Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (419)

Search Parameters:
Keywords = Stokes waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3583 KiB  
Article
Parameter Calibration of Rotating Wave Plate Polarization Detection Device Using Dual Beams
by Haonan Zhang, Junbo Liu, Ziliang Yan, Chuan Jin, Jian Wang and Song Hu
Sensors 2025, 25(15), 4803; https://doi.org/10.3390/s25154803 - 5 Aug 2025
Abstract
When measuring Stokes parameters using the rotating wave plate method, the angle error of the polarizer’s light transmission axis, the azimuth error of the wave plate’s fast axis, and the phase delay error are key factors restricting accuracy. To address the existing calibration [...] Read more.
When measuring Stokes parameters using the rotating wave plate method, the angle error of the polarizer’s light transmission axis, the azimuth error of the wave plate’s fast axis, and the phase delay error are key factors restricting accuracy. To address the existing calibration methods’ insufficient accuracy and incomplete consideration of the error parameters, this study constructed an error-transfer analytical model for an in-depth analysis of the principle of measuring Stokes parameters using the rotating wave plate method. It also clarified the quantitative parameter relationship between the measurement, wave plate, and polarizer errors. A device parameter calibration scheme using multi-angle polarized light (horizontally linearly polarized, [1,1,0,0]T, and 45° linearly polarized, [1,0,1,0]T) was further proposed, and by using the deviation between the theoretical response of the standard incident light and the actual measurement data, an error equation was established to solve the device parameter error and precisely calibrate the polarization detection device. The experimental results show that after using this method, the calibration error of the Stokes parameters decreased from 4.83% to within 0.46%, significantly overcoming the traditional methods’ limitations regarding incomplete consideration of the error parameters and accuracy improvement, providing a more concise and reliable method for high-precision polarization measurement. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 180
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

38 pages, 16643 KiB  
Article
Numerical Investigation of Inclination Effects on a Submerged Plate as Breakwater and Wave Energy Converter Under Realistic Sea State Waves
by Vitor Eduardo Motta, Gabrielle Ücker Thum, Maycon da Silveira Paiva, Rafael Adriano Alves Camargo Gonçalves, Luiz Alberto Oliveira Rocha, Elizaldo Domingues dos Santos, Bianca Neves Machado and Liércio André Isoldi
J. Mar. Sci. Eng. 2025, 13(8), 1438; https://doi.org/10.3390/jmse13081438 - 28 Jul 2025
Viewed by 211
Abstract
This study investigates the influence of inclination on a submerged plate (SP) device acting as both a breakwater (BW) and a wave energy converter (WEC) subjected to representative regular and realistic irregular waves of a sea state across 11 inclination angles. Numerical simulations [...] Read more.
This study investigates the influence of inclination on a submerged plate (SP) device acting as both a breakwater (BW) and a wave energy converter (WEC) subjected to representative regular and realistic irregular waves of a sea state across 11 inclination angles. Numerical simulations were conducted using ANSYS Fluent. Regular waves were generated by Stokes’s second-order theory, while the WaveMIMO technique was employed to generate irregular waves. Using the volume of fluid (VOF) method to model the water–air interaction, both approaches generate waves by imposing their vertical and horizontal velocity components at the inlet of the wave flume. The SP’s performance as a BW was analyzed based on the upstream and downstream free surface elevations of the device; in turn, its performance as a WEC was determined through its axial velocity beneath the plate. The results indicate that performance varies between regular and irregular wave conditions, underscoring the importance of accurately characterizing the sea state at the intended installation site. These findings demonstrate that the inclination of the SP plays a critical role in balancing its dual functionality, with certain configurations enhancing WEC efficiency by over 50% while still offering relevant BW performance, even under realistic irregular sea conditions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

