Inflammation in Asthma: Mechanistic Insights and the Role of Biologics in Therapeutic Frontiers
Abstract
:1. Introduction
Phenotype | Endotype/Immune Pathway | Key Immune Cells/Cytokines | Clinical Features | Treatment Response |
---|---|---|---|---|
Allergic Asthma | Type 2 (T2-high) | Th2, IL-4, IL-5, IL-13, IgE | Early-onset, atopy, seasonal/perennial triggers | Good response to ICS, anti-IgE, anti-IL-4/13 |
Eosinophilic Asthma | Type 2 (T2-high) | IL-5, eosinophils, IL-13 | Often late-onset, severe, frequent exacerbations | Responds to ICS, anti-IL-5 |
Non-allergic Asthma | Type 1/17 (T2-low) | Th1, Th17, IFN-γ, TNF-α, IL-17 | Adult-onset, more severe, resistant to corticosteroids | Biologics under investigation |
Neutrophilic Asthma | Type 1/17 (T2-low) | IL-17, IL-6, neutrophils | Persistent symptoms, steroid-resistant | Biologics under investigation |
Paucigranulocytic Asthma | Mixed/Undefined | Low inflammation, unclear cytokine profile | Mild symptoms, airway hyperresponsiveness | Limited response to ICS; treatment based on symptoms |
2. Mechanistic Insights into Asthma Inflammation
2.1. Type 1 Inflammation in Asthma
2.1.1. Molecular Pathways of Type 1 Inflammatory Asthma
2.1.2. Role of Key Th1 Cytokines
2.2. Type 2 Inflammation in Asthma
2.2.1. Molecular Pathways of Type 2 Inflammatory Asthma
2.2.2. Role of Key Th2 Cytokines
2.3. Type 17 Inflammation in Asthma
2.3.1. Molecular Pathways of Type 17 Inflammatory Asthma
2.3.2. Role of Key Th17 Cytokines
2.3.3. Biomarkers in Asthma
Blood Eosinophil Count
Fractional Exhaled Nitric Oxide (FeNO)
Serum Immunoglobulin E (IgE)
Periostin
2.3.4. Biologics in Asthma Therapeutics
Anti-IgE
Omalizumab
Ligelizumab
UB-221
Anti-IL-4
Dupilumab
Pascolizumab
Pitrakinra
Anti-IL-5
Mepolizumab
Reslizumab
Benralizumab
Depemokimab
Anti-IL-13
Lebrikizumab
Tralokinumab
Tezepelumab
2.3.5. Emerging Biologics for Type 1 Inflammation
2.3.6. Emerging Biologics for Type 17 Inflammation
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prakash, Y.S. Asthma without Borders. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2020, 318, L1001–L1003. [Google Scholar] [CrossRef]
- Ambhore, N.S.; Balraj, P.; Kumar, A.; Reza, M.I.; Ramakrishnan, Y.S.; Tesch, J.; Lohana, S.; Sathish, V. Kiss1 Receptor Knockout Exacerbates Airway Hyperresponsiveness and Remodeling in a Mouse Model of Allergic Asthma. Respir. Res. 2024, 25, 387. [Google Scholar] [CrossRef]
- Balraj, P.; Ambhore, N.S.; Ramakrishnan, Y.S.; Borkar, N.A.; Banerjee, P.; Reza, M.I.; Varadharajan, S.; Kumar, A.; Pabelick, C.M.; Prakash, Y.S.; et al. Kisspeptin/KISS1R Signaling Modulates Human Airway Smooth Muscle Cell Migration. Am. J. Respir. Cell Mol. Biol. 2024, 70, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.L.; Reza, M.I.; Ruwanpathirana, A.; Sathish, V.; Britt, R.D. Integrative Roles of Pro-Inflammatory Cytokines on Airway Smooth Muscle Structure and Function in Asthma. Immunol. Rev. 2025, 330, e70007. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, J.R.; Lloyd, C.M. Chronic Inflammation and Asthma. Mutat. Res. 2010, 690, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, M.E.; Lee, F.E.-H.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Holgate, S.T. Innate and Adaptive Immune Responses in Asthma. Nat. Med. 2012, 18, 673–683. [Google Scholar] [CrossRef]
- Wenzel, S.E. Asthma Phenotypes: The Evolution from Clinical to Molecular Approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef]
- Xie, C.; Yang, J.; Gul, A.; Li, Y.; Zhang, R.; Yalikun, M.; Lv, X.; Lin, Y.; Luo, Q.; Gao, H. Immunologic Aspects of Asthma: From Molecular Mechanisms to Disease Pathophysiology and Clinical Translation. Front. Immunol. 2024, 15, 1478624. [Google Scholar] [CrossRef]
- Desai, M.; Oppenheimer, J. Elucidating Asthma Phenotypes and Endotypes: Progress towards Personalized Medicine. Ann. Allergy Asthma Immunol. 2016, 116, 394–401. [Google Scholar] [CrossRef]
- Akar-Ghibril, N.; Casale, T.; Custovic, A.; Phipatanakul, W. Allergic Endotypes and Phenotypes of Asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.I.; Balraj, P.; Ramakrishnan, Y.; Pabelick, C.M.; Prakash, Y.S.; Britt, R.D.; Sathish, V. Activation of Aryl Hydrocarbon Receptor Inhibits Airway Smooth Muscle Proliferation. In A70. Relax Already! Mechanistic Insights into Airway Smooth Muscle Biology; American Thoracic Society: New York, NY, USA, 2023; p. A2326. [Google Scholar]
- Reza, M.I.; Kumar, A.; Balraj, P.; Pabelick, C.M.; Prakash, Y.S.; Britt, R.D.; Sathish, V. Activation of Aryl Hydrocarbon Receptor Inhibits Extracellular Matrix in Airway Smooth Muscle Cells. In B79. Airway Smooth Muscle in Asthma; American Thoracic Society: New York, NY, USA, 2024; p. A4479. [Google Scholar]
- Ambhore, N.S.; Balraj, P.; Pabelick, C.M.; Prakash, Y.S.; Sathish, V. Estrogen Receptors Differentially Modifies Lamellipodial and Focal Adhesion Dynamics in Airway Smooth Muscle Cell Migration. Mol. Cell. Endocrinol. 2024, 579, 112087. [Google Scholar] [CrossRef] [PubMed]
- Ambhore, N.S.; Kalidhindi, R.S.R.; Pabelick, C.M.; Hawse, J.R.; Prakash, Y.S.; Sathish, V. Differential Estrogen-Receptor Activation Regulates Extracellular Matrix Deposition in Human Airway Smooth Muscle Remodeling via NF-κB Pathway. FASEB J. 2019, 33, 13935–13950. [Google Scholar] [CrossRef] [PubMed]
- Borkar, N.A.; Ambhore, N.S.; Kalidhindi, R.S.R.; Pabelick, C.M.; Prakash, Y.S.; Sathish, V. Kisspeptins Inhibit Human Airway Smooth Muscle Proliferation. JCI Insight 2022, 7, e152762. [Google Scholar] [CrossRef]
- Louis, R.; Lau, L.C.; Bron, A.O.; Roldaan, A.C.; Radermecker, M.; Djukanović, R. The Relationship between Airways Inflammation and Asthma Severity. Am. J. Respir. Crit. Care Med. 2000, 161, 9–16. [Google Scholar] [CrossRef]
- Gillissen, A.; Paparoupa, M. Inflammation and Infections in Asthma. Clin. Respir. J. 2015, 9, 257–269. [Google Scholar] [CrossRef]
