Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (191)

Search Parameters:
Keywords = T helper 1 (Th1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 933 KiB  
Article
BCG Vaccination Potentially Modulates the Transcriptome of Infant CD4 T Cells in Addition to Age-Dependent Immune Ontogeny-Associated Changes
by Vidya Vijayan Karuvan Kandiyil, Eunchong Kang, Emily Coates, Portia Kamthunzi, Gerald Tegha, Mina Hosseinipour, Di Wu, Fei Zou and Kristina De Paris
Vaccines 2025, 13(7), 706; https://doi.org/10.3390/vaccines13070706 - 29 Jun 2025
Viewed by 593
Abstract
Background: The Bacille Calmette–Guérin (BCG) vaccine is part of the Extended Programme on Immunization (EPI) and as such is generally administered at birth. The global introduction of BCG not only protected many vaccinated infants against severe complications of tuberculosis but also resulted in [...] Read more.
Background: The Bacille Calmette–Guérin (BCG) vaccine is part of the Extended Programme on Immunization (EPI) and as such is generally administered at birth. The global introduction of BCG not only protected many vaccinated infants against severe complications of tuberculosis but also resulted in markedly reduced overall childhood mortality. Studies in human adults determined that BCG vaccination induces epigenetic reprogramming of innate immune cells (also known as trained immunity) and can also enhance T cell responses to both mycobacterial and non-mycobacterial antigens. Goal and Methods: The current study tested the hypothesis that BCG immunization similarly impacts the functionally distinct infant immune system. Towards this goal, we applied RNA sequencing to assess transcriptome changes in circulating CD4+ T cells of Malawian infants prior to and 2 to 13 weeks after BCG immunization. Results: In the first three months of life, transcriptome changes of infant CD4 T cells implied a functional shift towards T helper 1 and Th17 immunity. Vaccination with BCG resulted in additional modulation of the CD4 T cell transcriptome and differentially expressed genes could be linked to metabolomic function. Conclusions: These findings are consistent with data reported in BCG vaccinated adults and contribute to the understanding of molecular changes in infant CD4 T cells that may explain the improved capacity of the infant immune system to respond to pathogens after BCG vaccination. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

22 pages, 483 KiB  
Review
Advancing Therapeutic Strategies in Atopic Dermatitis: Emerging Targets and Personalized Approaches
by Yang Lo, Ting-Ting Cheng, Chi-Jung Huang, Yu-Che Cheng and I-Tsu Chyuan
Biomolecules 2025, 15(6), 838; https://doi.org/10.3390/biom15060838 - 8 Jun 2025
Cited by 1 | Viewed by 1557
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder marked by intricate interplay among skin barrier dysfunction, immune dysregulation, and microbial dysbiosis. While therapeutic advancements targeting T helper 2 (Th2) cytokines, such as interleukin (IL)-4 and IL-13, and the Janus kinase/signal transducer and [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disorder marked by intricate interplay among skin barrier dysfunction, immune dysregulation, and microbial dysbiosis. While therapeutic advancements targeting T helper 2 (Th2) cytokines, such as interleukin (IL)-4 and IL-13, and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway have yielded promising outcomes, a significant proportion of patients still experience inadequate relief, particularly from persistent pruritus. Achieving minimal disease activity remains an unmet clinical priority and a cornerstone of effective AD management. This review provides an in-depth analysis of current therapeutic approaches and integrates findings from recent biologic studies, with a particular focus on innovative strategies under active investigation. These approaches include targeting components of the innate immune system, such as thymic stromal lymphopoietin (TSLP) and IL-1 family cytokines; the adaptive immune system, including OX40-OX40L interactions and Th17- and Th22-related cytokines; and mechanisms associated with pruritus, such as IL-31, histamine receptors, and neurokinin 1 receptor. Emerging insights underscore the transformative potential of personalized therapeutic regimens tailored to the distinct endotypes and severity of AD. Advances in deciphering the pathogenesis of AD are unlocking unprecedented opportunities for precision medicine, offering renewed hope for improved outcomes in this multifaceted and heterogeneous condition. Full article
Show Figures

