Postbiotics Formulation and Therapeutic Effect in Inflammation: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Eligibility Criteria
2.3. Sources of Information and Search Strategy
2.4. Selection Process
2.5. Data Extraction
2.6. Risk of Bias in Individual Studies
2.7. Data Synthesis
3. Results
3.1. Summary of Studies
3.2. Risk of Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An Evolving Term within the Functional Foods Field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A Step beyond Pre-and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef]
- Taverniti, V.; Guglielmetti, S. The Immunomodulatory Properties of Probiotic Microorganisms beyond Their Viability (Ghost Probiotics: Proposal of Paraprobiotic Concept). Genes Nutr. 2011, 6, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Cicenia, A.; Scirocco, A.; Carabotti, M.; Pallotta, L.; Marignani, M.; Severi, C. Postbiotic Activities of Lactobacilli-Derived Factors. J. Clin. Gastroenterol. 2014, 48, S18–S22. [Google Scholar] [CrossRef] [PubMed]
- Tsilingiri, K.; Rescigno, M. Postbiotics: What Else? Benef. Microbes 2013, 4, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Bourebaba, Y.; Marycz, K.; Mularczyk, M.; Bourebaba, L. Postbiotics as Potential New Therapeutic Agents for Metabolic Disorders Management. Biomed. Pharmacother. 2022, 153, 113138. [Google Scholar] [CrossRef]
- da Silva Vale, A.; de Melo Pereira, G.V.; de Oliveira, A.C.; de Carvalho Neto, D.P.; Herrmann, L.W.; Karp, S.G.; Soccol, V.T.; Soccol, C.R. Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions. Fermentation 2023, 9, 264. [Google Scholar] [CrossRef]
- Abbasi, A.; Rad, A.H.; Ghasempour, Z.; Sabahi, S.; Kafil, H.S.; Hasannezhad, P.; Rahbar Saadat, Y.; Shahbazi, N. The Biological Activities of Postbiotics in Gastrointestinal Disorders. Crit. Rev. Food Sci. Nutr. 2022, 62, 5983–6004. [Google Scholar] [CrossRef]
- Wang, Y.; Kasper, L.H. The Role of Microbiome in Central Nervous System Disorders. Brain Behav. Immun. 2014, 38, 1–12. [Google Scholar] [CrossRef]
- Kavita; Om, H.; Chand, U.; Kushawaha, P.K. Postbiotics: An Alternative and Innovative Intervention for the Therapy of Inflammatory Bowel Disease. Microbiol. Res. 2024, 279, 127550. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2017, 9, 7204. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Li, S.; Jiang, W.; Wang, J.; Xiao, J.; Chen, T.; Ma, J.; Khan, M.Z.; Wang, W.; et al. Unlocking the Power of Postbiotics: A Revolutionary Approach to Nutrition for Humans and Animals. Cell Metab. 2024, 36, 725–744. [Google Scholar] [CrossRef]
- Tsilingiri, K.; Barbosa, T.; Penna, G.; Caprioli, F.; Sonzogni, A.; Viale, G.; Rescigno, M. Probiotic and Postbiotic Activity in Health and Disease: Comparison on a Novel Polarised Ex-Vivo Organ Culture Model. Gut 2012, 61, 1007–1015. [Google Scholar] [CrossRef]
- Cuevas-González, P.F.; Liceaga, A.M.; Aguilar-Toalá, J.E. Postbiotics and Paraprobiotics: From Concepts to Applications. Food Res. Int. 2020, 136, 109502. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Xing, D. The Current and Future Perspectives of Postbiotics. Probiotics Antimicrob. Proteins 2023, 15, 1626–1643. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, W.; Rył, A.; Mizerski, A.; Walczakiewicz, K.; Sipak, O.; Laszczyńska, M. Immunomodulatory Potential of Gut Microbiome-Derived Shortchain Fatty Acids (SCFAs). Acta Biochim. Pol. 2019, 66, 1–12. [Google Scholar] [CrossRef]
- Wang, S.; Wang, P.; Wang, D.; Shen, S.; Wang, S.; Li, Y.; Chen, H. Postbiotics in Inflammatory Bowel Disease: Efficacy, Mechanism, and Therapeutic Implications. J. Sci. Food Agric. 2024, 105, 721–734. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Jan van Eck, N.; Waltman, L. VOSviewer Manual. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.13.pdf (accessed on 16 September 2019).