17 pages, 327 KiB  
Review
Renormalization Group and Effective Field Theories in Magnetohydrodynamics
by Amir Jafari
Fluids 2025, 10(8), 188; https://doi.org/10.3390/fluids10080188 - 23 Jul 2025
Viewed by 274
Abstract
We briefly review the recent developments in magnetohydrodynamics, which in particular deal with the evolution of magnetic fields in turbulent plasmas. We especially emphasize (i) the necessity and utility of renormalizing equations of motion in turbulence where velocity and magnetic fields become Hölder [...] Read more.
We briefly review the recent developments in magnetohydrodynamics, which in particular deal with the evolution of magnetic fields in turbulent plasmas. We especially emphasize (i) the necessity and utility of renormalizing equations of motion in turbulence where velocity and magnetic fields become Hölder singular; (ii) the breakdown of Laplacian determinism of classical physics (spontaneous stochasticity or super chaos) in turbulence; and (iii) the possibility of eliminating the notion of magnetic field lines in magnetized plasmas, using instead magnetic path lines as trajectories of Alfvénic wave packets. These methodologies are then exemplified with their application to the problem of magnetic reconnection—rapid change in magnetic field pattern that accelerates plasma—a ubiquitous phenomenon in astrophysics and laboratory plasmas. Renormalizing rough velocity and magnetic fields on any finite scale l in turbulence inertial range, to remove singularities, implies that magnetohydrodynamic equations should be regarded as effective field theories with running parameters depending upon the scale l. A high wave-number cut-off should also be introduced in fluctuating equations of motion, e.g., Navier–Stokes, which makes them effective, low-wave-number field theories rather than stochastic differential equations. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
38 pages, 9839 KiB  
Article
Numerical Study of the Late-Stage Flow Features and Stripping in Shock Liquid Drop Interaction
by Solomon Onwuegbu, Zhiyin Yang and Jianfei Xie
Aerospace 2025, 12(8), 648; https://doi.org/10.3390/aerospace12080648 - 22 Jul 2025
Viewed by 278
Abstract
Three-dimensional (3D) computational fluid dynamic (CFD) simulations have been performed to investigate the complex flow features and stripping of fluid materials from a cylindrical water drop at the late-stage in a Shock Liquid Drop Interaction (SLDI) process when the drop’s downstream end experiences [...] Read more.
Three-dimensional (3D) computational fluid dynamic (CFD) simulations have been performed to investigate the complex flow features and stripping of fluid materials from a cylindrical water drop at the late-stage in a Shock Liquid Drop Interaction (SLDI) process when the drop’s downstream end experiences compression after it is impacted by a supersonic shock wave (Ma = 1.47). The drop trajectory/breakup has been simulated using a Lagrangian model and the unsteady Reynolds-averaged Navier–Stokes (URANS) approach has been employed for simulating the ambient airflow. The Kelvin–Helmholtz Rayleigh–Taylor (KHRT) breakup model has been used to capture the liquid drop fragmentation process and a coupled level-set volume of fluid (CLSVOF) method has been applied to investigate the topological transformations at the air/water interface. The predicted changes of the drop length/width/area with time have been compared against experimental measurements, and a very good agreement has been obtained. The complex flow features and the qualitative characteristics of the material stripping process in the compression phase, as well as disintegration and flattening of the drop are analyzed via comprehensive flow visualization. Characteristics of the drop distortion and fragmentation in the stripping breakup mode, and the development of turbulence at the later stage of the shock drop interaction process are also examined. Finally, this study investigated the effect of increasing Ma on the breakup of a water drop by shear stripping. The results show that the shed fluid materials and micro-drops are spread over a narrower distribution as Ma increases. It illustrates that the flattened area bounded by the downstream separation points experienced less compression, and the liquid sheet suffered a slower growth. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 1709 KiB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Viewed by 299
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