- Visca, D.; Ardesi, F.; Zappa, M.; Pignatti, P.; Grossi, S.; Vanetti, M.; Migliori, G.B.; Centis, R.; Angeli, F.; Spanevello, A. Asthma and Hypertension: The Role of Airway Inflammation. Front. Med. 2024, 11, 1451625. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekara, S.; Wark, P. Biologic Therapies for Severe Asthma with Persistent Type 2 Inflammation. Aust. Prescr. 2024, 47, 36–42. [Google Scholar] [CrossRef]
- McGregor, M.C.; Krings, J.G.; Nair, P.; Castro, M. Role of Biologics in Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 433–445. [Google Scholar] [CrossRef]
- Kaur, R.; Chupp, G. Phenotypes and Endotypes of Adult Asthma: Moving toward Precision Medicine. J. Allergy Clin. Immunol. 2019, 144, 1–12. [Google Scholar] [CrossRef]
- Gauthier, M.; Kale, S.L.; Ray, A. T1-T2 Interplay in the Complex Immune Landscape of Severe Asthma. Immunol. Rev. 2025, 330, e70011. [Google Scholar] [CrossRef]
- Ray, A.; Kolls, J.K. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol. 2017, 38, 942–954. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, B.; Edwards, J.E. Type 1/Type 2 Immunity in Infectious Diseases. Clin. Infect. Dis. 2001, 32, 76–102. [Google Scholar] [CrossRef] [PubMed]
- Hammad, H.; Lambrecht, B.N. The Basic Immunology of Asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef] [PubMed]
- Fahy, J.V.; Jackson, N.D.; Sajuthi, S.P.; Pruesse, E.; Moore, C.M.; Everman, J.L.; Rios, C.; Tang, M.; Gauthier, M.; Wenzel, S.E.; et al. Asthma Severity and Corticosteroid Response Depend on Variable Type 1 and Type 2 Inflammation in the Airway. medRxiv 2023. [Google Scholar] [CrossRef]
- Luo, W.; Hu, J.; Xu, W.; Dong, J. Distinct Spatial and Temporal Roles for Th1, Th2, and Th17 Cells in Asthma. Front. Immunol. 2022, 13, 974066. [Google Scholar] [CrossRef]
- Kardas, G.; Kuna, P.; Panek, M. Biological Therapies of Severe Asthma and Their Possible Effects on Airway Remodeling. Front. Immunol. 2020, 11, 1134. [Google Scholar] [CrossRef]
- Olsthoorn, S.E.M.; van Krimpen, A.; Hendriks, R.W.; Stadhouders, R. Chronic Inflammation in Asthma: Looking Beyond the Th2 Cell. Immunol. Rev. 2025, 330, e70010. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Xie, L.; Xiao, M.; Wu, J.; Xu, L.; Bai, Q.; Hao, Y.; Huang, Q.; Chen, X.; et al. The Transcription Factor T-Bet Is Required for Optimal Type I Follicular Helper T Cell Maintenance During Acute Viral Infection. Front. Immunol. 2019, 10, 606. [Google Scholar] [CrossRef]
- Szabo, S.J.; Kim, S.T.; Costa, G.L.; Zhang, X.; Fathman, C.G.; Glimcher, L.H. A Novel Transcription Factor, T-Bet, Directs Th1 Lineage Commitment. Cell 2000, 100, 655–669. [Google Scholar] [CrossRef]
- Annunziato, F.; Cosmi, L.; Liotta, F.; Maggi, E.; Romagnani, S. Human Th1 Dichotomy: Origin, Phenotype and Biologic Activities. Immunology 2014, 144, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Brightling, C.; Berry, M.; Amrani, Y. Targeting TNF-α: A Novel Therapeutic Approach for Asthma. J. Allergy Clin. Immunol. 2008, 121, 5–10, quiz 11–12. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.-S.; Lee, S.Y.; Kim, S.J.; Kim, J.S.; Kwon, S.S.; Kim, Y.K.; Kim, K.H.; Moon, H.S.; Song, J.S.; Park, S.H.; et al. The Soluble Tumor Necrosis Factor-Alpha Receptor Suppresses Airway Inflammation in a Murine Model of Acute Asthma. Yonsei Med. J. 2009, 50, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Nabe, T. Tumor Necrosis Factor Alpha-Mediated Asthma? Int. Arch. Allergy Immunol. 2013, 160, 111–113. [Google Scholar] [CrossRef]
- Chen, S.; Saeed, A.F.U.H.; Liu, Q.; Jiang, Q.; Xu, H.; Xiao, G.G.; Rao, L.; Duo, Y. Macrophages in Immunoregulation and Therapeutics. Signal Transduct. Target. Ther. 2023, 8, 207. [Google Scholar] [CrossRef]
- Huang, C.; Wang, J.; Zheng, X.; Chen, Y.; Wei, H.; Sun, R.; Tian, Z. Activation of TLR Signaling in Sensitization-Recruited Inflammatory Monocytes Attenuates OVA-Induced Allergic Asthma. Front. Immunol. 2018, 9, 2591. [Google Scholar] [CrossRef]
- Zuo, L.; Lucas, K.; Fortuna, C.A.; Chuang, C.-C.; Best, T.M. Molecular Regulation of Toll-like Receptors in Asthma and COPD. Front. Physiol. 2015, 6, 312. [Google Scholar] [CrossRef]
- Zakeri, A.; Russo, M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front. Immunol. 2018, 9, 1027. [Google Scholar] [CrossRef]
- Britt, R.D.; Thompson, M.A.; Sasse, S.; Pabelick, C.M.; Gerber, A.N.; Prakash, Y.S. Th1 Cytokines TNF-α and IFN-γ Promote Corticosteroid Resistance in Developing Human Airway Smooth Muscle. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2019, 316, L71–L81. [Google Scholar] [CrossRef]
- Ji, T.; Li, H. T-Helper Cells and Their Cytokines in Pathogenesis and Treatment of Asthma. Front. Immunol. 2023, 14, 1149203. [Google Scholar] [CrossRef]
- Deng, Z.; Ding, W.; Li, F.; Shen, S.; Huang, C.; Lai, K. Pulmonary IFN-γ Causes Lymphocytic Inflammation and Cough Hypersensitivity by Increasing the Number of IFN-γ-Secreting T Lymphocytes. Allergy Asthma Immunol. Res. 2022, 14, 653–673. [Google Scholar] [CrossRef] [PubMed]
- Makrinioti, H.; Bush, A.; Gern, J.; Johnston, S.L.; Papadopoulos, N.; Feleszko, W.; Camargo, C.A.; Hasegawa, K.; Jartti, T. The Role of Interferons in Driving Susceptibility to Asthma Following Bronchiolitis: Controversies and Research Gaps. Front. Immunol. 2021, 12, 761660. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Leigh, R.; Matsumoto, K.; Wattie, J.; Ellis, R.; O’Byrne, P.M.; Inman, M.D. Effect of Interferon-γ on Allergic Airway Responses in Interferon-γ-Deficient Mice. Am. J. Respir. Crit. Care Med. 2002, 166, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Fahy, J.V. Type 2 Inflammation in Asthma—Present in Most, Absent in Many. Nat. Rev. Immunol. 2015, 15, 57–65. [Google Scholar] [CrossRef]
- Lloyd, C.M.; Hessel, E.M. Functions of T Cells in Asthma: More than Just TH2 Cells. Nat. Rev. Immunol. 2010, 10, 838–848. [Google Scholar] [CrossRef]