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-Bias VISualization (Robvis): An R Package and Shiny Web App for Visualizing Risk-of-Bias Assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Fan, Y.; Zhang, G.; Cai, S.; Ma, Y.; Yang, L.; Wang, Y.; Yu, H.; Qiao, S.; Zeng, X. Microbiota-Derived Indoles Alleviate Intestinal Inflammation and Modulate Microbiome by Microbial Cross-Feeding. Microbiome 2024, 12, 59. [Google Scholar] [CrossRef]
- Amin, U.; Jiang, R.; Raza, S.M.; Fan, M.; Liang, L.; Feng, N.; Li, X.; Yang, Y.; Guo, F. Gut-Joint Axis: Oral Probiotic Ameliorates Osteoarthritis. J. Tradit. Complement. Med. 2024, 14, 26–39. [Google Scholar] [CrossRef]
- Srivastava, S.; Basak, U.; Naghibi, M.; Vijayakumar, V.; Parihar, R.; Patel, J.; Jadon, P.S.; Pandit, A.; Dargad, R.R.; Khanna, S.; et al. A Randomized Double-Blind, Placebo-Controlled Trial to Evaluate the Safety and Efficacy of Live Bifidobacterium Longum CECT 7347 (ES1) and Heat-Treated Bifidobacterium Longum CECT 7347 (HT-ES1) in Participants with Diarrhea-Predominant Irritable Bowel Syndrome. Gut Microbes 2024, 16, 2338322. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Miyazono, D.; Sugata, H.; Mori, C.; Takahata, M. Anti-Inflammatory Effects of Heat-Killed Lactiplantibacillus Argentoratensis BBLB001 on a Gut Inflammation Co-Culture Cell Model and Dextran Sulfate Sodium-Induced Colitis Mouse Model. Int. Immunopharmacol. 2024, 143, 113408. [Google Scholar] [CrossRef]
- Yin, R.; Wang, T.; Sun, J.; Dai, H.; Zhang, Y.; Liu, N.; Liu, H. Postbiotics from Lactobacillus Johnsonii Activates Gut Innate Immunity to Mitigate Alcohol-Associated Liver Disease. Adv. Sci. 2024, 12, e2405781. [Google Scholar] [CrossRef]
- Takeshita, K.; Hishiki, H.; Takei, H.; Ikari, N.; Tanaka, S.; Iijima, Y.; Ogata, H.; Fujishiro, K.; Tominaga, T.; Konno, Y.; et al. The Effectiveness of Heat-Killed Pediococcus Acidilactici K15 in Preventing Respiratory Tract Infections in Preterm Infants: A Pilot Double-Blind, Randomized, Placebo-Controlled Study. Nutrients 2024, 16, 3635. [Google Scholar] [CrossRef]
- Lin, J.G.; Jiang, W.P.; Tsai, Y.S.; Lin, S.W.; Chen, Y.L.; Chen, C.C.; Huang, G.J. Dietary Probiotic Pediococcus Acidilactici GKA4, Dead Probiotic GKA4, and Postbiotic GKA4 Improves Cisplatin-Induced AKI by Autophagy and Endoplasmic Reticulum Stress and Organic Ion Transporters. Nutrients 2024, 16, 3532. [Google Scholar] [CrossRef]
- Razim, A.; Zabłocka, A.; Schmid, A.; Thaler, M.; Černý, V.; Weinmayer, T.; Whitehead, B.; Martens, A.; Skalska, M.; Morandi, M.; et al. Bacterial Extracellular Vesicles as Intranasal Postbiotics: Detailed Characterization and Interaction with Airway Cells. J. Extracell. Vesicles 2024, 13, e70004. [Google Scholar] [CrossRef]
- Ivashkin, V.; Maev, I.; Poluektova, E.; Sinitsa, A.; Avalueva, E.; Mnatsakanyan, M.; Simanenkov, V.; Karpeeva, J.; Kopylova, D.; Kuprina, I.; et al. Efficacy and Safety of Postbiotic Contained Inactivated Lactobacillus Reuteri (Limosilactobacillus Reuteri) DSM 17648 as Adjuvant Therapy in the Eradication of Helicobacter Pylori in Adults with Functional Dyspepsia: A Randomized Double-Blind Placebo Controlled Trial. Clin. Transl. Gastroenterol. 2024, 15, e1. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, T.; Feng, C.; Li, Y.; Jin, H.; Shi, X.; Kwok, L.-Y.; Shi, Y.; Chen, T.; Zhang, H. Adjuvant Postbiotic Administration Improves Dental Caries Prognosis by Restoring the Oral Microbiota. Food Sci. Human Wellness 2023, 13, 2690–2702. [Google Scholar] [CrossRef]
