broadband subscriptions (per 100 people) | WB-WDI |
Human Capital | HC | Mean years of schooling | UNDP |
Energy System Structure | ESS | Low-carbon electricity—% of electricity | IEA |
Control variables | |||
Urbanization | URB | Population in the largest city (% of urban population) | WB-WDI |
Material Footprint | MFP | Material footprint per capita (tons) | UNEP |
Variable | Obs | Mean | Std.Dev. | Min | Max |
---|---|---|---|---|---|
RENC | 120 | 0.0682 | 0.1731 | 0 | 1.135 |
FEX | 120 | 76.2622 | 19.0149 | 0.0426 | 96.4910 |
CO2 | 120 | 25.4595 | 10.1885 | 11.756 | 62.142 |
EMD | 120 | 0.4012 | 0.0563 | 0.306 | 0.544 |
FID | 120 | 0.1894 | 0.0883 | 0.0744 | 0.4324 |
POL | 120 | 0.2851 | 0.6529 | −1.3354 | 1.2236 |
LAW | 120 | 0.4509 | 0.2462 | −0.0227 | 0.9784 |
FBS | 120 | 9.5361 | 9.4112 | 0.0057 | 41.823 |
HC | 120 | 9.0810 | 1.6530 | 6.1130 | 12.7738 |
ESS | 120 | 0.3805 | 1.9465 | 0 | 17.4939 |
URB | 120 | 38.3328 | 14.6182 | 24.9448 | 72.8597 |
MFP | 120 | 48.0801 | 27.8657 | 19.683 | 140.816 |
Variable | RENC | FEX | CO2 | EMD | FID | POL | LAW | FBS | HC | ESS | URB | MFP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RENC | 1.00 | |||||||||||
FEX | −0.10 | 1.00 | ||||||||||
CO2 | 0.06 | 0.17 | 1.00 | |||||||||
EMD | −0.21 | 0.18 | 0.48 | 1.00 | ||||||||
FID | 0.05 | −0.45 | −0.10 | 0.08 | 1.00 | |||||||
POL | 0.22 | 0.17 | 0.41 | 0.23 | −0.46 | 1.00 | ||||||
LAW | 0.36 | −0.14 | 0.49 | 0.37 | 0.13 | 0.60 | 1.00 | |||||
FBS | 0.56 | −0.39 | −0.09 | −0.33 | 0.31 | −0.29 | 0.18 | 1.00 | ||||
HC | 0.50 | −0.54 | −0.08 | −0.38 | 0.18 | 0.00 | 0.30 | 0.76 | 1.00 | |||
ESS | 0.89 | −0.04 | −0.01 | −0.13 | 0.08 | 0.10 | 0.27 | 0.47 | 0.38 | 1.00 | ||
URB | −0.07 | 0.23 | 0.17 | 0.11 | −0.07 | 0.04 | −0.11 | −0.35 | −0.49 | −0.05 | 1.00 | |
MFP | −0.07 | 0.40 | 0.76 | 0.54 | −0.35 | 0.55 | 0.45 | −0.25 | −0.15 | −0.11 | 0.08 | 1.00 |
Chi2 | 215.04 |
p-value | 0.000 |
Variable | Coefficient | t | p > |t| |
---|---|---|---|
FEX | 0.0044 *** | 7.92 | 0.000 |
CO2 | −0.0045 *** | −3.02 | 0.003 |
EMD | 0.1058 | 0.63 | 0.531 |
FID | 0.4968 *** | 3.17 | 0.002 |
POL | −0.0023 | −0.10 | 0.918 |
LAW | 0.1304 *** | 3.22 | 0.002 |
FBS | 0.0025 ** | 2.55 | 0.012 |
HC | 0.0019 | 0.25 | 0.801 |
ESS | 0.0514 *** | 17.35 | 0.000 |
URB | 0.0119 *** | 6.18 | 0.000 |
MFP | 0.0009 * | 1.91 | 0.059 |
Cons | −0.9072 *** | −6.79 | 0.000 |
R2 | 0.91 | ||
F(11,103) | 89.81 (0.000) |
Variable | Driscoll–Kraay Standard Error | Robust Standard Error GMM | ||||
---|---|---|---|---|---|---|
Coefficient | t | p > |t| | Coefficient | t | p > |t| | |
RENC-1 | 0.9863 *** | 11.74 | 0.000 | |||
FEX | 0.0044 *** | 4.61 | 0.000 | 0.0035 *** | 3.60 | 0.000 |
CO2 | −0.0045 *** | −3.22 | 0.004 | −0.0022 ** | −2.11 | 0.035 |
EMD | 0.1058 | 1.01 | 0.327 | −0.0127 | −0.16 | 0.876 |
FID | 0.4968 ** | 3.19 | 0.005 | 0.3062 ** | 2.84 | 0.005 |
POL | −0.0023 | −0.21 | 0.832 | −0.0473 ** | −2.57 | 0.010 |
LAW | 0.1304 ** | 2.47 | 0.023 | 0.1001 *** | 3.13 | 0.002 |
FBS | 0.0025 ** | 2.79 | 0.012 | 0.0007 | 0.73 | 0.466 |
HC | 0.0019 | 0.32 | 0.755 | 0.0099 * | 1.68 | 0.093 |
ESS | 0.0514 | 9.26 | 0.000 | −0.0036 | −0.57 | 0.567 |
URB | 0.0119 *** | 3.16 | 0.005 | 0.0077 *** | 4.97 | 0.000 |
MFP | 0.0009 * | 1.90 | 0.072 | 0.0008 *** | 4.71 | 0.000 |
Cons | −0.9072 ** | −4.08 | 0.001 | −0.7167 *** | 4.99 | 0.000 |
R2 | 0.91 | |||||
F-statistics (Prob) | 131.50 (0.000) | |||||
Wald chi2 (p-value) | Wald chi2 | 2477.06 (0.000) | ||||
Arellano–Bond) (p-value) | AR(1) AR(2) | −1.5463 (0.1220) −0.17695 (0.8596) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bousrih, J.; Elhaj, M. Energy Transition in the GCC: From Oil Giants to Green Leaders? Energies 2025, 18, 3460. https://doi.org/10.3390/en18133460
Bousrih J, Elhaj M. Energy Transition in the GCC: From Oil Giants to Green Leaders? Energies. 2025; 18(13):3460. https://doi.org/10.3390/en18133460
Chicago/Turabian StyleBousrih, Jihen, and Manal Elhaj. 2025. "Energy Transition in the GCC: From Oil Giants to Green Leaders?" Energies 18, no. 13: 3460. https://doi.org/10.3390/en18133460
APA StyleBousrih, J., & Elhaj, M. (2025). Energy Transition in the GCC: From Oil Giants to Green Leaders? Energies, 18(13), 3460. https://doi.org/10.3390/en18133460