- Bradding, P. Mast Cell Regulation of Airway Smooth Muscle Function in Asthma. Eur. Respir. J. 2007, 29, 827–830. [Google Scholar] [CrossRef]
- Schroeder, J.T. Basophils: Emerging Roles in the Pathogenesis of Allergic Disease. Immunol. Rev. 2011, 242, 144–160. [Google Scholar] [CrossRef]
- Li, Y.-F.; Gauderman, W.J.; Avol, E.; Dubeau, L.; Gilliland, F.D. Associations of Tumor Necrosis Factor G-308A with Childhood Asthma and Wheezing. Am. J. Respir. Crit. Care Med. 2006, 173, 970–976. [Google Scholar] [CrossRef]
- Meulmeester, F.L.; Mailhot-Larouche, S.; Celis-Preciado, C.; Lemaire-Paquette, S.; Ramakrishnan, S.; Wechsler, M.E.; Brusselle, G.; Corren, J.; Hardy, J.; Diver, S.E.; et al. Inflammatory and Clinical Risk Factors for Asthma Attacks (ORACLE2): A Patient-Level Meta-Analysis of Control Groups of 22 Randomised Trials. Lancet Respir. Med. 2025, 13, P505–P516. [Google Scholar] [CrossRef]
- Howell, I.; Howell, A.; Pavord, I.D. Type 2 Inflammation and Biological Therapies in Asthma: Targeted Medicine Taking Flight. J. Exp. Med. 2023, 220, e20221212. [Google Scholar] [CrossRef]
- Pelaia, C.; Pelaia, G.; Maglio, A.; Tinello, C.; Gallelli, L.; Lombardo, N.; Terracciano, R.; Vatrella, A. Pathobiology of Type 2 Inflammation in Asthma and Nasal Polyposis. J. Clin. Med. 2023, 12, 3371. [Google Scholar] [CrossRef]
- Ricciardolo, F.L.M.; Sprio, A.E.; Baroso, A.; Gallo, F.; Riccardi, E.; Bertolini, F.; Carriero, V.; Arrigo, E.; Ciprandi, G. Characterization of T2-Low and T2-High Asthma Phenotypes in Real-Life. Biomedicines 2021, 9, 1684. [Google Scholar] [CrossRef]
- AlBloushi, S.; Al-Ahmad, M. Exploring the Immunopathology of Type 2 Inflammatory Airway Diseases. Front. Immunol. 2024, 15, 1285598. [Google Scholar] [CrossRef] [PubMed]
- Maison, N.; Omony, J.; Illi, S.; Thiele, D.; Skevaki, C.; Dittrich, A.-M.; Bahmer, T.; Rabe, K.F.; Weckmann, M.; Happle, C.; et al. T2-High Asthma Phenotypes across Lifespan. Eur. Respir. J. 2022, 60, 2102288. [Google Scholar] [CrossRef]
- Ogulur, I.; Mitamura, Y.; Yazici, D.; Pat, Y.; Ardicli, S.; Li, M.; D’Avino, P.; Beha, C.; Babayev, H.; Zhao, B.; et al. Type 2 Immunity in Allergic Diseases. Cell. Mol. Immunol. 2025, 22, 211–242. [Google Scholar] [CrossRef] [PubMed]
- Bakakos, A.; Anagnostopoulos, N.; Bakakos, P. Eosinophils and T2 Inflammation in Severe Asthma. Explor. Asthma Allergy 2024, 2, 399–409. [Google Scholar] [CrossRef]
- Sim, S.; Choi, Y.; Park, H.-S. Update on Inflammatory Biomarkers for Defining Asthma Phenotype. Allergy. Asthma Immunol. Res. 2024, 16, 462–472. [Google Scholar] [CrossRef]
- Steinke, J.W.; Borish, L. Th2 Cytokines and Asthma—Interleukin-4: Its Role in the Pathogenesis of Asthma, and Targeting It for Asthma Treatment with Interleukin-4 Receptor Antagonists. Respir. Res. 2001, 2, 66–70. [Google Scholar] [CrossRef]
- Borish, L.C.; Nelson, H.S.; Lanz, M.J.; Claussen, L.; Whitmore, J.B.; Agosti, J.M.; Garrison, L. Interleukin-4 Receptor in Moderate Atopic Asthma. A Phase I/II Randomized, Placebo-Controlled Trial. Am. J. Respir. Crit. Care Med. 1999, 160, 1816–1823. [Google Scholar] [CrossRef]
- Pelaia, C.; Paoletti, G.; Puggioni, F.; Racca, F.; Pelaia, G.; Canonica, G.W.; Heffler, E. Interleukin-5 in the Pathophysiology of Severe Asthma. Front. Physiol. 2019, 10, 1514. [Google Scholar] [CrossRef]
- Varricchi, G.; Bagnasco, D.; Borriello, F.; Heffler, E.; Canonica, G.W. Interleukin-5 Pathway Inhibition in the Treatment of Eosinophilic Respiratory Disorders: Evidence and Unmet Needs. Curr. Opin. Allergy Clin. Immunol. 2016, 16, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Massey, O.W.; Suphioglu, C. Taking a Breather: Advances in Interleukin 5 Inhibition for Asthma Relief. Int. J. Mol. Sci. 2022, 23, 11166. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, C.; Heffler, E.; Crimi, C.; Maglio, A.; Vatrella, A.; Pelaia, G.; Canonica, G.W. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets. Front. Pharmacol. 2022, 13, 851940. [Google Scholar] [CrossRef]
- Kanoh, S.; Tanabe, T.; Rubin, B.K. IL-13-induced MUC5AC Production and Goblet Cell Differentiation Is Steroid Resistant in Human Airway Cells. Clin. Exp. Allergy 2011, 41, 1747–1756. [Google Scholar] [CrossRef]
- Bergeron, C.; Tulic, M.K.; Hamid, Q. Airway Remodelling in Asthma: From Benchside to Clinical Practice. Can. Respir. J. 2010, 17, e85–e93. [Google Scholar] [CrossRef]
- Chibana, K.; Trudeau, J.B.; Mustovich, A.T.; Hu, H.; Zhao, J.; Balzar, S.; Chu, H.W.; Wenzel, S.E. IL-13 Induced Increases in Nitrite Levels Are Primarily Driven by Increases in Inducible Nitric Oxide Synthase as Compared with Effects on Arginases in Human Primary Bronchial Epithelial Cells. Clin. Exp. Allergy 2008, 38, 936–946. [Google Scholar] [CrossRef]
- Iwaszko, M.; Biały, S.; Bogunia-Kubik, K. Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis. Cells 2021, 10, 3000. [Google Scholar] [CrossRef]
- Newcomb, D.C.; Peebles, R.S. Th17-Mediated Inflammation in Asthma. Curr. Opin. Immunol. 2013, 25, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Al-Ramli, W.; Préfontaine, D.; Chouiali, F.; Martin, J.G.; Olivenstein, R.; Lemière, C.; Hamid, Q. TH17-Associated Cytokines (IL-17A and IL-17F) in Severe Asthma. J. Allergy Clin. Immunol. 2009, 123, 1185–1187. [Google Scholar] [CrossRef]
- Rahmawati, S.F.; Te Velde, M.; Kerstjens, H.A.M.; Dömling, A.S.S.; Groves, M.R.; Gosens, R. Pharmacological Rationale for Targeting IL-17 in Asthma. Front. Allergy 2021, 2, 694514. [Google Scholar] [CrossRef]
- Hough, K.P.; Curtiss, M.L.; Blain, T.J.; Liu, R.-M.; Trevor, J.; Deshane, J.S.; Thannickal, V.J. Airway Remodeling in Asthma. Front. Med. 2020, 7, 191. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, R.K.; Al Heialy, S.; Hamid, Q. Role of IL-17 in Asthma Pathogenesis and Its Implications for the Clinic. Expert Rev. Respir. Med. 2019, 13, 1057–1068. [Google Scholar] [CrossRef]