Figure 1

27 pages, 2294 KiB  
Review
Breaking the Cycle: Can Vitamin D Bridge the Gap Between Gut Microbiota and Immune Dynamics in Multiple Sclerosis?
by Feray Gençer Bingöl, Emine Kocyigit, Elif Çelik, Duygu Ağagündüz and Ferenc Budán
Int. J. Mol. Sci. 2025, 26(12), 5464; https://doi.org/10.3390/ijms26125464 - 7 Jun 2025
Cited by 1 | Viewed by 1170
Abstract
Multiple Sclerosis (MS) is a chronic disease with autoimmune and neurodegenerative features that affect the nervous system. Genetic predisposition and environmental factors, such as vitamin D deficiency and dysbiosis activating a pro-inflammatory response, have a role in the etiology of the disease. In [...] Read more.
Multiple Sclerosis (MS) is a chronic disease with autoimmune and neurodegenerative features that affect the nervous system. Genetic predisposition and environmental factors, such as vitamin D deficiency and dysbiosis activating a pro-inflammatory response, have a role in the etiology of the disease. In this context, the interactions of vitamin D with the gut microbiota and immune system have attracted attention in recent years. Vitamin D (1,25-dihydroxycholecalciferol) modulates the immune response by binding to the Vitamin D receptor (VDR). This pathway supports the functions of regulatory T cells by suppressing the activity of T helper cells 1 and 17 (Th1 and Th17). In MS patients, dysbiosis is characterized by a decrease in microbial diversity, and an increase in pro-inflammatory species is observed when compared to healthy individuals. Vitamin D has protective effects on eubiosis via VDR in intestinal epithelial cells, also reducing intestinal permeability by regulating tight junction proteins. In this way, vitamin D may contribute to the prevention of systemic inflammation. Although the relationship between vitamin D and the immune system is well documented, studies that address the triad of vitamin D level, gut microbiota, and immune response in MS are still limited. Full article
(This article belongs to the Special Issue The Role of Vitamin D in Human Health and Diseases 4.0)
Show Figures

Figure 1

32 pages, 652 KiB  
Review
Inflammation in Asthma: Mechanistic Insights and the Role of Biologics in Therapeutic Frontiers
by Mohammad Irshad Reza and Nilesh S. Ambhore
Biomedicines 2025, 13(6), 1342; https://doi.org/10.3390/biomedicines13061342 - 30 May 2025
Viewed by 2181
Abstract
Asthma is a chronic and multifaceted respiratory condition that affects over 300 million individuals across the globe. It is characterized by persistent inflammation of the airways, which leads to episodes of wheezing, breathlessness, chest tightness, and coughing. The most prevalent form of asthma [...] Read more.
Asthma is a chronic and multifaceted respiratory condition that affects over 300 million individuals across the globe. It is characterized by persistent inflammation of the airways, which leads to episodes of wheezing, breathlessness, chest tightness, and coughing. The most prevalent form of asthma is classified as Type 2 or T2-high asthma. In this variant, the immune response is heavily driven by eosinophils, mast cells, and T-helper 2 (Th2) cells. These components release a cascade of cytokines, including interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13). This release promotes several processes: the production of immunoglobulin E (IgE), which is integral to allergic responses; the recruitment of eosinophils—white blood cells that contribute to inflammation and tissue damage. Conversely, non-Type 2 or T2-low asthma is typically associated with a different inflammatory profile characterized by neutrophilic inflammation. This type of asthma is driven by T-helper 1 (Th1) and T-helper 17 (Th17) immune responses, which are often present in older adults, smokers, and those suffering from more severe manifestations of the disease. Among asthmatic patients, approximately 80–85% of cases are classified as T2-high asthma, while only 15–20% are T2-low asthma. Treatment of asthma focuses heavily on controlling inflammation. Inhaled corticosteroids remain the cornerstone therapy for managing T2-high asthma. For more severe or treatment-resistant cases, biologic therapies targeting specific inflammatory pathways, such as anti-IgE (omalizumab), anti-IL-5 (mepolizumab, benralizumab), and anti-IL-4/IL-13 (dupilumab), have shown great promise. For T2-low asthma, macrolide antibiotics like azithromycin and other novel therapies are being explored. This article reviews the safety, efficacy, and indications of the currently approved biologics and discusses potential novel biologics for asthma. Full article
Show Figures