- Kim, J.H.; Kwak, W.; Nam, Y.; Baek, J.; Lee, Y.; Yoon, S.; Kim, W. Effect of Postbiotic Lactiplantibacillus Plantarum LRCC5314 Supplemented in Powdered Milk on Type 2 Diabetes in Mice. J. Dairy Sci. 2024, 107, 5301–5315. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Peng, C.; Sun, Y.; Zhang, T.; Feng, C.; Zhang, W.; Huang, T.; Yao, G.; Zhang, H.; He, Q. Both Viable Bifidobacterium Longum Subsp. Infantis B8762 and Heat-Killed Cells Alleviate the Intestinal Inflammation of DSS-Induced IBD Rats. Microbiol. Spectr. 2024, 12, e0350923. [Google Scholar] [CrossRef]
- Komatsu, Y.; Miura, H.; Iwama, Y.; Urita, Y. Beneficial Effect of Heat-Killed Lactic Acid Bacterium Lactobacillus Johnsonii No. 1088 on Temporal Gastroesophageal Reflux-Related Symptoms in Healthy Volunteers: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Study. Nutrients 2024, 16, 1230. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Wang, S.; Liu, S.; Prasanthi, H.A.C.; Li, Y.; Cao, J.; Zhong, F.; Guo, L.; Lu, F.; Luo, X. Postbiotic of Pediococcus Acidilactici GQ01, a Novel Probiotic Strain Isolated from Natural Fermented Wolfberry, Attenuates Hyperuricaemia in Mice through Modulating Uric Acid Metabolism and Gut Microbiota. Foods 2024, 13, 923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Zhou, Z.; Yang, Y.; Zhao, J.; Kang, X.; Li, Z.; Shen, X.; He, F.; Cheng, R. Live and Heat-Inactivated Streptococcus Thermophilus MN-ZLW-002 Mediate the Gut–Brain Axis, Alleviating Cognitive Dysfunction in APP/PS1 Mice. Nutrients 2024, 16, 844. [Google Scholar] [CrossRef]
- Bu, L.; Li, Y.; Wang, C.; Jiang, Y.; Suo, H. Preventive Effect of Lacticaseibacillus Rhamnosus 2016SWU.05.0601 and Its Postbiotic Elements on Dextran Sodium Sulfate-Induced Colitis in Mice. Front. Microbiol. 2024, 15, 1342705. [Google Scholar] [CrossRef]
- Guo, S.; Ma, T.; Kwok, L.Y.; Quan, K.; Li, B.; Wang, H.; Zhang, H.; Menghe, B.; Chen, Y. Effects of Postbiotics on Chronic Diarrhea in Young Adults: A Randomized, Double-Blind, Placebo-Controlled Crossover Trial Assessing Clinical Symptoms, Gut Microbiota, and Metabolite Profiles. Gut Microbes 2024, 16, 2395092. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, T.; Wang, X.; Lü, X. The Protective Effect of Heat-Inactivated Companilactobacillus Crustorum on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Nutrients 2023, 15, 2746. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J.; Jin, Y.; Huang, K.; Zhang, Y.; Liang, Z. Both Saccharomyces Boulardii and Its Postbiotics Alleviate Dextran Sulfate Sodium-Induced Colitis in Mice, Association with Modulating Inflammation and Intestinal Microbiota. Nutrients 2023, 15, 1484. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Xu, L.; Zhang, Z.; Yang, Y.; Li, P.; Ma, T.; Guo, S.; Kwok, L.Y.; Sun, Z. Postbiotic Gel Relieves Clinical Symptoms of Bacterial Vaginitis by Regulating the Vaginal Microbiota. Front. Cell Infect. Microbiol. 2023, 13, 1114364. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Zhang, W.; Zhang, T.; He, Q.; Kwok, L.Y.; Tan, Y.; Zhang, H. Heat-Killed Bifidobacterium Bifidum B1628 May Alleviate Dextran Sulfate Sodium-Induced Colitis in Mice, and the Anti-Inflammatory Effect Is Associated with Gut Microbiota Modulation. Nutrients 2022, 14, 5233. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Ma, Y.; Yang, Y.; Cheng, Y.; Ma, H.; Ren, D.; Chen, P. Regulation of Viable/Inactivated/Lysed Probiotic Lactobacillus Plantarum H6 on Intestinal Microbiota and Metabolites in Hypercholesterolemic Mice. npj Sci. Food 2022, 6, 50. [Google Scholar] [CrossRef]
- Lin, C.W.; Chen, Y.T.; Ho, H.H.; Kuo, Y.W.; Lin, W.Y.; Chen, J.F.; Lin, J.H.; Liu, C.R.; Lin, C.H.; Yeh, Y.T.; et al. Impact of the Food Grade Heat-Killed Probiotic and Postbiotic Oral Lozenges in Oral Hygiene. Aging 2022, 14, 2221–2238. [Google Scholar] [CrossRef]
