Investigation of Heat and Drag Reduction Induced by Forward-Facing Cavity in Hypersonic Flow
Abstract
:1. Introduction
2. Physical Model and Numerical Methods
2.1. Physical Model
2.2. Numerical Approach
2.3. Numerical Approach Validation
2.4. Grid Independence
3. Results and Discussion
3.1. Features of Flow Field
3.2. Influence of Cavity Diameter
3.3. Influence of Cavity Depth
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, W.; Chen, Z.; Yan, L.; Yan, B.-B.; Du, Z.-B. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review. Prog. Aerosp. Sci. 2019, 105, 31–39. [Google Scholar] [CrossRef]
- Sziroczak, D.; Smith, H. A review of design issues specific to hypersonic flight vehicles. Prog. Aerosp. Sci. 2016, 84, 1–28. [Google Scholar] [CrossRef]
- Pezzella, G. Aerodynamic and aerothermodynamic design of Future Launchers Preparatory Program concepts. Aerosp. Sci. Technol. 2012, 23, 233–249. [Google Scholar] [CrossRef]
- Schmisseur, J.D. Hypersonics into the 21st century: A perspective on AFOSR-sponsored research in aerothermodynamics. Prog. Aerosp. Sci. 2015, 72, 3–16. [Google Scholar] [CrossRef]
- Bushnell, D.M. Shock wave drag reduction. Annu. Rev. Fluid Mech. 2004, 28, 81–96. [Google Scholar] [CrossRef]
- Li, S.; Huang, W.; Lei, J.; Wang, Z. Drag and heat reduction mechanism of the porous opposing jet for variable blunt hypersonic vehicles. Int. J. Heat Mass Transf. 2018, 126, 1087–1098. [Google Scholar] [CrossRef]
- Ahmed, M.Y.M.; Qin, N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles. Prog. Aerosp. Sci. 2011, 47, 425–449. [Google Scholar] [CrossRef]
- Chen, F.; Liu, H.; Zhang, S. Coupled heat transfer and thermo-mechanical behavior of hypersonic cylindrical leading edges. Int. J. Heat Mass Transf. 2018, 122, 846–862. [Google Scholar] [CrossRef]
- Tahsini, A.M. Heat release effects on drag reduction in high speed flows. Int. J. Heat Mass Transf. 2013, 57, 657–661. [Google Scholar] [CrossRef]
- Silton, S.I.; Goldstein, D.B. Ablation Onset in Unsteady Hypersonic Flow About Nose Tip with Cavity. J. Thermophys. Heat Transf. 2000, 14, 421–434. [Google Scholar] [CrossRef]
- Engblom, W.A.; Goldstein, D.B.; Ladoon, D.; Schneider, S.P. Fluid Dynamics of Hypersonic Forward-Facing Cavity Flow. J. Spacecr. Rockrts 1997, 34, 437–444. [Google Scholar] [CrossRef]
- Saravanan, S.; Jagadeesh, G.; Reddy, K.P.J. Investigation of Missile-Shaped Body with Forward-Facing Cavity at Mach 8. J. Spacecr. Rockrts 2009, 46, 577–591. [Google Scholar] [CrossRef]
- Yuceil, K.B.; Dolling, D.S. Nose cavity effects on blunt body pressure and temperatures at Mach 5. J. Thermophys. Heat Transf. 1995, 9, 612–619. [Google Scholar] [CrossRef]
- Gerdroodbary, M.B.; Hosseinalipour, S.M. Numerical simulation of hypersonic flow over highly blunted cones with spike. Acta Astronaut. 2010, 67, 180–193. [Google Scholar] [CrossRef]
- Huang, W.; Li, L.Q.; Yan, L.; Zhang, T.T. Drag and heat flux reduction mechanism of blunted cone with aerodisks. Acta Astronaut. 2017, 138, 168–175. [Google Scholar] [CrossRef]
- Yamauchi, M.; Fujii, K.; Higashino, F. Numerical investigation of supersonic flows around a spiked blunt body. J. Spacecr. Rockrts 1995, 32, 32–42. [Google Scholar] [CrossRef]