Figure 1

17 pages, 3104 KiB  
Article
Codium fragile Extract Ameliorates Respiratory Function by Controlling Allergic Inflammation in Ovalbumin-Induced Bronchial Disorders in Mice
by Hyo Lim Lee, Yeong Hyeon Ju, In Young Kim, Hye Ji Choi, Yu Mi Heo, Hwa Rang Na and Ho Jin Heo
Mar. Drugs 2025, 23(5), 221; https://doi.org/10.3390/md23050221 - 21 May 2025
Viewed by 742
Abstract
This study investigated the effect of Codium fragile (WCF) water extract in reducing allergic inflammation in ovalbumin (OVA)-induced mice. Mice were sensitized to OVA + aluminum hydroxide, administered WCF for one week, and exposed to 1% aerosolized OVA. As a result, WCF intake [...] Read more.
This study investigated the effect of Codium fragile (WCF) water extract in reducing allergic inflammation in ovalbumin (OVA)-induced mice. Mice were sensitized to OVA + aluminum hydroxide, administered WCF for one week, and exposed to 1% aerosolized OVA. As a result, WCF intake reduced the OVA-induced increase in CD4+ T cells, CD8+ T cells, the T helper type 2 (Th2)/T helper type 1 (Th1) cell ratio, and inflammatory cells such as eosinophils and lymphocytes. Furthermore, WCF reduced Th2 cytokines such as interleukin (IL)-5, IL-13, and IL-33 and inflammatory cytokines such as tumor necrosis factor α (TNF-α) and IL-1β in lung tissues. A histological analysis showed that WCF intake decreases OVA-induced pulmonary inflammation, bronchial wall thickness, and mucus score and increases pulmonary alveolar area. Moreover, WCF inhibited the nuclear factor κB (NF-κB) pathway, the transforming growth factor β (TGF-β)/Smad pathway, and apoptosis-related proteins in lung tissues that OVA excessively activated. The oleamide (9-octadecenamide) content, representing a physiologically active component of WCF, was analyzed and validated using a high-performance liquid chromatography-photodiode array (HPLC-PDA) system. These results demonstrate that WCF may serve as a potential preventive agent for respiratory dysfunction such as allergic asthma by suppressing NF-κB and TGF-β/Smad pathways. Full article
(This article belongs to the Special Issue Marine Anti-Inflammatory and Antioxidant Agents, 4th Edition)
Show Figures

Graphical abstract

15 pages, 5549 KiB  
Article
GPR55 Antagonist CID16020046 Suppresses Collagen-Induced Rheumatoid Arthritis by Suppressing Th1/Th17 Cells in Mice
by Jung-Eun Lee and Dong-Soon Im
Int. J. Mol. Sci. 2025, 26(10), 4680; https://doi.org/10.3390/ijms26104680 - 14 May 2025
Viewed by 516
Abstract
Lysophosphatidylinositols are degradation products of phosphatidylinositols within cell membranes and digestive metabolites of a high-fat diet in the gut. G-protein-coupled receptor 55 (GPR55) is a receptor that senses lysophosphatidylinositol and acts as an immune mediator, being primarily upregulated during immune cell activation. This [...] Read more.
Lysophosphatidylinositols are degradation products of phosphatidylinositols within cell membranes and digestive metabolites of a high-fat diet in the gut. G-protein-coupled receptor 55 (GPR55) is a receptor that senses lysophosphatidylinositol and acts as an immune mediator, being primarily upregulated during immune cell activation. This study aimed to investigate the role of GPR55, using its antagonist, CID16020046, in a collagen-induced rheumatoid arthritis mouse model. It was observed that DBA-1J mice develop joint lesions characteristic of rheumatoid arthritis following immunization with bovine type II collagen. The administration of CID16020046 (1 mg/kg, intraperitoneally) alleviated rheumatoid arthritis symptoms and inflammatory responses. Histopathological analysis showed that CID16020046 reduced foot edema, proteoglycan loss, and bone erosion in the joints. CID16020046 also decreased rheumatoid-arthritis-induced serum IgG levels, as measured using enzyme-linked immunosorbent assays. The treatment reduced levels of pro-inflammatory cytokines (IL-1β and IL-6), Th1 cytokine (IFN-γ), and Th17 cytokine (IL-17A), along with matrix metalloproteinase-3 (MMP-3) and the receptor activator of nuclear factor-κB ligand (RANKL) in the feet. A significant reduction in splenomegaly was also observed, along with significant reductions in CD4+ T helper 1 (Th1) and Th17 cells in the spleen. Additionally, CID16020046 suppressed the differentiation of naïve T cells into CD4+IL-17+ Th17 cells. CID16020046 suppressed expression levels of inflammatory cytokine mRNAs in SW982 human synovial cells. In conclusion, blocking GPR55 alleviates collagen-induced rheumatoid arthritis symptoms by suppressing Th1 and Th17 cells in the spleen and pro-inflammatory cytokines in the joints, suggesting that GPR55 is a potential therapeutic target for autoimmune inflammatory diseases. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