- Chesné, J.; Braza, F.; Mahay, G.; Brouard, S.; Aronica, M.; Magnan, A. IL-17 in Severe Asthma. Where Do We Stand? Am. J. Respir. Crit. Care Med. 2014, 190, 1094–1101. [Google Scholar] [CrossRef]
- Gaffen, S.L. Structure and Signalling in the IL-17 Receptor Family. Nat. Rev. Immunol. 2009, 9, 556–567. [Google Scholar] [CrossRef]
- Syabbalo, N. Mechanisms Of Interleukin -17 in the Pathogenesis of Neutrophilic Asthma. Pulm. Med. Respir. Res. 2020, 6, 32. [Google Scholar] [CrossRef]
- Ricciardolo, F.L.M.; Sorbello, V.; Folino, A.; Gallo, F.; Massaglia, G.M.; Favatà, G.; Conticello, S.; Vallese, D.; Gani, F.; Malerba, M.; et al. Identification of IL-17F/Frequent Exacerbator Endotype in Asthma. J. Allergy Clin. Immunol. 2017, 140, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Sorbello, V.; Ciprandi, G.; Di Stefano, A.; Massaglia, G.M.; Favatà, G.; Conticello, S.; Malerba, M.; Folkerts, G.; Profita, M.; Rolla, G.; et al. Nasal IL-17F Is Related to Bronchial IL-17F/Neutrophilia and Exacerbations in Stable Atopic Severe Asthma. Allergy 2015, 70, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Chenuet, P.; Fauconnier, L.; Madouri, F.; Marchiol, T.; Rouxel, N.; Ledru, A.; Mauny, P.; Lory, R.; Uttenhove, C.; van Snick, J.; et al. Neutralization of Either IL-17A or IL-17F Is Sufficient to Inhibit House Dust Mite Induced Allergic Asthma in Mice. Clin. Sci. 2017, 131, 2533–2548. [Google Scholar] [CrossRef]
- Manni, M.L.; Robinson, K.M.; Alcorn, J.F. A Tale of Two Cytokines: IL-17 and IL-22 in Asthma and Infection. Expert Rev. Respir. Med. 2014, 8, 25–42. [Google Scholar] [CrossRef]
- Margelidon-Cozzolino, V.; Tsicopoulos, A.; Chenivesse, C.; de Nadai, P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. Front. Allergy 2022, 3, 806391. [Google Scholar] [CrossRef]
- Dudakov, J.A.; Hanash, A.M.; van den Brink, M.R.M. Interleukin-22: Immunobiology and Pathology. Annu. Rev. Immunol. 2015, 33, 747–785. [Google Scholar] [CrossRef] [PubMed]
- Bafadhel, M.; McKenna, S.; Terry, S.; Mistry, V.; Pancholi, M.; Venge, P.; Lomas, D.A.; Barer, M.R.; Johnston, S.L.; Pavord, I.D.; et al. Blood Eosinophils to Direct Corticosteroid Treatment of Exacerbations of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 186, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Erzurum, S.C. Nitric Oxide Metabolism in Asthma Pathophysiology. Biochim. Biophys. Acta (BBA) Gen. Subj. 2011, 1810, 1008–1016. [Google Scholar] [CrossRef]
- Ricciardolo, F.L.M.; Sorbello, V.; Ciprandi, G. FeNO as Biomarker for Asthma Phenotyping and Management. Allergy Asthma Proc. 2015, 36, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Al Obaidi, A.H.; Mohamed Al Samarai, A.G.; Yahya Al Samarai, A.K.; Al Janabi, J.M. The Predictive Value of IgE as Biomarker in Asthma. J. Asthma 2008, 45, 654–663. [Google Scholar] [CrossRef]
- Izuhara, K.; Ohta, S.; Ono, J. Using Periostin as a Biomarker in the Treatment of Asthma. Allergy. Asthma Immunol. Res. 2016, 8, 491–498. [Google Scholar] [CrossRef]
- Sutton, B.J.; Davies, A.M.; Bax, H.J.; Karagiannis, S.N. IgE Antibodies: From Structure to Function and Clinical Translation. Antibodies 2019, 8, 19. [Google Scholar] [CrossRef]
- Kuhl, K.; Hanania, N.A. Targeting IgE in Asthma. Curr. Opin. Pulm. Med. 2012, 18, 1–5. [Google Scholar] [CrossRef]
- Gill, M.A.; Bajwa, G.; George, T.A.; Dong, C.C.; Dougherty, I.I.; Jiang, N.; Gan, V.N.; Gruchalla, R.S. Counterregulation between the FcεRI Pathway and Antiviral Responses in Human Plasmacytoid Dendritic Cells. J. Immunol. 2010, 184, 5999–6006. [Google Scholar] [CrossRef]
- Gill, M.A.; Liu, A.H.; Calatroni, A.; Krouse, R.Z.; Shao, B.; Schiltz, A.; Gern, J.E.; Togias, A.; Busse, W.W. Enhanced Plasmacytoid Dendritic Cell Antiviral Responses after Omalizumab. J. Allergy Clin. Immunol. 2018, 141, 1735–1743.e9. [Google Scholar] [CrossRef]
- Soler, M.; Matz, J.; Townley, R.; Buhl, R.; O’brien, J.; Fox, H.; Thirlwell, J.; Gupta, N.; Della Cioppa, G.A. The Anti-IgE Antibody Omalizumab Reduces Exacerbations and Steroid Requirement in Allergic Asthmatics. Eur. Respir. J. 2001, 18, 254–261. [Google Scholar] [CrossRef]
- Corren, J.; Casale, T.; Deniz, Y.; Ashby, M. Omalizumab, a Recombinant Humanized Anti-IgE Antibody, Reduces Asthma-Related Emergency Room Visits and Hospitalizations in Patients with Allergic Asthma. J. Allergy Clin. Immunol. 2003, 111, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Beasley, R.; Ayres, J.; Slavin, R.; Hébert, J.; Bousquet, J.; Beeh, K.; Ramos, S.; Canonica, G.W.; Hedgecock, S. Benefits of Omalizumab as Add-on Therapy in Patients with Severe Persistent Asthma Who Are Inadequately Controlled despite Best Available Therapy (GINA 2002 Step 4 Treatment): INNOVATE. Allergy 2005, 60, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Normansell, R.; Walker, S.; Milan, S.J.; Walters, E.H.; Nair, P. Omalizumab for Asthma in Adults and Children. Cochrane Database Syst. Rev. 2014, 2014, CD003559. [Google Scholar] [CrossRef] [PubMed]
- Braunstahl, G.-J.; Chen, C.-W.; Maykut, R.; Georgiou, P.; Peachey, G.; Bruce, J. The EXpeRience Registry: The ‘Real-World’Effectiveness of Omalizumab in Allergic Asthma. Respir. Med. 2013, 107, 1141–1151. [Google Scholar] [CrossRef]
- Djukanovic, R.; Wilson, S.J.; Kraft, M.; Jarjour, N.N.; Steel, M.; Chung, K.F.; Bao, W.; Fowler-Taylor, A.; Matthews, J.; Busse, W.W. Effects of Treatment with Anti-Immunoglobulin E Antibody Omalizumab on Airway Inflammation in Allergic Asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 583–593. [Google Scholar] [CrossRef]
- Noga, O.; Hanf, G.; Brachmann, I.; Klucken, A.; Kleinetebbe, J.; Rosseau, S.; Kunkel, G.; Suttorp, N.; Seybold, J. Effect of Omalizumab Treatment on Peripheral Eosinophil and T-Lymphocyte Function in Patients with Allergic Asthma. J. Allergy Clin. Immunol. 2006, 117, 1493–1499. [Google Scholar] [CrossRef]
- Hoshino, M.; Ohtawa, J. Effects of Adding Omalizumab, an Anti-Immunoglobulin E Antibody, on Airway Wall Thickening in Asthma. Respiration 2012, 83, 520–528. [Google Scholar] [CrossRef]