- Choi, Y.; Park, E.; Yoon, Y.; Ha, J. Development of Postbiotics by Bioconverting Whey Using Lactobacillus Plantarum SMFM2017-YK1 and Limosilactobacillus Fermentum SMFM2017-NK1 to Alleviate Periodontitis. PLoS ONE 2022, 17, e0263851. [Google Scholar] [CrossRef]
- Ashrafian, F.; Keshavarz Azizi Raftar, S.; Lari, A.; Shahryari, A.; Abdollahiyan, S.; Moradi, H.R.; Masoumi, M.; Davari, M.; Khatami, S.; Omrani, M.D.; et al. Extracellular Vesicles and Pasteurized Cells Derived from Akkermansia Muciniphila Protect against High-Fat Induced Obesity in Mice. Microb. Cell Fact. 2021, 20, 219. [Google Scholar] [CrossRef] [PubMed]
- Montazeri-Najafabady, N.; Ghasemi, Y.; Dabbaghmanesh, M.H.; Ashoori, Y.; Talezadeh, P.; Koohpeyma, F.; Abootalebi, S.N.; Gholami, A. Exploring the Bone Sparing Effects of Postbiotics in the Post-Menopausal Rat Model. BMC Complement. Med. Ther. 2021, 21, 155. [Google Scholar] [CrossRef]
- Jeong, K.; Kim, M.; Jeon, S.A.; Kim, Y.H.; Lee, S. A Randomized Trial of Lactobacillus Rhamnosus IDCC 3201 Tyndallizate (RHT3201) for Treating Atopic Dermatitis. Pediatr. Allergy Immunol. 2020, 31, 783–792. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Wan, Y.; Hu, T.; Liu, L.; Yang, S.; Gong, Z.; Zeng, Q.; Wei, Y.; Yang, W.; et al. A Novel Postbiotic from Lactobacillus Rhamnosus GG with a Beneficial Effect on Intestinal Barrier Function. Front. Microbiol. 2019, 10, 477. [Google Scholar] [CrossRef]
- Liu, C.; Cai, T.; Cheng, Y.; Bai, J.; Li, M.; Gu, B.; Huang, M.; Fu, W. Postbiotics Prepared Using Lactobacillus Reuteri Ameliorates Ethanol-Induced Liver Injury by Regulating the FXR/SHP/SREBP-1c Axis. Mol. Nutr. Food Res. 2024, 68, e2300927. [Google Scholar] [CrossRef]
- Heydari, M.; Kalani, M.; Ghasemi, Y.; Nejabat, M. The Effect of Ophthalmic and Systemic Formulations of Latilactobacillus Sakei on Clinical and Immunological Outcomes of Patients with Dry Eye Disease: A Factorial, Randomized, Placebo-Controlled, and Triple-Masking Clinical Trial. Probiotics Antimicrob. Proteins 2024, 16, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Duan, X.; Chen, X.; Qian, S.; Ma, J.; Jiang, Z.; Hou, J. Lactobacillus Rhamnosus 1.0320 Postbiotics Ameliorate Dextran Sodium Sulfate-Induced Colonic Inflammation and Oxidative Stress by Regulating the Intestinal Barrier and Gut Microbiota. J. Agric. Food Chem. 2024, 72, 25078–25093. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Li, M.; Luo, M.; Zhang, B.; Wang, Y. Efficacy of Lacticaseibacillus Paracasei Fermented Milk on a Model of Constipation Induced by Loperamide Hydrochloride in BALB/c Mice. J. Food Sci. 2024, 89, 6733–6744. [Google Scholar] [CrossRef] [PubMed]
- Miranda, V.C.; Souza, R.O.; Quintanilha, M.F.; Gallotti, B.; Assis, H.C.; Faria, A.M.C.; Nicoli, J.R.; Cara, D.C.; Martins, F.S. A Next-Generation Bacteria (Akkermansia Muciniphila BAA-835) Presents Probiotic Potential Against Ovalbumin-Induced Food Allergy in Mice. Probiotics Antimicrob. Proteins 2024, 16, 737–751. [Google Scholar] [CrossRef]
- López, A.G.; Vasile, B.; Kolling, Y.; Ivir, M.; Gutiérrez, F.; Alvarez, S.; Salva, S. Can Lacticaseibacillus Rhamnosus CRL1505 Postbiotic Improve Emergency Myelopoiesis in Immunocompromised Mice? Microbes Infect. 2024, 26, 105311. [Google Scholar] [CrossRef]