18 pages, 606 KiB  
Article
Two-Way Conversion Between Fifth-Order Stokes Wave Theories
by Hsien-Kuo Chang, Yang-Yih Chen and Jin-Cheng Liou
AppliedMath 2025, 5(3), 78; https://doi.org/10.3390/appliedmath5030078 - 27 Jun 2025
Viewed by 230
Abstract
Stokes wave is a classical problem in physics. Various Stokes wave theories in different forms have been developed to help us better understand their characteristics and for engineering applications. Exploring whether these Stokes wave theories can be converted into each other is a [...] Read more.
Stokes wave is a classical problem in physics. Various Stokes wave theories in different forms have been developed to help us better understand their characteristics and for engineering applications. Exploring whether these Stokes wave theories can be converted into each other is a mathematical issue. We select three Stokes wave theories with different expansion parameters, all expressed in terms of water depth measured from the mean water level (MWL). Using series reversion to convert between the different expansions, we successfully transform the expressions for the velocity potential, wave profile, and dynamic properties between two of the Stokes wave theories. Through this conversion, we identify an incorrect expression for the water level in one Stokes wave theory. Full article
Show Figures

Figure 1

18 pages, 16697 KiB  
Article
Analysis of Abnormal Sea Level Rise in Offshore Waters of Bohai Sea in 2024
by Song Pan, Lu Liu, Yuyi Hu, Jie Zhang, Yongjun Jia and Weizeng Shao
J. Mar. Sci. Eng. 2025, 13(6), 1134; https://doi.org/10.3390/jmse13061134 - 5 Jun 2025
Cited by 1 | Viewed by 477
Abstract
The primary contribution of this study lies in analyzing the dynamic drivers during two anomalous sea level rise events in the Bohai Sea through coupled numeric modeling using the Weather Research and Forecasting (WRF) model and the Finite-Volume Community Ocean Model (FVCOM) integrated [...] Read more.
The primary contribution of this study lies in analyzing the dynamic drivers during two anomalous sea level rise events in the Bohai Sea through coupled numeric modeling using the Weather Research and Forecasting (WRF) model and the Finite-Volume Community Ocean Model (FVCOM) integrated with the Simulating Waves Nearshore (SWAN) module (hereafter referred to as FVCOM-SWAVE). WRF-derived wind speeds (0.05° grid resolution) were validated against Haiyang-2 (HY-2) scatterometer observations, yielding a root mean square error (RMSE) of 1.88 m/s and a correlation coefficient (Cor) of 0.85. Similarly, comparisons of significant wave height (SWH) simulated by FVCOM-SWAVE (0.05° triangular mesh) with HY-2 altimeter data showed an RMSE of 0.67 m and a Cor of 0.84. Four FVCOM sensitivity experiments were conducted to assess drivers of sea level rise, validated against tide gauge observations. The results identified tides as the primary driver of sea level rise, with wind stress and elevation forcing (e.g., storm surge) amplifying variability, while currents exhibited negligible influence. During the two events, i.e., 20–21 October and 25–26 August 2024, elevation forcing contributed to localized sea level rises of 0.6 m in the northern and southern Bohai Sea and 1.1 m in the southern Bohai Sea. A 1 m surge in the northern region correlated with intense Yellow Sea winds (20 m/s) and waves (5 m SWH), which drove water masses into the Bohai Sea. Stokes transport (wave-driven circulation) significantly amplified water levels during the 21 October and 26 August peak, underscoring critical wave–tide interactions. This study highlights the necessity of incorporating tides, wind, elevation forcing, and wave effects into coastal hydrodynamic models to improve predictions of extreme sea level rise events. In contrast, the role of imposed boundary current can be marginalized in such scenarios. Full article
Show Figures