17 pages, 3624 KiB  
Article
Competitive Endogenous RNA Network Involving Immune Subgroups, Infiltration, and lncRNAs in Prostate Cancer
by Wenkang Niu, Tingting Zhang and Lei Ma
Genes 2025, 16(5), 527; https://doi.org/10.3390/genes16050527 - 29 Apr 2025
Viewed by 602
Abstract
Prostate cancer (PCa) is the most frequently diagnosed malignancy in the male genitourinary tract. However, the regulatory mechanism of competitive endogenous RNAs (ceRNAs) in PCa remains unclear. In this study, we first performed immune scores of mRNA data from 481 PCa samples using [...] Read more.
Prostate cancer (PCa) is the most frequently diagnosed malignancy in the male genitourinary tract. However, the regulatory mechanism of competitive endogenous RNAs (ceRNAs) in PCa remains unclear. In this study, we first performed immune scores of mRNA data from 481 PCa samples using single-sample Gene Set Enrichment Analysis (ssGSEA). Based on the immune scores, we then evaluated the tumor immune microenvironment and analyzed 28 types of immune cells in PCa, we constructed a comprehensive network with four lncRNAs (MEG3, PCAT1, SNHG19, TRG-AS1), three miRNAs (hsa-miR-488-3p, hsa-miR-210-5p, hsa-miR-137), and twenty-seven mRNAs (including H2AFJ, THBS1, HPGD). Among the 28 immune cell types, seven immune cell types were found to be significantly associated with clinical characteristics. These network nodes have prognostic significance in multiple cancers and play critical roles in malignancy development, indicating the network’s predictive capability. We also observed a strong correlation (r = 0.6) between T-helper type 1 (Th1) cells and lncRNA network modules. The network connectivity highlights the association between immune therapy biomarkers for PCa, particularly those related to H2AFJ, THBS1, and HPGD. These findings provide valuable insights into the ceRNA regulatory network and its implications for immune-based therapies in PCa. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

22 pages, 3349 KiB  
Hypothesis
Does SARS-CoV-2 Possess “Allergen-Like” Epitopes?
by Alberto Rubio-Casillas, David Cowley, Vladimir N. Uversky, Elrashdy M. Redwan, Carlo Brogna and Marina Piscopo
COVID 2025, 5(4), 55; https://doi.org/10.3390/covid5040055 - 16 Apr 2025
Viewed by 1694
Abstract
An increase in immunoglobulin G4 (IgG4) levels is typically associated with immunological tolerance states and develops after prolonged exposure to antigens. Accordingly, IgG4 is considered an anti-inflammatory antibody with a limited ability to trigger efficient immune responses. Additionally, IgG4 reduces allergic reactions by [...] Read more.
An increase in immunoglobulin G4 (IgG4) levels is typically associated with immunological tolerance states and develops after prolonged exposure to antigens. Accordingly, IgG4 is considered an anti-inflammatory antibody with a limited ability to trigger efficient immune responses. Additionally, IgG4 reduces allergic reactions by blocking immunoglobulin E (IgE) activity. In the case of COVID-19, it has been reported that the repeated administration of some vaccines induces high IgG4 levels. The latest research data have revealed a surprising IgE anti-receptor binding domain response after both natural infection and several SARS-CoV-2 vaccines. The presence of IgG4 and IgE in COVID-19 disease suggests that the virus may induce an “allergic-like” response to evade immune surveillance, leading to a shift from T helper 1 (Th1) to T helper 2 (Th2) cells, which promotes tolerance to the virus and potentially contributes to chronic infection. The spike protein from vaccines could also induce such a response. Interestingly, “allergen-like” epitopes and IgE responses have been reported for other viruses, such as influenza, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV). The impact of this viral-induced tolerance will be discussed, concerning long COVID and the protective efficacy of vaccines. Full article
(This article belongs to the Section Human or Animal Coronaviruses)
Show Figures