- Zhong, K.; Yan, C.; Chen, S.S.; Zhang, T.X.; Lou, S.A. Aerodisk effects on drag reduction for hypersonic blunt body with an ellipsoid nose. Aerosp. Sci. Technol. 2019, 86, 599–612. [Google Scholar] [CrossRef]
- Gerdroodbary, M.B.; Bishehsari, S.; Hosseinalipour, S.M.; Sedighi, K. Transient analysis of counterflowing jet over highly blunt cone in hypersonic flow. Acta Astronaut. 2012, 73, 38–48. [Google Scholar] [CrossRef]
- Zhang, R.R.; Huang, W.; Li, L.Q.; Yan, L.; Moradi, R. Drag and heat flux reduction induced by the pulsed counterflowing jet with different periods on a blunt body in supersonic flows. Int. J. Heat Mass Transf. 2018, 127, 503–512. [Google Scholar] [CrossRef]
- Guo, J.; Lin, G.; Bu, X.; Bai, L.; Chao, Y. Parametric study on the heat transfer of a blunt body with counterflowing jets in hypersonic flows. Int. J. Heat Mass Transf. 2018, 121, 84–96. [Google Scholar] [CrossRef]
- Knight, D. Survey of Aerodynamic Drag Reduction at High Speed by Energy Deposition. J. Propuls. Power 2008, 24, 1153–1167. [Google Scholar] [CrossRef]
- Erdem, E.; Kontis, K.; Yang, L. Steady energy deposition at Mach 5 for drag reduction. Shock. Waves 2012, 23, 285–298. [Google Scholar] [CrossRef]
- Hong, Y.J.; Wang, D.K.; Li, Q.; Ye, J.F. Interaction of single-pulse laser energy with bow shock in hypersonic flow. Chin. J. Aeronaut. 2014, 27, 241–247. [Google Scholar] [CrossRef]
- Sharma, K.; Nair, M.T. Combination of counterflow jet and cavity for heat flux and drag reduction. Phys. Fluids 2020, 32, 056107. [Google Scholar] [CrossRef]
- Kim, Y.; Roh, T.-S.; Huh, H.; Lee, H.J. Study on the combined effect of various injection conditions on the drag reduction by a counter-flow jet in supersonic flow. Aerosp. Sci. Technol. 2020, 98, 105580. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, X.; Li, Y.K.; Musa, O.; Zhou, C.S. Investigation of drag and heat reduction induced by a novel combinational lateral jet and spike concept in supersonic flows based on conjugate heat transfer approach. Acta Astronaut. 2018, 142, 300–313. [Google Scholar] [CrossRef]
- Barzegar Gerdroodbary, M.; Imani, M.; Ganji, D.D. Heat reduction using conterflowing jet for a nose cone with aerodisk in hypersonic flow. Aerosp. Sci. Technol. 2014, 39, 652–665. [Google Scholar] [CrossRef]
- Ou, M.; Yan, L.; Huang, W.; Li, S.-B.; Li, L.-Q. Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows. Int. J. Heat Mass Transf. 2018, 126, 10–31. [Google Scholar] [CrossRef]
- Sun, X.-W.; Guo, Z.-Y.; Huang, W.; Li, S.-B.; Yan, L. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows. Acta Astronaut. 2017, 131, 204–225. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Y.; Chen, X.; Li, H.; Li, W.; Li, C. Hypersonic flow characteristics and relevant structure thermal response induced by the novel combined spike-aerodome and lateral jet strategy. Aerosp. Sci. Technol. 2019, 95, 105459. [Google Scholar] [CrossRef]
- Hartmann, J. On a New Method for the Generation of Sound-Waves. Phys. Rev. 1922, 20, 719–727. [Google Scholar] [CrossRef]
- Yuceil, B.; Dolling, D.; Wilson, D. A preliminary investigation of the Helmholtz resonator concept for heat flux reduction. In Proceedings of the 28th Thermophysics Conference, Orlando, FL, USA, 6–9 July 1993. [Google Scholar] [CrossRef]