Figure 1

24 pages, 2840 KiB  
Article
Generation and Evolution of Cnoidal Waves in a Two-Dimensional Numerical Viscous Wave Flume
by Chih-Ming Dong, Ching-Jer Huang and Hui-Ching Huang
J. Mar. Sci. Eng. 2025, 13(6), 1102; https://doi.org/10.3390/jmse13061102 - 30 May 2025
Viewed by 389
Abstract
The generation and propagation of water waves in a numerical wave flume with Ursell numbers (Ur) ranging from 0.67 to 43.81 were investigated using the wave generation theory of Goring and Raichlen and a two-dimensional numerical viscous wave flume model. The [...] Read more.
The generation and propagation of water waves in a numerical wave flume with Ursell numbers (Ur) ranging from 0.67 to 43.81 were investigated using the wave generation theory of Goring and Raichlen and a two-dimensional numerical viscous wave flume model. The unsteady Navier–Stokes equations, along with nonlinear free surface boundary conditions and upstream boundary conditions at the wavemaker, were solved to build the numerical wave flume. The generated waves included small-amplitude, finite-amplitude, cnoidal, and solitary waves. For computational efficiency, the Jacobi elliptic function representing the surface elevation of a cnoidal wave was expressed as a Fourier series expansion. The accuracy of the generated waveforms and associated flow fields was validated through comparison with theoretical solutions. For Ur<26.32, small-amplitude waves generated using Goring and Raichlen’s wave generation theory matched those obtained from linear wave theory, while finite-amplitude waves matched those obtained using Madsen’s wave generation theory. For Ur>26.32, nonlinear wave generated using Goring and Raichlen’s theory remained permanent, whereas that generated using Madsen’s theory did not. The evolution of a cnoidal wave train with Ur=43.81 was examined, and it was found that, after an extended propagation period, the leading waves in the wave train evolved into a series of solitary waves, with the tallest wave positioned at the front. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

43 pages, 14479 KiB  
Article
Finite Volume Incompressible Lattice Boltzmann Framework for Non-Newtonian Flow Simulations in Complex Geometries
by Akshay Dongre, John Ryan Murdock and Song-Lin Yang
Mathematics 2025, 13(10), 1671; https://doi.org/10.3390/math13101671 - 20 May 2025
Viewed by 596
Abstract
Arterial diseases are a leading cause of morbidity worldwide, necessitating the development of robust simulation tools to understand their progression mechanisms. In this study, we present a finite volume solver based on the incompressible lattice Boltzmann method (iLBM) to model complex cardiovascular flows. [...] Read more.
Arterial diseases are a leading cause of morbidity worldwide, necessitating the development of robust simulation tools to understand their progression mechanisms. In this study, we present a finite volume solver based on the incompressible lattice Boltzmann method (iLBM) to model complex cardiovascular flows. Standard LBM suffers from compressibility errors and is constrained to uniform Cartesian meshes, limiting its applicability to realistic vascular geometries. To address these issues, we developed an incompressible LBM scheme that recovers the incompressible Navier–Stokes equations (NSEs) and integrated it into a finite volume (FV) framework to handle unstructured meshes while retaining the simplicity of the LBM algorithm. The FV-iLBM model with linear reconstruction (LR) scheme was then validated against benchmark cases, including Taylor–Green vortex flow, shear wave attenuation, Womersley flow, and lid-driven cavity flow, demonstrating improved accuracy in reducing compressibility errors. In simulating flow over National Advisory Committee for Aeronautics (NACA) 0012 airfoil, the FV-iLBM model accurately captured vortex shedding and aerodynamic forces. After validating the FV-iLBM solver for simulating non-Newtonian flows, pulsatile blood flow through an artery afflicted with multiple stenoses was simulated, accurately predicting wall shear stress and flow separation. The results establish FV-iLBM as an efficient and accurate method for modeling cardiovascular flows. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