- Pradhan, D.; Gulati, G.; Avadhani, R.; HM, R.; Soumya, K.; Kumari, A.; Gupta, A.; Dwivedi, D.; Kaushik, J.K.; Grover, S. Postbiotic Lipoteichoic Acid of Probiotic Lactobacillus Origin Ameliorates Inflammation in HT-29 Cells and Colitis Mice. Int. J. Biol. Macromol. 2023, 236, 123962. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Jin, T.; Qin, N.; Ren, X.; Xia, X. Live and Pasteurized Akkermansia Muciniphila Attenuate Hyperuricemia in Mice through Modulating Uric Acid Metabolism, Inflammation, and Gut Microbiota. Food Funct. 2022, 13, 12412–12425. [Google Scholar] [CrossRef]
- Ho, H.H.; Chen, C.W.; Yi, T.H.; Huang, Y.F.; Kuo, Y.W.; Lin, J.H.; Chen, J.F.; Tsai, S.Y.; Chan, L.P.; Liang, C.H. Novel Application of a Co-Fermented Postbiotics of TYCA06/AP-32/CP-9/Collagen in the Improvement of Acne Vulgaris—A Randomized Clinical Study of Efficacy Evaluation. J. Cosmet. Dermatol. 2022, 21, 6249–6260. [Google Scholar] [CrossRef]
- Feng, C.; Peng, C.; Zhang, W.; Zhang, T.; He, Q.; Kwok, L.Y.; Zhang, H. Postbiotic Administration Ameliorates Colitis and Inflammation in Rats Possibly through Gut Microbiota Modulation. J. Agric. Food Chem. 2023, 72, 9054–9066. [Google Scholar] [CrossRef]
- Liu, C.; Qi, X.; Li, D.; Zhao, L.; Li, Q.; Mao, K.; Shen, G.; Ma, Y.; Wang, R. Limosilactobacillus Fermentum HF06-Derived Paraprobiotic and Postbiotic Alleviate Intestinal Barrier Damage and Gut Microbiota Disruption in Mice with Ulcerative Colitis. J. Sci. Food Agric. 2024, 104, 1702–1712. [Google Scholar] [CrossRef] [PubMed]
- Mosca, A.; Abreu, Y.; Abreu, A.T.; Gwee, K.A.; Ianiro, G.; Tack, J.; Nguyen, T.V.H.; Hill, C. The Clinical Evidence for Postbiotics as Microbial Therapeutics. Gut Microbes 2022, 14, 2117508. [Google Scholar] [CrossRef]
- Vera-Santander, V.E.; Hernández-Figueroa, R.H.; Jiménez-Munguía, M.T.; Mani-López, E.; López-Malo, A. Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review. Molecules 2023, 28, 1230. [Google Scholar] [CrossRef] [PubMed]
- Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G.; Belzer, C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int. J. Mol. Sci. 2019, 20, 4673. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, T.; Luo, R.; Liu, J.; Jin, R.; Peng, X. Recent Advances and Potentiality of Postbiotics in the Food Industry: Composition, Inactivation Methods, Current Applications in Metabolic Syndrome, and Future Trends. Crit. Rev. Food Sci. Nutr. 2024, 64, 5768–5792. [Google Scholar] [CrossRef]
- Jastrząb, R.; Graczyk, D.; Siedlecki, P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int. J. Mol. Sci. 2021, 22, 13475. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.H.; Mao, C.L.; Xie, W.; Yu, C.H. Postbiotics in Rheumatoid Arthritis: Emerging Mechanisms and Intervention Perspectives. Front. Microbiol. 2023, 14, 1290015. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, A.; Li, J.; Munthali, W.; Cao, S.; Putri, U.M.P.; Yang, L. The Effect of Microbiome-Modulating Agents (MMAs) on Type 1 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2024, 16, 1675. [Google Scholar] [CrossRef]
- García Mansilla, M.J.; Rodríguez Sojo, M.J.; Lista, A.R.; Ayala Mosqueda, C.V.; Ruiz Malagón, A.J.; Ho Plagaro, A.; Gálvez, J.; Rodríguez Nogales, A.; Rodríguez Sánchez, M.J. Microbial-Derived Antioxidants in Intestinal Inflammation: A Systematic Review of Their Therapeutic Potential. Antioxidants 2025, 14, 321. [Google Scholar] [CrossRef]
- Li, B.; Du, P.; Smith, E.E.; Wang, S.; Jiao, Y.; Guo, L.; Huo, G.; Liu, F. In Vitro and in Vivo Evaluation of an Exopolysaccharide Produced by Lactobacillus Helveticus KLDS1.8701 for the Alleviative Effect on Oxidative Stress. Food Funct. 2019, 10, 1707–1717. [Google Scholar] [CrossRef]