- Corren, J.; Casale, T.B.; Lanier, B.; Buhl, R.; Holgate, S.; Jimenez, P. Safety and Tolerability of Omalizumab. Clin. Exp. Allergy 2009, 39, 788–797. [Google Scholar] [CrossRef]
- Gasser, P.; Tarchevskaya, S.S.; Guntern, P.; Brigger, D.; Ruppli, R.; Zbären, N.; Kleinboelting, S.; Heusser, C.; Jardetzky, T.S.; Eggel, A. The Mechanistic and Functional Profile of the Therapeutic Anti-IgE Antibody Ligelizumab Differs from Omalizumab. Nat. Commun. 2020, 11, 165. [Google Scholar] [CrossRef]
- Maurer, M.; Giménez-Arnau, A.M.; Sussman, G.; Metz, M.; Baker, D.R.; Bauer, A.; Bernstein, J.A.; Brehler, R.; Chu, C.-Y.; Chung, W.-H.; et al. Ligelizumab for Chronic Spontaneous Urticaria. N. Engl. J. Med. 2019, 381, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Ensina, L.F.; Gimenez-Arnau, A.M.; Sussman, G.; Hide, M.; Saini, S.; Grattan, C.; Fomina, D.; Rigopoulos, D.; Berard, F.; et al. Efficacy and Safety of Ligelizumab in Adults and Adolescents with Chronic Spontaneous Urticaria: Results of Two Phase 3 Randomised Controlled Trials. Lancet 2024, 403, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Trischler, J.; Bottoli, I.; Janocha, R.; Heusser, C.; Jaumont, X.; Lowe, P.; Gautier, A.; Pethe, A.; Woessner, R.; Zerwes, H.-G.; et al. Ligelizumab Treatment for Severe Asthma: Learnings from the Clinical Development Programme. Clin. Transl. Immunol. 2021, 10, e1255. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.A.; Chinthrajah, R.S.; Eggel, A.; Bottoli, I.; Gautier, A.; Woisetschlaeger, M.; Tassinari, P.; Altman, P. The Rationale for Development of Ligelizumab in Food Allergy. World Allergy Organ. J. 2022, 15, 100690. [Google Scholar] [CrossRef] [PubMed]
- Kuo, B.-S.; Li, C.-H.; Chen, J.-B.; Shiung, Y.-Y.; Chu, C.-Y.; Lee, C.-H.; Liu, Y.-J.; Kuo, J.-H.; Hsu, C.; Su, H.-W.; et al. IgE-Neutralizing UB-221 MAb, Distinct from Omalizumab and Ligelizumab, Exhibits CD23-Mediated IgE Downregulation and Relieves Urticaria Symptoms. J. Clin. Investig. 2022, 132, e157765. [Google Scholar] [CrossRef]
- Walsh, G.M. Biologics Targeting IL-5, IL-4 or IL-13 for the Treatment of Asthma—An Update. Expert Rev. Clin. Immunol. 2017, 13, 143–149. [Google Scholar] [CrossRef]
- McCann, M.R.; Kosloski, M.P.; Xu, C.; Davis, J.D.; Kamal, M.A. Dupilumab: Mechanism of Action, Clinical, and Translational Science. Clin. Transl. Sci. 2024, 17, e13899. [Google Scholar] [CrossRef]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; FitzGerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef]
- Rabe, K.F.; Nair, P.; Brusselle, G.; Maspero, J.F.; Castro, M.; Sher, L.; Zhu, H.; Hamilton, J.D.; Swanson, B.N.; Khan, A.; et al. Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. N. Engl. J. Med. 2018, 378, 2475–2485. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Ford, L.B.; Maspero, J.F.; Pavord, I.D.; Papi, A.; Bourdin, A.; Watz, H.; Castro, M.; Nenasheva, N.M.; Tohda, Y.; et al. Long-Term Safety and Efficacy of Dupilumab in Patients with Moderate-to-Severe Asthma (TRAVERSE): An Open-Label Extension Study. Lancet Respir. Med. 2022, 10, 11–25. [Google Scholar] [CrossRef]
- Maspero, J.F.; Peters, A.T.; Chapman, K.R.; Domingo, C.; Stewart, J.; Hardin, M.; Maroni, J.; Tawo, K.; Khokhar, F.A.; Mortensen, E.; et al. Long-Term Safety of Dupilumab in Patients With Moderate-to-Severe Asthma: TRAVERSE Continuation Study. J. Allergy Clin. Immunol. Pract. 2024, 12, 991–997.e6. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S.; Castro, M.; Corren, J.; Maspero, J.; Wang, L.; Zhang, B.; Pirozzi, G.; Sutherland, E.R.; Evans, R.R.; Joish, V.N.; et al. Dupilumab Efficacy and Safety in Adults with Uncontrolled Persistent Asthma despite Use of Medium-to-High-Dose Inhaled Corticosteroids plus a Long-Acting Β2 Agonist: A Randomised Double-Blind Placebo-Controlled Pivotal Phase 2b Dose-Ranging Trial. Lancet 2016, 388, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Corren, J.; Castro, M.; O’Riordan, T.; Hanania, N.A.; Pavord, I.D.; Quirce, S.; Chipps, B.E.; Wenzel, S.E.; Thangavelu, K.; Rice, M.S.; et al. Dupilumab Efficacy in Patients with Uncontrolled, Moderate-to-Severe Allergic Asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 516–526. [Google Scholar] [CrossRef]
- Busse, W.W.; Pavord, I.D.; Siddiqui, S.; Khan, A.H.; Praestgaard, A.; Nash, S.; Jacob-Nara, J.A.; Rowe, P.J.; Deniz, Y. Dupilumab Improves Outcomes in Patients with Chronic Rhinosinusitis with Nasal Polyps and Coexisting Asthma Irrespective of Baseline Asthma Characteristics. J. Asthma Allergy 2023, 16, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Casale, T.B.; Corren, J.; FitzGerald, M.J.; Deniz, Y.; Altincatal, A.; Gall, R.; Pandit-Abid, N.; Radwan, A.; Jacob-Nara, J.A.; et al. Dupilumab Reduces Exacerbations Independent of Changes in Biomarkers in Moderate-to-Severe Asthma. J. Allergy Clin. Immunol. Pract. 2024, 12, 1763–1772. [Google Scholar] [CrossRef]
- Hart, T.K.; Blackburn, M.N.; Brigham-Burke, M.; Dede, K.; Al-Mahdi, N.; Zia-Amirhosseini, P.; Cook, R.M. Preclinical Efficacy and Safety of Pascolizumab (SB 240683): A Humanized Anti-Interleukin-4 Antibody with Therapeutic Potential in Asthma. Clin. Exp. Immunol. 2002, 130, 93–100. [Google Scholar] [CrossRef]
- Paton, N.I.; Gurumurthy, M.; Lu, Q.; Leek, F.; Kwan, P.; Koh, H.W.L.; Molton, J.; Mortera, L.; Naval, S.; Bakar, Z.A.; et al. Adjunctive Pascolizumab in Rifampicin-Susceptible Pulmonary Tuberculosis: Proof-of-Concept, Partially-Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation Trial. J. Infect. Dis. 2024, 230, 590–597. [Google Scholar] [CrossRef]
- A Phase I/II, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Pilot Study of SB 240683 in Patients with Symptomatic Steroid-Naive Asthma. 2001. Available online: https://clinicaltrials.gov/study/NCT00024544 (accessed on 7 April 2025).