Figure 1

20 pages, 16827 KiB  
Article
Selenium-Binding Protein 1-Deficient Dendritic Cells Protect Mice from Sepsis by Increased Treg/Th17
by Xin Zhang, Shuang Han, Zhu Zeng, Jie Dai and Yi Jia
Antioxidants 2025, 14(4), 468; https://doi.org/10.3390/antiox14040468 - 14 Apr 2025
Viewed by 791
Abstract
Selenium-binding protein 1 (SELENBP1) has been implicated in cancer development, neurological disorders, tissue injury, metabolic regulation, and cell differentiation. Sepsis is characterized prominently by immunological dysregulation and severe organ damage. However, whether SELENBP1 improves sepsis by regulating immune cell activity remains unknown. Here, [...] Read more.
Selenium-binding protein 1 (SELENBP1) has been implicated in cancer development, neurological disorders, tissue injury, metabolic regulation, and cell differentiation. Sepsis is characterized prominently by immunological dysregulation and severe organ damage. However, whether SELENBP1 improves sepsis by regulating immune cell activity remains unknown. Here, we detected an elevation of SELENBP1 levels in the blood of sepsis patients and in the livers of septic mice. Significantly, SELENBP1 knockout (KO) prolonged survival in septic mice. This phenomenon was accompanied by decreased liver damage, reduced inflammation levels, and an increased regulatory T cell/T helper 17 cell (Treg/Th17) ratio in the spleen. Additionally, SELENBP1 deficiency induced a redox imbalance and inhibited dendritic cell (DC) maturation, resulting in a tolerogenic DC (tolDC) phenotype and an increase in the Treg/Th17 ratio. Furthermore, SELENBP1-KO mature DCs (mDCs) alleviated liver injury by increasing the Treg/Th17 ratio in the spleen, thus improving the survival of septic mice. These findings indicate that SELENBP1 is involved in sepsis by regulating DC immune activity, which might provide a potential way for sepsis treatment. Full article
(This article belongs to the Special Issue Exploring Biomarkers of Oxidative Stress in Health and Disease)
Show Figures

Figure 1

16 pages, 3804 KiB  
Article
Establishment of a Novel Platform for Developing Oral Vaccines Based on the Surface Display System of Yeast Spores
by Chenyu Si, Jiawen Bai, Yuqing Li, Yang Li, Yishi Liu, Xiaoman Zhou, Jie Shi, Hideki Nakanishi and Zijie Li
Int. J. Mol. Sci. 2025, 26(8), 3615; https://doi.org/10.3390/ijms26083615 - 11 Apr 2025
Viewed by 570
Abstract
Oral vaccines are currently the focus of vaccine development because they are convenient to administer, easy to distribute, and capable of activating mucosal immunity. However, the complexity of the gastrointestinal environment and the lack of delivery vehicles severely limit the stability and effectiveness [...] Read more.
Oral vaccines are currently the focus of vaccine development because they are convenient to administer, easy to distribute, and capable of activating mucosal immunity. However, the complexity of the gastrointestinal environment and the lack of delivery vehicles severely limit the stability and effectiveness of oral vaccines. This study established a novel platform for developing oral vaccines based on the surface display system of yeast spores. As a specific example, oral vaccines for COVID-19, designed by displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein on the surface of three Saccharomyces cerevisiae spore types, including AN120, osw2Δ, and dit1Δ, were constructed and evaluated. The displayed RBD showed perfect gastrointestinal stability in vitro and was validated in animal studies to produce effective humoral immunity and significant mucosal immune responses after the vaccination. Notably, the displayed RBD elicited a cellular immune response skewed towards a T-helper type 1 (Th1) cell direction in a mouse model. Our findings proved that the oral vaccines of S. cerevisiae spores could rapidly induce a comprehensive and protective immune response to SARS-CoV-2. This study aims to provide a promising and potentially useful system that can be used to develop other oral vaccines. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