30 pages, 7346 KiB  
Article
Numerical Analysis of Submerged Horizontal Plate Wave Energy Converter Device Considering Float Effects
by Rodrigo Costa Batista, Marla Rodrigues de Oliveira, Elizaldo Domingues dos Santos, Luiz Alberto Oliveira Rocha, Liércio André Isoldi and Mateus das Neves Gomes
Fluids 2025, 10(5), 136; https://doi.org/10.3390/fluids10050136 - 19 May 2025
Viewed by 1623
Abstract
This study proposes a three-dimensional numerical wave tank (NWT) to calculate wave propagation and hydrodynamic forces based on the Navier–Stokes equation, using commercial Computational Fluid Dynamic (CFD) software ANSYS Fluent. The VOF Method is utilized to identify the free surface. The CFD model [...] Read more.
This study proposes a three-dimensional numerical wave tank (NWT) to calculate wave propagation and hydrodynamic forces based on the Navier–Stokes equation, using commercial Computational Fluid Dynamic (CFD) software ANSYS Fluent. The VOF Method is utilized to identify the free surface. The CFD model employed for generating waves in the NWT is initially verified using analytical theory to evaluate the accuracy of the results. In addition, the User-Defined Function (UDF) in ANSYS Fluent is implemented to ensure the model performs under the oscillatory conditions of the Submerged Horizontal Plate (SHP) Wave Energy Converter (WEC) device, which is localized at the center of the NWT. Finally, the influence of SHP oscillation on the device’s average efficiency was analyzed by comparing seven cases with different geometric configurations, considering both the oscillating and non-oscillating conditions of the SHP under the incidence of different waves. The results indicated that the geometric configuration and wave conditions of Case 4 achieved the best performance, reaching an average efficiency of 35.68%. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

22 pages, 6829 KiB  
Article
An Investigation of the Promotion of the Aerodynamic Performance of a Supersonic Compressor Cascade Using a Local Negative-Curvature Ramp
by Yongzhen Liu, Zhen Fan, Weiwei Cui, Qiang Zhou and Jianzhong Xu
Appl. Sci. 2025, 15(10), 5664; https://doi.org/10.3390/app15105664 - 19 May 2025
Viewed by 443
Abstract
Shockwaves induce considerable flow separation loss; it is essential to reduce this using the flow control method. In this manuscript, a method for suppressing flow separation in turbomachinery through a constant adverse-pressure gradient was investigated. The first-passage shock was split into a compression [...] Read more.
Shockwaves induce considerable flow separation loss; it is essential to reduce this using the flow control method. In this manuscript, a method for suppressing flow separation in turbomachinery through a constant adverse-pressure gradient was investigated. The first-passage shock was split into a compression wave system of the vane suction surface. The aim of this was to reduce loss from shockwave/boundary layer interactions (SWBLIs). This method promotes the performance parameters of the supersonic compressor cascade. The investigation targets were a baseline cascade and the improved system. Both cascades were numerically studied with the aid of the Reynolds-averaged Navier–Stokes (RANS) method. The simulation results of the baseline cascade were also validated through experimentation, and a further physical flow analysis of the two cascades was conducted. The results show that the first-passage shockwave was a foot above the initial suction surface, with a weaker incident shock along with a clustering of the compression wave corresponding to the modified cascade. It was also concluded that the first-passage shockwave foot of the baseline cascade was replaced with a weak incident shock, and a series of compression waves emanated from the adopted negative-curvature profile. The shock-induced boundary layer separation bubble disappeared, and much smaller boundary layer shape factors over the SWBLI region were obtained for the improved cascade compared to the baseline cascade. This improvement led to a high level of stability in the boundary layer state. Sensitivity analyses were performed through different simulations on both cascades, unveiling that the loss in total pressure was lower in the case of the updated cascade as compared to the baseline. Full article
Show Figures

Figure 1

11 pages, 3517 KiB  
Article
Optimized Dual-Stokes Raman Laser for 1.1 µm Emission and Temperature Sensing
by Jesus Alberto Coba-Ramos, Lelio de la Cruz May, Angeles Yolanda Pages-Pacheco, Efrain Mejia-Beltran, Daniel Jauregui-Vazquez, Manuel May-Alarcon, Rafael Sanchez-Lara and Jose Alfredo Alvarez Chavez
Photonics 2025, 12(5), 470; https://doi.org/10.3390/photonics12050470 - 10 May 2025
Viewed by 591
Abstract
This work experimentally validates an improved Raman fiber laser, developed through cascade core variation splicing of optical fibers and the integration of fiber Bragg gratings. A continuous-wave Yb-doped fiber laser was used as the pump source, delivering up to 10 W at 1064 [...] Read more.
This work experimentally validates an improved Raman fiber laser, developed through cascade core variation splicing of optical fibers and the integration of fiber Bragg gratings. A continuous-wave Yb-doped fiber laser was used as the pump source, delivering up to 10 W at 1064 nm. The first Stokes emission generates laser output centered at 1119 nm, while the second Stokes emission produces a lasing mode at 1179 nm. Fiber Bragg gratings control these emissions. Furthermore, both Stokes laser emissions can be tuned by applying temperature changes, achieving a 15.07 pm/°C sensitivity. The proposed laser presents a compact and practical solution for remote temperature sensing applications using fiber lasers. Full article
(This article belongs to the Special Issue High-Power Fiber Lasers)
Show Figures