- Antoniu, S.A. Pitrakinra, a Dual IL-4/IL-13 Antagonist for the Potential Treatment of Asthma and Eczema. Curr. Opin. Investig. Drugs 2010, 11, 1286–1294. [Google Scholar]
- Wenzel, S.; Wilbraham, D.; Fuller, R.; Getz, E.B.; Longphre, M. Effect of an Interleukin-4 Variant on Late Phase Asthmatic Response to Allergen Challenge in Asthmatic Patients: Results of Two Phase 2a Studies. Lancet 2007, 370, 1422–1431. [Google Scholar] [CrossRef]
- Otulana, B.A.; Wenzel, S.E.; Ind, P.W.; Bowden, A.; Puthukkeril, S.; Tomkinson, A.; Meyers, D.A.; Bleecker, E.R.; Yen, Y.P. A Phase 2b Study of Inhaled Pitrakinra, An IL-4/IL-13 Antagonist, Successfully Identified Responder Subpopulations of Patients with Uncontrolled Asthma. In D101. Asthma Genetics; American Thoracic Society: New York, NY, USA, 2011; p. A6179. [Google Scholar]
- Mukherjee, M.; Sehmi, R.; Nair, P. Anti-IL5 Therapy for Asthma and Beyond. World Allergy Organ. J. 2014, 7, 32. [Google Scholar] [CrossRef]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; FitzGerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab Treatment in Patients with Severe Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Haldar, P.; Brightling, C.E.; Hargadon, B.; Gupta, S.; Monteiro, W.; Sousa, A.; Marshall, R.P.; Bradding, P.; Green, R.H.; Wardlaw, A.J.; et al. Mepolizumab and Exacerbations of Refractory Eosinophilic Asthma. N. Engl. J. Med. 2009, 360, 973–984. [Google Scholar] [CrossRef]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for Severe Eosinophilic Asthma (DREAM): A Multicentre, Double-Blind, Placebo-Controlled Trial. Lancet 2012, 380, 651–659. [Google Scholar] [CrossRef]
- Ortega, H.G.; Yancey, S.W.; Mayer, B.; Gunsoy, N.B.; Keene, O.N.; Bleecker, E.R.; Brightling, C.E.; Pavord, I.D. Severe Eosinophilic Asthma Treated with Mepolizumab Stratified by Baseline Eosinophil Thresholds: A Secondary Analysis of the DREAM and MENSA Studies. Lancet Respir. Med. 2016, 4, 549–556. [Google Scholar] [CrossRef]
- Bel, E.H.; Wenzel, S.E.; Thompson, P.J.; Prazma, C.M.; Keene, O.N.; Yancey, S.W.; Ortega, H.G.; Pavord, I.D. Oral Glucocorticoid-Sparing Effect of Mepolizumab in Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Reslizumab: First Global Approval. Drugs 2016, 76, 907–911. [Google Scholar] [CrossRef]
- Castro, M.; Zangrilli, J.; Wechsler, M.E. Corrections. Reslizumab for Inadequately Controlled Asthma with Elevated Blood Eosinophil Counts: Results from Two Multicentre, Parallel, Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trials. Lancet. Respir. Med. 2015, 3, e15. [Google Scholar] [CrossRef] [PubMed]
- Corren, J.; Weinstein, S.; Janka, L.; Zangrilli, J.; Garin, M. Phase 3 Study of Reslizumab in Patients With Poorly Controlled Asthma: Effects Across a Broad Range of Eosinophil Counts. Chest 2016, 150, 799–810. [Google Scholar] [CrossRef]
- Ibrahim, H.; O’Sullivan, R.; Casey, D.; Murphy, J.; MacSharry, J.; Plant, B.J.; Murphy, D.M. The Effectiveness of Reslizumab in Severe Asthma Treatment: A Real-World Experience. Respir. Res. 2019, 20, 289. [Google Scholar] [CrossRef]
- Hashimoto, S.; Kroes, J.A.; Eger, K.A.; Mau Asam, P.F.; Hofstee, H.B.; Bendien, S.A.; Braunstahl, G.J.; Broeders, M.E.A.C.; Imming, L.M.; Langeveld, B.; et al. Real-World Effectiveness of Reslizumab in Patients With Severe Eosinophilic Asthma—First Initiators and Switchers. J. Allergy Clin. Immunol. Pract. 2022, 10, 2099–2108.e6. [Google Scholar] [CrossRef]
- Kolbeck, R.; Kozhich, A.; Koike, M.; Peng, L.; Andersson, C.K.; Damschroder, M.M.; Reed, J.L.; Woods, R.; Dall’Acqua, W.W.; Stephens, G.L.; et al. MEDI-563, a Humanized Anti-IL-5 Receptor α MAb with Enhanced Antibody-Dependent Cell-Mediated Cytotoxicity Function. J. Allergy Clin. Immunol. 2010, 125, 1344–1353.e2. [Google Scholar] [CrossRef] [PubMed]
- Bleecker, E.R.; FitzGerald, J.M.; Chanez, P.; Papi, A.; Weinstein, S.F.; Barker, P.; Sproule, S.; Gilmartin, G.; Aurivillius, M.; Werkström, V.; et al. Efficacy and Safety of Benralizumab for Patients with Severe Asthma Uncontrolled with High-Dosage Inhaled Corticosteroids and Long-Acting Β2-Agonists (SIROCCO): A Randomised, Multicentre, Placebo-Controlled Phase 3 Trial. Lancet 2016, 388, 2115–2127. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, J.M.; Bleecker, E.R.; Nair, P.; Korn, S.; Ohta, K.; Lommatzsch, M.; Ferguson, G.T.; Busse, W.W.; Barker, P.; Sproule, S.; et al. Benralizumab, an Anti-Interleukin-5 Receptor α Monoclonal Antibody, as Add-on Treatment for Patients with Severe, Uncontrolled, Eosinophilic Asthma (CALIMA): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. Lancet 2016, 388, 2128–2141. [Google Scholar] [CrossRef] [PubMed]
- Busse, W.W.; Bleecker, E.R.; FitzGerald, J.M.; Ferguson, G.T.; Barker, P.; Sproule, S.; Olsson, R.F.; Martin, U.J.; Goldman, M.; Yañez, A.; et al. Long-Term Safety and Efficacy of Benralizumab in Patients with Severe, Uncontrolled Asthma: 1-Year Results from the BORA Phase 3 Extension Trial. Lancet Respir. Med. 2019, 7, 46–59. [Google Scholar] [CrossRef]
- FitzGerald, J.M.; Bleecker, E.R.; Menzies-Gow, A.; Zangrilli, J.G.; Hirsch, I.; Metcalfe, P.; Newbold, P.; Goldman, M. Predictors of Enhanced Response with Benralizumab for Patients with Severe Asthma: Pooled Analysis of the SIROCCO and CALIMA Studies. Lancet Respir. Med. 2018, 6, 51–64. [Google Scholar] [CrossRef]
- Nair, P.; Wenzel, S.; Rabe, K.F.; Bourdin, A.; Lugogo, N.L.; Kuna, P.; Barker, P.; Sproule, S.; Ponnarambil, S.; Goldman, M. Oral Glucocorticoid–Sparing Effect of Benralizumab in Severe Asthma. N. Engl. J. Med. 2017, 376, 2448–2458. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Russell, R.E.K.; Mahmood, H.R.; Krassowska, K.; Melhorn, J.; Mwasuku, C.; Pavord, I.D.; Bermejo-Sanchez, L.; Howell, I.; Mahdi, M.; et al. Treating Eosinophilic Exacerbations of Asthma and COPD with Benralizumab (ABRA): A Double-Blind, Double-Dummy, Active Placebo-Controlled Randomised Trial. Lancet Respir. Med. 2025, 13, 59–68. [Google Scholar] [CrossRef]
- Jackson, D.J.; Wechsler, M.E.; Jackson, D.J.; Bernstein, D.; Korn, S.; Pfeffer, P.E.; Chen, R.; Saito, J.; de Luíz Martinez, G.; Dymek, L.; et al. Twice-Yearly Depemokimab in Severe Asthma with an Eosinophilic Phenotype. N. Engl. J. Med. 2024, 391, 2337–2349. [Google Scholar] [CrossRef]
- Hershey, G.K.K. IL-13 Receptors and Signaling Pathways: An Evolving Web. J. Allergy Clin. Immunol. 2003, 111, 677–690. [Google Scholar] [CrossRef]
- Reza, M.I.; Kumar, A.; Pabelick, C.M.; Britt, R.D.; Prakash, Y.S.; Sathish, V. Downregulation of Protein Phosphatase 2Aα in Asthmatic Airway Smooth Muscle. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2024, 326, L651–L659. [Google Scholar] [CrossRef]