12 pages, 760 KiB  
Review
The Epithelial Barrier Hypothesis in Food Allergies: The State of the Art
by Valentina Agnese Ferraro, Stefania Zanconato and Silvia Carraro
Nutrients 2025, 17(6), 1014; https://doi.org/10.3390/nu17061014 - 14 Mar 2025
Cited by 2 | Viewed by 1510
Abstract
Recently, the “epithelial barrier hypothesis” has been proposed as a key factor in the development of allergic diseases, such as food allergies. Harmful environmental factors can damage epithelial barriers, with detrimental effects on the host immune response and on the local microbial equilibrium, [...] Read more.
Recently, the “epithelial barrier hypothesis” has been proposed as a key factor in the development of allergic diseases, such as food allergies. Harmful environmental factors can damage epithelial barriers, with detrimental effects on the host immune response and on the local microbial equilibrium, resulting in chronic mucosal inflammation that perpetuates the dysfunction of the epithelial barrier. The increased epithelial permeability allows allergens to access the submucosae, leading to an imbalance between type 1 T-helper (Th1) and type 2 T-helper (Th2) inflammation, with a predominant Th2 response that is the key factor in food allergy development. In this article on the state of the art, we review scientific evidence on the “epithelial barrier hypothesis”, with a focus on food allergies. We describe how loss of integrity of the skin and intestinal epithelial barrier and modifications in gut microbiota composition can contribute to local inflammatory changes and immunological unbalance that can lead to the development of food allergies. Full article
(This article belongs to the Special Issue Relationship Between Food Allergy and Human Health)
Show Figures

Figure 1

27 pages, 2149 KiB  
Article
Inflammatory and Humoral Immune Responses to Commercial Autogenous Salmonella Bacterin Vaccines in Light-Brown Leghorn Pullets: Primary and Secondary Vaccine Responses
by Chrysta N. Beck, Jossie M. Santamaria and Gisela F. Erf
Vaccines 2025, 13(3), 311; https://doi.org/10.3390/vaccines13030311 - 13 Mar 2025
Viewed by 752
Abstract
Background/Objectives: Commercial poultry flocks undergo Salmonella vaccinations to manage salmonellosis outbreaks. Due to reports of severe injection site reactions to Salmonella bacterins, assessment of local inflammatory responses is necessary. The objective was to assess local inflammatory and systemic humoral immune responses to commercial [...] Read more.
Background/Objectives: Commercial poultry flocks undergo Salmonella vaccinations to manage salmonellosis outbreaks. Due to reports of severe injection site reactions to Salmonella bacterins, assessment of local inflammatory responses is necessary. The objective was to assess local inflammatory and systemic humoral immune responses to commercial autogenous Salmonella bacterin vaccines (SV1 or SV2) following primary or secondary intradermal (i.d.) vaccination in Light-Brown Leghorns (LBLs). Methods: LBL pullets received primary (14 wks) or secondary (19 wks) vaccination by i.d. growing feather (GF) pulp injection of SV1, SV2, Salmonella Enteritidis (SE) lipopolysaccharide (LPS), or water–oil–water emulsion (V). Local leukocyte levels and relative cytokine mRNA expression were monitored before (0 d) and at 6 h, 1 d, 2 d, 3 d, 5 d, and 7 d post-GF pulp injection (p.i.). Blood was collected through 28 d post-primary or -secondary vaccination, and SE-specific antibodies were quantified via ELISA. Results: Primary vaccine administration increased local heterophil and macrophage levels and increased IL-6 and IL-8 mRNA expressions at 6 h p.i., independent of treatment. Secondary administration extended these local immune activities through 3 d p.i. and included prolonged IL-17A mRNA expression. Primary and secondary GF-pulp injection with V resulted in rapid lymphocyte recruitment by 6 h p.i., comprised primarily of CD4+ and γδ T cells. SV1 and SV2 also produced a T-dependent systemic humoral immune response, as indicated by the IgM-to-IgG isotype switch, along with a memory phenotype in the secondary response. Conclusions: These commercial-killed Salmonella vaccines, when prepared in water–oil–water emulsions, stimulated prolonged innate and T helper (Th) 17-type inflammatory responses at the injection site and produced a classic systemic humoral immune response after a second vaccination. Further research is needed to determine if extended inflammation influences adaptive immune responses in eliminating Salmonella infection. Full article
Show Figures