- Ladoon, D.W.; Schneider, S.P.; Schmisseur, J.D. Physics of Resonance in a Supersonic Forward-Facing Cavity. J. Spacecr. Rockrts 1998, 35, 626–632. [Google Scholar] [CrossRef]
- Engblom, W.A.; Yuceil, B.; Goldstein, D.B.; Dolling, D.S. Experimental and numerical study of hypersonic forward-facing cavity flow. J. Spacecr. Rockrts 1996, 33, 353–359. [Google Scholar] [CrossRef]
- Lu, H.; Liu, W. Nummerical Simulation in Influence of Forward-Facing Cavity on Aerodynamic Heating of Hypersonic Vehicle. Procedia Eng. 2012, 29, 4096–4100. [Google Scholar] [CrossRef]
- Yadav, R.; Guven, U. Aerothermodynamics of a hypersonic vehicle with a forward-facing parabolic cavity at nose. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2013, 228, 1863–1874. [Google Scholar] [CrossRef]
- Chou, A.; Schneider, S.P. Measurements of Resonance in a Forward-Facing Cavity at Mach Six. J. Spacecr. Rockrts 2015, 52, 1486–1494. [Google Scholar] [CrossRef]
- Palmer, G.E.; White, T.; Pace, A. Direct Coupling of the NEQAIR Radiation and DPLR CFD Codes. J. Spacecr. Rockrts 2011, 48, 836–845. [Google Scholar] [CrossRef]
- Du, Y.; Sun, S.; Tan, M.; Huang, H.; Yan, C.; Meng, X.; Chen, X.; Wang, H. Numerical study on the non-equilibrium characteristics of high-speed atmospheric re-entry flow and radiation of aircraft based on fully coupled model. J. Fluid. Mech. 2023, 977, A39. [Google Scholar] [CrossRef]
- Tauber, M.E.; Sutton, K. Stagnation-point radiative heating relations for earth and Mars entries. J. Spacecr. Rockrts 1991, 28, 40–42. [Google Scholar] [CrossRef]
- Colin, S. Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid. Nanofluid. 2004, 1, 268–279. [Google Scholar] [CrossRef]
- Wang, W.-L.; Boyd, I.D. Prediction continuum breakdown in hypersonic viscous flows. Phys. Fluids 2003, 15, 91–100. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Freestream Mach number | 5.0 |
Freestream P∞ (Pa) | 2550.0 |
Freestream T∞ (K) | 221.5 |
Wall Tw (K) | 295 |
Reynolds number | 21,000 |
Property | Value |
---|---|
Freestream Mach number | 7.96 |
Freestream static pressure, Pa | 205.2 |
Freestream static temperature, K | 143 |
Freestream static density, kg/m3 | 4.9 |
Freestream velocity, m/s | 1908 |
Case | Number of Cells | Distance of First Grid to the Wall (m) |
---|---|---|
Coarse mesh | 234,035 | 5e−6 |
Moderate mesh | 257,869 | 2e−6 |
Refined mesh | 279,231 | 1e−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, N.; Chang, J.; Liu, J. Investigation of Heat and Drag Reduction Induced by Forward-Facing Cavity in Hypersonic Flow. Aerospace 2025, 12, 394. https://doi.org/10.3390/aerospace12050394
Ding N, Chang J, Liu J. Investigation of Heat and Drag Reduction Induced by Forward-Facing Cavity in Hypersonic Flow. Aerospace. 2025; 12(5):394. https://doi.org/10.3390/aerospace12050394
Chicago/Turabian StyleDing, Ning, Jianlong Chang, and Junhui Liu. 2025. "Investigation of Heat and Drag Reduction Induced by Forward-Facing Cavity in Hypersonic Flow" Aerospace 12, no. 5: 394. https://doi.org/10.3390/aerospace12050394
APA StyleDing, N., Chang, J., & Liu, J. (2025). Investigation of Heat and Drag Reduction Induced by Forward-Facing Cavity in Hypersonic Flow. Aerospace, 12(5), 394. https://doi.org/10.3390/aerospace12050394