- Thomson, N.; Patel, M.; Smith, A.D. Lebrikizumab in the Personalized Management of Asthma. Biol. Targets Ther. 2012, 6, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Corren, J.; Lemanske, R.F.; Hanania, N.A.; Korenblat, P.E.; Parsey, M.V.; Arron, J.R.; Harris, J.M.; Scheerens, H.; Wu, L.C.; Su, Z.; et al. Lebrikizumab Treatment in Adults with Asthma. N. Engl. J. Med. 2011, 365, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Noonan, M.; Korenblat, P.; Mosesova, S.; Scheerens, H.; Arron, J.R.; Zheng, Y.; Putnam, W.S.; Parsey, M.V.; Bohen, S.P.; Matthews, J.G. Dose-Ranging Study of Lebrikizumab in Asthmatic Patients Not Receiving Inhaled Steroids. J. Allergy Clin. Immunol. 2013, 132, 567–574.e12. [Google Scholar] [CrossRef]
- Hanania, N.A.; Noonan, M.; Corren, J.; Korenblat, P.; Zheng, Y.; Fischer, S.K.; Cheu, M.; Putnam, W.S.; Murray, E.; Scheerens, H.; et al. Lebrikizumab in Moderate-to-Severe Asthma: Pooled Data from Two Randomised Placebo-Controlled Studies. Thorax 2015, 70, 748–756. [Google Scholar] [CrossRef]
- Scheerens, H.; Arron, J.R.; Zheng, Y.; Putnam, W.S.; Erickson, R.W.; Choy, D.F.; Harris, J.M.; Lee, J.; Jarjour, N.N.; Matthews, J.G. The Effects of Lebrikizumab in Patients with Mild Asthma Following Whole Lung Allergen Challenge. Clin. Exp. Allergy 2014, 44, 38–46. [Google Scholar] [CrossRef]
- Piper, E.; Brightling, C.; Niven, R.; Oh, C.; Faggioni, R.; Poon, K.; She, D.; Kell, C.; May, R.D.; Geba, G.P.; et al. A Phase II Placebo-Controlled Study of Tralokinumab in Moderate-to-Severe Asthma. Eur. Respir. J. 2013, 41, 330–338. [Google Scholar] [CrossRef]
- Hanania, N.A.; Korenblat, P.; Chapman, K.R.; Bateman, E.D.; Kopecky, P.; Paggiaro, P.; Yokoyama, A.; Olsson, J.; Gray, S.; Holweg, C.T.J.; et al. Efficacy and Safety of Lebrikizumab in Patients with Uncontrolled Asthma (LAVOLTA I and LAVOLTA II): Replicate, Phase 3, Randomised, Double-Blind, Placebo-Controlled Trials. Lancet Respir. Med. 2016, 4, 781–796. [Google Scholar] [CrossRef] [PubMed]
- Corren, J.; Szefler, S.J.; Sher, E.; Korenblat, P.; Soong, W.; Hanania, N.A.; Berman, G.; Brusselle, G.; Zitnik, R.; Natalie, C.R.; et al. Lebrikizumab in Uncontrolled Asthma: Reanalysis in a Well-Defined Type 2 Population. J. Allergy Clin. Immunol. Pract. 2024, 12, 1215–1224.e3. [Google Scholar] [CrossRef]
- Popovic, B.; Breed, J.; Rees, D.G.; Gardener, M.J.; Vinall, L.M.K.; Kemp, B.; Spooner, J.; Keen, J.; Minter, R.; Uddin, F.; et al. Structural Characterisation Reveals Mechanism of IL-13-Neutralising Monoclonal Antibody Tralokinumab as Inhibition of Binding to IL-13Rα1 and IL-13Rα2. J. Mol. Biol. 2017, 429, 208–219. [Google Scholar] [CrossRef]
- Brightling, C.E.; Chanez, P.; Leigh, R.; O’Byrne, P.M.; Korn, S.; She, D.; May, R.D.; Streicher, K.; Ranade, K.; Piper, E. Efficacy and Safety of Tralokinumab in Patients with Severe Uncontrolled Asthma: A Randomised, Double-Blind, Placebo-Controlled, Phase 2b Trial. Lancet Respir. Med. 2015, 3, 692–701. [Google Scholar] [CrossRef]
- Panettieri, R.A.; Sjöbring, U.; Péterffy, A.; Wessman, P.; Bowen, K.; Piper, E.; Colice, G.; Brightling, C.E. Tralokinumab for Severe, Uncontrolled Asthma (STRATOS 1 and STRATOS 2): Two Randomised, Double-Blind, Placebo-Controlled, Phase 3 Clinical Trials. Lancet Respir. Med. 2018, 6, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Busse, W.W.; Brusselle, G.G.; Korn, S.; Kuna, P.; Magnan, A.; Cohen, D.; Bowen, K.; Piechowiak, T.; Wang, M.M.; Colice, G. Tralokinumab Did Not Demonstrate Oral Corticosteroid-Sparing Effects in Severe Asthma. Eur. Respir. J. 2019, 53, 1800948. [Google Scholar] [CrossRef] [PubMed]
- Corren, J.; Parnes, J.R.; Wang, L.; Mo, M.; Roseti, S.L.; Griffiths, J.M.; van der Merwe, R. Tezepelumab in Adults with Uncontrolled Asthma. N. Engl. J. Med. 2017, 377, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Menzies-Gow, A.; Corren, J.; Bourdin, A.; Chupp, G.; Israel, E.; Wechsler, M.E.; Brightling, C.E.; Griffiths, J.M.; Hellqvist, Å.; Bowen, K.; et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N. Engl. J. Med. 2021, 384, 1800–1809. [Google Scholar] [CrossRef]
- Corren, J.; Menzies-Gow, A.; Chupp, G.; Israel, E.; Korn, S.; Cook, B.; Ambrose, C.S.; Hellqvist, Å.; Roseti, S.L.; Molfino, N.A.; et al. Efficacy of Tezepelumab in Severe, Uncontrolled Asthma: Pooled Analysis of the PATHWAY and NAVIGATOR Clinical Trials. Am. J. Respir. Crit. Care Med. 2023, 208, 13–24. [Google Scholar] [CrossRef]
- Cox, L.S. How Safe Are the Biologicals in Treating Asthma and Rhinitis? Allergy Asthma Clin. Immunol. 2009, 5, 4. [Google Scholar] [CrossRef]
- Akiho, H. Promising Biological Therapies for Ulcerative Colitis: A Review of the Literature. World J. Gastrointest. Pathophysiol. 2015, 6, 219. [Google Scholar] [CrossRef]
- Taillé, C.; Poulet, C.; Marchand-Adam, S.; Borie, R.; Dombret, M.-C.; Crestani, B.; Aubier, M. Monoclonal Anti-TNF-α Antibodies for Severe Steroid-Dependent Asthma: A Case Series. Open Respir. Med. J. 2013, 7, 21–25. [Google Scholar] [CrossRef]
- Cunningham, G.; Samaan, M.A.; Irving, P.M. Golimumab in the Treatment of Ulcerative Colitis. Ther. Adv. Gastroenterol. 2019, 12, 1756284818821266. [Google Scholar] [CrossRef]
- Wenzel, S.E.; Barnes, P.J.; Bleecker, E.R.; Bousquet, J.; Busse, W.; Dahlén, S.-E.; Holgate, S.T.; Meyers, D.A.; Rabe, K.F.; Antczak, A.; et al. A Randomized, Double-Blind, Placebo-Controlled Study of Tumor Necrosis Factor-α Blockade in Severe Persistent Asthma. Am. J. Respir. Crit. Care Med. 2009, 179, 549–558. [Google Scholar] [CrossRef]
- Traczewski, P.; Rudnicka, L. Adalimumab in Dermatology. Br. J. Clin. Pharmacol. 2008, 66, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Catal, F.; Mete, E.; Tayman, C.; Topal, E.; Albayrak, A.; Sert, H. A Human Monoclonal Anti-TNF Alpha Antibody (Adalimumab) Reduces Airway Inflammation and Ameliorates Lung Histology in a Murine Model of Acute Asthma. Allergol. Immunopathol. 2015, 43, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.C.; Van Der Heijde, D.; Braun, J.; Dougados, M.; Cush, J.; Clegg, D.O.; Kivitz, A.; Fleischmann, R.; Inman, R.; Tsuji, W. Recombinant Human Tumor Necrosis Factor Receptor (Etanercept) for Treating Ankylosing Spondylitis: A Randomized, Controlled Trial. Arthritis Rheum. 2003, 48, 3230–3236. [Google Scholar] [CrossRef]
- Holgate, S.T.; Noonan, M.; Chanez, P.; Busse, W.; Dupont, L.; Pavord, I.; Hakulinen, A.; Paolozzi, L.; Wajdula, J.; Zang, C.; et al. Efficacy and Safety of Etanercept in Moderate-to-Severe Asthma: A Randomised, Controlled Trial. Eur. Respir. J. 2011, 37, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Borovcanin, M.M.; Minic Janicijevic, S.; Jovanovic, I.P.; Gajovic, N.M.; Jurisevic, M.M.; Arsenijevic, N.N. Type 17 Immune Response Facilitates Progression of Inflammation and Correlates with Cognition in Stable Schizophrenia. Diagnostics 2020, 10, 926. [Google Scholar] [CrossRef]