Figure 1

22 pages, 9731 KiB  
Article
Transcriptional Profiling of Abomasal Mucosa from Young Calves Experimentally Infected with Ostertagia ostertagi
by Clarissa Boschiero, Ethiopia Beshah, Mariam Bakshi, Eliseo Miramontes, Deborah Hebert, Peter C. Thompson, Cong-Jun Li, Xiaoping Zhu, Dante Zarlenga, George E. Liu and Wenbin Tuo
Int. J. Mol. Sci. 2025, 26(5), 2264; https://doi.org/10.3390/ijms26052264 - 4 Mar 2025
Viewed by 976
Abstract
Ostertagia ostertagi, also known as the brown stomach worm, causes significant pathology in the abomasum, resulting in production and nutritional losses in cattle. Alternative control measures, such as vaccination, are urgently needed because of rapidly growing anthelmintic drug resistance. There is a [...] Read more.
Ostertagia ostertagi, also known as the brown stomach worm, causes significant pathology in the abomasum, resulting in production and nutritional losses in cattle. Alternative control measures, such as vaccination, are urgently needed because of rapidly growing anthelmintic drug resistance. There is a need to understand host responses to the infection, especially immune responses, to advance vaccine discovery and design. Therefore, the present study investigated comprehensive changes in gene transcription in the abomasal mucosa of cattle infected with O. ostertagi at 0, 3–5, 7–9, 10, and 21 days post-infection (dpi) using RNA sequencing (RNA-seq). Compared to uninfected controls, infected animals exhibited significant increases in differentially expressed genes (DEGs) throughout the infection period. Infection induced more upregulated than downregulated genes in the abomasal fundic mucosa (FUN) when compared to the abomasal pyloric mucosa (PYL). The largest transcriptional changes occurred between 7–9 and 10 dpi during the final development of the L4 and their emergence from the gastric glands. Most DEGs are associated with host immunity, cellular reorganization, cell migration, and proliferation. Tuft/epithelial cell response to the infection was atypical, lacking an anticipated increase in key alarmin cytokine genes. Numerous genes associated with T helper (Th) 1, Th2, and Th17 responses and T cell exhaustion were upregulated, suggesting altered immune regulation. The data collectively indicate that O. ostertagi infection elicits massive host responses, particularly immune responses, which are intertwined with the parasite’s disruption of abomasal function, which likely impairs the nutrient utilization of the host. The infection is characterized by the absence of a dominant Th response and displaying a mixed activation of Th1, Th2, and Th17 pathways. Elevated expression of T cell exhaustion genes and lack of increase in epithelial alarmin cytokine genes suggest a downregulation of, or a deficiency in initiating, effective host immunity to the infection. Understanding mechanisms of parasite-mediated immune evasion and their nutritional consequences will facilitate the rational design of protective vaccines against infections of complex nematode parasites. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants)
Show Figures