- Li, J.; Li, Q.; Gao, N.; Wang, Z.; Li, F.; Li, J.; Shan, A. Exopolysaccharides Produced by: Lactobacillus Rhamnosus GG Alleviate Hydrogen Peroxide-Induced Intestinal Oxidative Damage and Apoptosis through the Keap1/Nrf2 and Bax/Bcl-2 Pathways in Vitro. Food Funct. 2021, 12, 9632–9641. [Google Scholar] [CrossRef] [PubMed]
- Jalali, S.; Mojgani, N.; Sanjabi, M.R.; Saremnezhad, S.; Haghighat, S. Functional Properties and Safety Traits of L. Rhamnosus and L. Reuteri Postbiotic Extracts. AMB Express 2024, 14, 114. [Google Scholar] [CrossRef] [PubMed]
N | Author | Study Design | Population Sample Size | Disease | Species/Strain | Inactivation | Formulation | Dosage Period | Administrations | Mechanism |
---|---|---|---|---|---|---|---|---|---|---|
Animal Studies | ||||||||||
1 | Wang et al., 2024 [24] | Experimental study | Mice 5 groups n = 25, x ≥ 4 per groups | Dextran sodium sulfate-induced [DDS] colitis | L. reuteri I5007 | Heat-killed (95 °C, 20 min) | Fluid | Daily for 1 week | Orally |
|
2 | Amin et al., 2024 [25] | Experimental study | Mice 5 groups x ≥ 5 per groups | Osteoarthritis | S. thermophilus L. pentosus | Freeze-thaved (−80 °C) | Suspension | 3 times a week for 6 weeks | Orally gavage |
|
3 | Itoh et al., 2024 [26] | Experimental study | Mice 8 groups n = 48, 6 per groups | Dextran sodium sulfate-induced [DDS] colitis | L. argentoratensis BBLB001 | Heat-killed (no parameters) | Capsules | For 19 days | Orally |
|
4 | Yin et al., 2024 [27] | Experimental study | Mice 5 groups n = 36, 3–7 per groups | Alcohol liver disease | L. johnsonii | Heat-killed (85 °C, 15 min) | Suspension | Daily for 2 weeks | Intragastric gavage |
|
5 | Lin et al., 2024 [28] | Experimental study | Mice 6 gropus n = 36, 6 per groups | Acute kidney injury | P. acidilactici GKA4 | Heat-killed (121 °C, 15 min) | Suspension | Daily for 10 days | Orally |
|
6 | Razim et al., 2024 [29] | Experimental study | Mice 4 groups n = 20, 5 per groups | Nosocomial infections diarrhea | E. coli O83 | Ultracentrifugation (150,000× g/3 h/temp. 4 °C) | Suspension | No data | Intranasally |
|
7 | Kim et al., 2024 [30] | Experimental study | Mice 4 groups n = 20, 5 per groups | Type 2 diabetes | L. plantarum LRCC5314 | Heat-killed (no parameters) | Suspension | For 12 weeks | Orally |
|
8 | Li et al., 2024 [31] | Experimental study | Rats 4 groups n = 48, 12 per groups | Dextran sodium sulfate-induced [DDS] colitis | B. longum subsp. infantis B8762 | Heat-killed (121 °C, 15 min) | Suspension | For 14 days | Orally |
|
9 | Ren et al., 2024 [32] | Experimental study | Mice 5 groups n = 50, 10 per groups | Hyperuricaemia | P. acidilactici GQ01 | Heat-killed (65 °C, 30 min) | Suspension | For 21 days | Orally gavage |
|
10 | Zhang et al., 2024 [33] | Experimental study | Mice 2 groups n = 90 | Alzheimer’s disease | S. thermophilus MN-ZLW-002 | Heat-killed (65 °C, 2 h) | Suspension | Daily for 12 weeks | Orally gavage |
|
11 | Bu et al., 2024 [34] | Experimental study | Mice 5 groups n = 50, 10 per groups | Dextran sodium sulfate-induced [DDS] colitis | L. rhamnosus 2016SWU.05.0601 | Heat-killed (100 °C, 30 min) | Suspension | For 5 weeks | Orally |
|
12 | Zhong et al., 2023 [35] | Experimental study | Mice 4 groups n = 40, 10 per groups | Dextran sodium sulfate-induced [DDS] colitis | C. crustorum MN047 (CC) | Heat-killed (95 °C, 30 min) | Suspension | For 6 days | Orally gavage |
|
13 | Xu et al., 2023 [36] | Experimental study | Mice 5 groups n = 50, 10 per groups | Dextran sodium sulfate-induced [DDS] colitis | S. boulardii | Heat-killed (121 °C, 15 min) | Suspension | Daily for 7 days | Orally gavage |
|
14 | Feng et al., 2022 [37] | Experimental study | Mice 3 groups n = 24, 8 per groups | Dextran sodium sulfate-induced [DDS] colitis | B. bifidum B1628 | Heat-killed (95 °C, 15 min) | Suspension | Daily for 10 days | Orally |