- Hueber, W.; Patel, D.D.; Dryja, T.; Wright, A.M.; Koroleva, I.; Bruin, G.; Antoni, C.; Draelos, Z.; Gold, M.H.; Durez, P.; et al. Effects of AIN457, a Fully Human Antibody to Interleukin-17A, on Psoriasis, Rheumatoid Arthritis, and Uveitis. Sci. Transl. Med. 2010, 2, 52ra72. [Google Scholar] [CrossRef]
- Vicovan, A.G.; Petrescu, D.C.; Cretu, A.; Ghiciuc, C.M.; Constantinescu, D.; Iftimi, E.; Strugariu, G.; Ancuta, C.M.; Caratașu, C.-C.; Solcan, C.; et al. Targeting Common Inflammatory Mediators in Experimental Severe Asthma and Acute Lung Injury. Pharmaceuticals 2024, 17, 338. [Google Scholar] [CrossRef]
- Kirsten, A.; Watz, H.; Pedersen, F.; Holz, O.; Smith, R.; Bruin, G.; Koehne-Voss, S.; Magnussen, H.; Waltz, D.A. The Anti-IL-17A Antibody Secukinumab Does Not Attenuate Ozone-Induced Airway Neutrophilia in Healthy Volunteers. Eur. Respir. J. 2013, 41, 239–241. [Google Scholar] [CrossRef]
- Beck, K.M.; Koo, J. Brodalumab for the Treatment of Plaque Psoriasis: Up-to-Date. Expert Opin. Biol. Ther. 2019, 19, 287–292. [Google Scholar] [CrossRef]
- Busse, W.W.; Holgate, S.; Kerwin, E.; Chon, Y.; Feng, J.; Lin, J.; Lin, S.-L. Randomized, Double-Blind, Placebo-Controlled Study of Brodalumab, a Human Anti–IL-17 Receptor Monoclonal Antibody, in Moderate to Severe Asthma. Am. J. Respir. Crit. Care Med. 2013, 188, 1294–1302. [Google Scholar] [CrossRef]
- Toussirot, E. Ixekizumab: An Anti- IL-17A Monoclonal Antibody for the Treatment of Psoriatic Arthritis. Expert Opin. Biol. Ther. 2018, 18, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.C.; Mysler, E.; Tomita, T.; Papp, K.A.; Salvarani, C.; Schwartzman, S.; Gallo, G.; Patel, H.; Lisse, J.R.; Kronbergs, A.; et al. Safety of Ixekizumab in Adult Patients with Plaque Psoriasis, Psoriatic Arthritis and Axial Spondyloarthritis: Data from 21 Clinical Trials. Rheumatology 2020, 59, 3834–3844. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.E.M.; Gooderham, M.; Colombel, J.-F.; Terui, T.; Accioly, A.P.; Gallo, G.; Zhu, D.; Blauvelt, A. Safety of Ixekizumab in Adult Patients with Moderate-to-Severe Psoriasis: Data from 17 Clinical Trials with Over 18,000 Patient-Years of Exposure. Dermatol. Ther. 2022, 12, 1431–1446. [Google Scholar] [CrossRef] [PubMed]
- Saint-Pierre, M.D. Concomitant Use of Mepolizumab and Ixekizumab in a Patient with Severe Eosinophilic Asthma and Psoriasis: A Case Study. In A65. Pulmonary Clinical Cases II; American Thoracic Society: New York, NY, USA, 2022; p. A2058. [Google Scholar]
- Adamič, N.; Vengust, M. Regenerative Medicine in Lung Diseases: A Systematic Review. Front. Vet. Sci. 2023, 10, 1115708. [Google Scholar] [CrossRef]
- Hussen, B.M.; Najmadden, Z.B.; Abdullah, S.R.; Rasul, M.F.; Mustafa, S.A.; Ghafouri-Fard, S.; Taheri, M. CRISPR/Cas9 Gene Editing: A Novel Strategy for Fighting Drug Resistance in Respiratory Disorders. Cell Commun. Signal. 2024, 22, 329. [Google Scholar] [CrossRef]
- Cereta, A.D.; Oliveira, V.R.; Costa, I.P.; Afonso, J.P.R.; Fonseca, A.L.; de Souza, A.R.T.; Silva, G.A.M.; Mello, D.A.C.P.G.; de Oliveira, L.V.F.; da Palma, R.K. Emerging Cell-Based Therapies in Chronic Lung Diseases: What About Asthma? Front. Pharmacol. 2021, 12, 648506. [Google Scholar] [CrossRef]
- Mishra, B.; Singh, J. Novel Drug Delivery Systems and Significance in Respiratory Diseases. In Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 57–95. [Google Scholar]
- da Silva, A.L.; Silva, L.A.; Cruz, F.F.; Rocco, P.R.M.; Morales, M.M. Application of Novel Nanotechnologies in Asthma. Ann. Transl. Med. 2020, 8, 159. [Google Scholar] [CrossRef]
- Gysens, F.; Mestdagh, P.; de Bony de Lavergne, E.; Maes, T. Unlocking the Secrets of Long Non-Coding RNAs in Asthma. Thorax 2022, 77, 514–522. [Google Scholar] [CrossRef]
Biologics | Target | Indication | Approval | Developer | References |
---|---|---|---|---|---|
Omalizumab | IgE | Moderate-to-severe allergic asthma | Approved | Genentech and Novartis | [93,94,95,96,97,98,99,100,101] |
Ligelizumab | IgE | Investigational | Discontinued | Novartis | [102,103,104] |
UB-221 | IgE | Investigational | Unknown | United BioPharma | [107] |
Dupilumab | IL-4 | Moderate-to-severe eosinophilic or OCS-dependent asthma | Approved | Regeneron pharmaceuticals and Sanofi | [110,111,112,113,114,115,116,117] |
Pascolizumab | IL-4 and IL-13 | Investigational | Unknown | GlaxoSmithKline and Protein Design Laboratories | [118,119,120] |
Pitrakinra | IL-4 | Atopic and uncontrolled asthma | Discontinued | Bayer AG | [121,122,123] |
Mepolizumab | IL-5 | Severe eosinophilic asthma | Approved | GlaxoSmithKline | [125,126,127,128,129] |
Reslizumab | IL-5 | Severe eosinophilic asthma | Approved | Teva Pharmaceuticals | [130,131,132,133,134] |
Benralizumab | IL-5 | Severe eosinophilic asthma | Approved | MedImmune, AstraZeneca | [135,136,137,138,139,140] |
Lebrikizumab | IL-13 | Severe eosinophilic asthma | Discontinued | Genentech | [145,146,147,148,149,150,151,152] |
Tralokinumab | IL-13 | Severe eosinophilic asthma | Discontinued | AstraZeneca | [153,154,155,156] |
Biologics | Target | Indication | Approval | Developer | References |
---|---|---|---|---|---|
Infliximab | TNF-α | Severe, steroid-dependent, refractory asthma | Case series | Janssen Biotech | [161,162] |
Golimumab | TNF-α | Severe, uncontrolled asthma | Discontinued | Janssen Biotech | [163,164] |
Adalimumab | TNF-α | Investigational | Preclinical (murine) | AbbVie | [165,166] |
Etanercept | TNF-α | Moderate-to-severe persistent asthma | Phase II | Immunex Corporation | [167,168]. |
Secukinumab | IL-17 | Airway neutrophilia | Phase II | Novartis | [170,171,172] |
Brodalumab | IL-17 | Moderate-to-severe asthma | Phase II | Amgen | [173,174] |
Ixekizumab | IL-17 | Severe Eosinophilic Asthma | Case report | Eli Lilly and Company | [175,178] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reza, M.I.; Ambhore, N.S. Inflammation in Asthma: Mechanistic Insights and the Role of Biologics in Therapeutic Frontiers. Biomedicines 2025, 13, 1342. https://doi.org/10.3390/biomedicines13061342
Reza MI, Ambhore NS. Inflammation in Asthma: Mechanistic Insights and the Role of Biologics in Therapeutic Frontiers. Biomedicines. 2025; 13(6):1342. https://doi.org/10.3390/biomedicines13061342
Chicago/Turabian StyleReza, Mohammad Irshad, and Nilesh S. Ambhore. 2025. "Inflammation in Asthma: Mechanistic Insights and the Role of Biologics in Therapeutic Frontiers" Biomedicines 13, no. 6: 1342. https://doi.org/10.3390/biomedicines13061342
APA StyleReza, M. I., & Ambhore, N. S. (2025). Inflammation in Asthma: Mechanistic Insights and the Role of Biologics in Therapeutic Frontiers. Biomedicines, 13(6), 1342. https://doi.org/10.3390/biomedicines13061342