Figure 1

28 pages, 1272 KiB  
Review
The Impact of Seasonality on Mental Health Disorders: A Narrative Review and Extension of the Immunoseasonal Theory
by Stefan Modzelewski, Maciej Naumowicz, Maria Suprunowicz, Aleksandra Julia Oracz and Napoleon Waszkiewicz
J. Clin. Med. 2025, 14(4), 1119; https://doi.org/10.3390/jcm14041119 - 9 Feb 2025
Cited by 4 | Viewed by 2541
Abstract
The impact of weather on mental illness is widely debated, but the mechanism of this relationship remains unclear. The immunoseasonal theory suggests that in winter, a T-helper 1 (Th1) response predominates, impairing Prefrontal Cortex (PFC) control, which exacerbates symptoms of depression, while after [...] Read more.
The impact of weather on mental illness is widely debated, but the mechanism of this relationship remains unclear. The immunoseasonal theory suggests that in winter, a T-helper 1 (Th1) response predominates, impairing Prefrontal Cortex (PFC) control, which exacerbates symptoms of depression, while after it, in summer, a Th2 response predominates in immunologically prone individuals, activating cortical and mesolimbic centers, which can exacerbate symptoms of psychosis. In this paper, we aim to describe the validity of this theory through a narrative review of data related to weather and immunology in psychiatry. This review extends existing literature by integrating immunological findings with psychiatric seasonality research, offering a mechanistic perspective that links Th1/Th2 shifts to specific symptom exacerbations. Winter Th1 severity may worsen depression and anxiety, while summer Th2 dominance appears to be associated with exacerbations of schizophrenia, mania, impulsivity, and suicide risk. It is possible that the mechanism of Th1 response potentiation and deterioration of PFC function is common to most psychiatric entities and is nonspecific. This suggests that seasonal immune dysregulation may play a broader role in psychiatric disorders than previously recognized, challenging the idea that seasonality impacts only selected conditions. Characteristic dysfunctions within an individual determine further differences in clinical manifestations. The mechanism of Th2 potentiation may not be limited to mania and psychosis but may also be associated with increased impulsivity and suicide risk. If the immunoseasonal theory is confirmed, selected immunological markers could be used not only in the diagnosis of psychiatric exacerbations but also in predicting symptom fluctuations and tailoring treatment strategies. This could enable more personalized interventions, such as seasonally adjusted medication dosing or targeted anti-inflammatory therapies. While this mechanism seems plausible, further research, especially analyzing markers of inflammatory and anti-inflammatory responses, is needed to better understand and confirm it. Full article
(This article belongs to the Section Mental Health)
Show Figures

Figure 1

10 pages, 1774 KiB  
Article
Managing the Overlap: Therapeutic Approaches in Patients with Concomitant Psoriasis and Atopic Dermatitis—A Case Series
by Maria Beatrice de Felici del Giudice, Giorgia Ravaglia, Marco Brusasco and Francesca Satolli
J. Clin. Med. 2025, 14(3), 796; https://doi.org/10.3390/jcm14030796 - 25 Jan 2025
Cited by 1 | Viewed by 1641
Abstract
Introduction: Psoriasis (PSO) and atopic dermatitis (AD) have traditionally been considered distinct diseases, respectively, mediated by T-helper 1 (Th1) and the T-helper 2 (Th2) immune pathway. In recent years, there has been a growing body of evidence highlighting an overlap between the [...] Read more.
Introduction: Psoriasis (PSO) and atopic dermatitis (AD) have traditionally been considered distinct diseases, respectively, mediated by T-helper 1 (Th1) and the T-helper 2 (Th2) immune pathway. In recent years, there has been a growing body of evidence highlighting an overlap between the two conditions, such as Asian AD, pediatric PSO, or “psoriasis dermatitis/PSOREMA”. Moreover, psoriasis dermatitis can be induced by therapeutic interventions. For instance, anti-IL-4/IL-13 monoclonal antibodies, commonly used to treat AD, can induce psoriasiform reactions by inhibiting the Th2 pathway, thereby unmasking Th1/Th17-driven PSO. Conversely, anti-TNFα and anti-IL-17 therapies, effective for PSO, may induce eczematous reactions promoting a switch toward Th2-driven inflammation. Janus Kinase Inhibitors (JAK-i) and IL-23 antagonists may represent valid therapeutic options for managing psoriasis dermatitis. JAK-i exert broader immunomodulatory effects, inhibiting both Th1 and Th2 pathways; however, they require careful monitoring due to potential adverse events. In contrast, IL-23 antagonists specifically suppress the IL-23/IL-17 axis inhibiting the p19 subunit of IL-23 and could represent a safer option for patients with psoriasis dermatitis. Materials and Methods/Results: We present a series of five cases of psoriasis dermatitis, including both patients who had the condition from the onset and those who developed it during treatment, with tailored therapeutic strategies based on individual patient profiles, comorbidities, and the specific characteristics of their overlapping disease presentation. Conclusion: JAK-i and IL-23 antagonists are both valid therapeutic options for managing psoriasis dermatitis, but with different immunomodulatory effects and safety profiles. Future research should focus on a better understanding of the immune pathway and identifying specific biomarkers of psoriasis dermatitis, to optimize therapeutic strategies. Full article
(This article belongs to the Special Issue Treatment of Atopic Dermatitis)
Show Figures

Figure 1

Back to TopTop