|
15 | Li et al., 2022 [38] | Experimental study | Mice 3 groups n = 88 | Hypercholesterolemic | L. plantarum H6 | Heat-killed (90 °C, 30 min) | Suspension | Daily for 4 weeks | Orally |
|
16 | Choi et al., 2022 [39] | Experimental study | Rats 4 groups n = 32, 8 per groups | Periodontitis | L. fermentum SMFM2017-CK1 L. plantarum SMFM2017-NK2 P. pentosaceus SMFM2017-NK1 L. plantarum SMFM2017-NK1 L. paraplantarum SMFM2017-YK1 L. plantarum SMFM2017-YK1 L. fermentum SMFM2017-NK1 | Heat-killed (80 °C, 1 min) | Suspension | Daily for 8 weeks | Orally |
|
17 | Ashrafian et al., 2021 [40] | Experimental study | Mice 5 groups n = 35, 7 per groups | Obesity | A. muciniphila MucT | Heat-killed (70 °C, 30 min) | Suspension | Daily for 5 weeks | Orally |
|
18 | Montazeri-Najafabad et al., 2021 [41] | Experimental study | Rats n = 84 | Post-menopausal osteoporosis | L. acidophilus L. reuteri L. casei B. longum B. coagulans | Heat-killed (60 °C, 30 min) | Suspension | Daily for 4 weeks | Orally |
|
19 | Gao et al., 2019 [42] | Experimental study | Mice 3 groups n = 24, 8 per groups Rats 2 groups n = 12, 6 per groups | Dextran sodium sulfate-induced [DDS] colitis Acute liver failure | L. rhamnosus GG (LGG) | Killed by enzyme (Proteinase K) | Pectin-zein beads | Daily for 3 days | Orally |
|
20 | Liu et al., 2024 [43] | Experimental study | Mice 7 groups n = 42, 6 per groups | Alcohol liver disease | L. reuteri | Heat-killed (65 °C, 30 min) | Suspension | Daily for 23 days | Orally gavage |
|
21 | Zhang et al., 2024 [44] | Experimental study | Mice 5 groups n = 60, 12 per groups | Dextran sodium sulfate-induced [DDS] colitis | L. rhamnosus 1.0320 | Heat-killed (121 °C/15 min) | Suspension | Daily for 14 days | Orally gavage |
|
22 | Xue et al., 2024 [45] | Experimental study | Mice 6 groups n = 30, 5 per groups | Constipation | L. paracasei | Heat-killed (no parameters) | Fluid | 2 times for 14 days | Orally |
|
23 | Miranda et al., 2024 [46] | Experimental study | Mice 5 groups n = 30, 6 per groups | Food allergy | A. muciniphila BAA-835 | Heat-killed (70 °C/10 min) | Suspension | Daily for 14 days | Intragastric gavage |
|
24 | Lopez et al., 2024 [47] | Experimental study | Mice 3 groups n = 18, 6 per groups | Emergency myelopoiesis | L. rhamnosus CRL1505 | Ultraviolet radiation (2 h) | Suspension | Daily for 5 days | Orally |
|
25 | Pradhan et al., 2023 [48] | Experimental study | Mice 5 groups n = 20, 10 per groups | Dextran sodium sulfate-induced [DDS] colitis | L. plantarum MTCC 5690 L. fermentum MTCC 5689 L. rhamnosus GG (LGG) | Microfluidizer lysis (15 min) | Fluid | For 14 days | Orally |
|
26 | Zhang et al., 2022 [49] | Experimental study | Mice 4 groups n = 32, 8 per groups | Hyperuricemia | A. muciniphila | Heat-killed (70 °C/30 min) | Suspension | For 3 weeks | Orally |
|
27 | Feng et al., 2023 [50] | Experimental study | Rat 5 groups n = 40, 8 per groups | Dextran sodium sulfate-induced [DDS] colitis | L. casei Zhang, L. plantarum P-8 B. animalis subsp. lactis V9 | Heat-killed (95 °C/60 min) | Suspension | For 14 days | Orally gavage |
|
28 | Liu et al., 2024 [51] | Experimental study | Mice 5 groups n = 40, 8 per groups | Dextran sodium sulfate-induced [DDS] colitis | L. fermentum HF06 | Heat-killed (121 °C/15 min) | Suspension | Daily for 24 days | Orally gavage |
|
Human Studies | ||||||||||
29 | Ivashkin et al., 2024 [52] | Randomized, double-blind, placebo-controlled study | Human 2 groups n = 129 | Helicobacter pylori in adults with functional dyspepsia | L. reuteri DSM17648 | Spray-dried (no parameters) | Capsules | 2 times for 14 days | Orally |