Figure 1

25 pages, 9130 KiB  
Article
Investigation of Heat and Drag Reduction Induced by Forward-Facing Cavity in Hypersonic Flow
by Ning Ding, Jianlong Chang and Junhui Liu
Aerospace 2025, 12(5), 394; https://doi.org/10.3390/aerospace12050394 - 30 Apr 2025
Viewed by 529
Abstract
The design of heat and drag reduction systems for hypersonic vehicles has garnered widespread global attention. In this study, the Navier–Stokes equations and the SST k-ω turbulence model are employed to establish a simulation model for heat and drag reduction induced by a [...] Read more.
The design of heat and drag reduction systems for hypersonic vehicles has garnered widespread global attention. In this study, the Navier–Stokes equations and the SST k-ω turbulence model are employed to establish a simulation model for heat and drag reduction induced by a forward-facing cavity. The numerical methods are validated using existing experimental results. The oscillation characteristics of the bow shock wave at the head and the shock inside the cavity in hypersonic flows are investigated. The heat and drag reduction mechanisms of the forward-facing cavity are discussed. The effects of the diameter and depth of the cavity on drag and heat reduction are comprehensively analyzed. The obtained results show that a reduction in drag and heat is achieved when a forward-facing cavity is added to the vehicle. The main reasons for this heat reduction are the cold ring mechanism and the energy conversion mechanism. The size of the cold ring is significantly affected by the cavity diameter, whereas the energy conversion mechanism is more sensitive to variations in diameter. The maximum reduction in heat load is 2.2%, and the maximum reduction in the Stanton number is 25.3%. Increases in both diameter and depth enhance drag reduction, achieving an average drag reduction of approximately 1.65%. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

22 pages, 3296 KiB  
Article
Performance of an L-Shaped Duct OWC-WEC Integrated into Vertical and Sloped Breakwaters by Using a Free-Surface RANS-Based Numerical Model
by Eric Didier and Paulo R. F. Teixeira
Fluids 2025, 10(5), 114; https://doi.org/10.3390/fluids10050114 - 30 Apr 2025
Cited by 1 | Viewed by 514
Abstract
Waves generated by the wind in oceans and seas have a significant available quantity of clean and renewable energy. However, harvesting their energy is still a challenge. The integration of an oscillating water column (OWC) wave energy converter into a breakwater leads to [...] Read more.
Waves generated by the wind in oceans and seas have a significant available quantity of clean and renewable energy. However, harvesting their energy is still a challenge. The integration of an oscillating water column (OWC) wave energy converter into a breakwater leads to more viability, since it allows working as both harbor and coastal protection and harvesting wave energy. The main objective of this study is to investigate different configurations of L-shaped duct OWC devices inserted into vertical and sloped (2:3) impermeable breakwaters for different lengths of the lip by using a numerical model based on the Reynolds-Averaged Navier-Stokes equations. The ANSYS FLUENT® software (2016) is used in 2D numerical simulations by adopting the volume of fluid method to consider the two-phase free surface flow (water and air). It was observed that both the length of the lip and the length of the L-shaped duct OWC significantly influence the resonance and the efficiency of the OWC device. In addition, the performance of the OWC device varies significantly with its geometric configuration, which needs to be adapted for the local sea state. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

Back to TopTop