|
30 | Liu et al., 2023 [53] | Randomized controlled study | Human 3 groups n = 98 | Dental caries | L. casei Zhang L. plantarum P-8 B. animalis subsp. lactis V9 | Heat-killed (75 °C, 15 min) | Pill | 2 times a day for 14 days | Orally |
|
31 | Komatsu et al., 2024 [54] | Randomized, placebo-controlled, double-blind, parallel-group clinical study | Human 2 groups n = 120, 60 per groups | Gastroesophageal reflux disease functional dyspepsia | L. johnsonii No. 1088 | Heat-killed (no parameters) | Sachet to drink | Daily for 6 weeks | Orally |
|
32 | Guo et al., 2024 [55] | Randomized, double-blind, placebo-controlled crossover study | Human n = 69 | Chronic diarrhea | L. casei Zhang L. plantarum P-8 B. animalis subsp. lactis V9 | Heat-killed (95 °C, 60 min) | Pill | Daily for 21 days | Orally |
|
33 | Shen et al., 2023 [56] | Clinical study | Human n = 50 | Bacterial vaginitis | L. paracasei L. rhamnosus | Heat-killed (no parameters) | Gel | Daily for 7 days | Vaginally |
|
34 | Lin et al., 2022 [57] | Experimental study | Human 3 groups n = 75, 25 per groups | Dental caries | L. salivarius subsp. salicinius AP 32 L. paracasei ET-66 L L. plantarum LPL28 | Heat-killed (135 –140 °C, 4 s) | Lozenge | Daily for 4 weeks | Orally |
|
35 | Jeong et al., 2020 [58] | Randomized, double-blind, placebo-controlled parallel study | Human n = 120 | Atopic dermatitis | L. rhamnosus IDCC 3201 | Heat-killed (no parameters) | Suspension | Daily for 12 weeks | Orally |
|
36 | Heydari et al., 2024 [59] | Randomized, placebo-controlled, triple-masking clinical trial | Human 4 groups n = 40, 10 per groups | Dry eye disease | L. sakei | Heat-killed (121 °C) | Suspension | Daily for 4 weeks | Eye drops |
|
37 | Ho et al., 2022 [60] | Randomized clinical study | Human n = 20 | Acne vulgaris | L. salivarius AP-32 L. acidophilus TYCA06 L. reuteri GL-104 B. animalis subsp. lactis CP-9 B. longum subsp. infantis BLI-02, B. longum subsp. infantis OLP-01 B. breve Bv-889, B. bifidum VDD088 B. bifidum Bf-688 S. thermophilus SY-66 | Heat-killed (95 °C/20 min) | Gel | For 4 weeks | Facial skin |
|
38 | Srivastava et al., 2024 [61] | Randomized double-blind, placebo-controlled study | Human n = 200 | Diarrhea-predominant irritable bowel syndrome | B. longum CECT 7347 ES1 | Heat-killed (no parameters) | Capsules | Daily for 12 weeks | Orally |
|
39 | Takeshita et al., 2024 [62] | Pilot, double-blind, randomized, placebo-controlled study | Human n = 41 | Respiratory tract infections in premature infants | P. acidilactici K15 | Heat-killed (90 °C) | Suspension | Daily for 1 year | Orally |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdybel, K.; Śliwka, A.; Polak-Berecka, M.; Polak, P.; Waśko, A. Postbiotics Formulation and Therapeutic Effect in Inflammation: A Systematic Review. Nutrients 2025, 17, 2187. https://doi.org/10.3390/nu17132187
Zdybel K, Śliwka A, Polak-Berecka M, Polak P, Waśko A. Postbiotics Formulation and Therapeutic Effect in Inflammation: A Systematic Review. Nutrients. 2025; 17(13):2187. https://doi.org/10.3390/nu17132187
Chicago/Turabian StyleZdybel, Kinga, Angelika Śliwka, Magdalena Polak-Berecka, Paweł Polak, and Adam Waśko. 2025. "Postbiotics Formulation and Therapeutic Effect in Inflammation: A Systematic Review" Nutrients 17, no. 13: 2187. https://doi.org/10.3390/nu17132187
APA StyleZdybel, K., Śliwka, A., Polak-Berecka, M., Polak, P., & Waśko, A. (2025). Postbiotics Formulation and Therapeutic Effect in Inflammation: A Systematic Review. Nutrients, 17(13), 2187. https://doi.org/10.3390/nu17132187