Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (688)

Search Parameters:
Keywords = Stem block

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5301 KiB  
Article
TSINet: A Semantic and Instance Segmentation Network for 3D Tomato Plant Point Clouds
by Shanshan Ma, Xu Lu and Liang Zhang
Appl. Sci. 2025, 15(15), 8406; https://doi.org/10.3390/app15158406 - 29 Jul 2025
Viewed by 100
Abstract
Accurate organ-level segmentation is essential for achieving high-throughput, non-destructive, and automated plant phenotyping. To address the challenge of intelligent acquisition of phenotypic parameters in tomato plants, we propose TSINet, an end-to-end dual-task segmentation network designed for effective and precise semantic labeling and instance [...] Read more.
Accurate organ-level segmentation is essential for achieving high-throughput, non-destructive, and automated plant phenotyping. To address the challenge of intelligent acquisition of phenotypic parameters in tomato plants, we propose TSINet, an end-to-end dual-task segmentation network designed for effective and precise semantic labeling and instance recognition of tomato point clouds, based on the Pheno4D dataset. TSINet adopts an encoder–decoder architecture, where a shared encoder incorporates four Geometry-Aware Adaptive Feature Extraction Blocks (GAFEBs) to effectively capture local structures and geometric relationships in raw point clouds. Two parallel decoder branches are employed to independently decode shared high-level features for the respective segmentation tasks. Additionally, a Dual Attention-Based Feature Enhancement Module (DAFEM) is introduced to further enrich feature representations. The experimental results demonstrate that TSINet achieves superior performance in both semantic and instance segmentation, particularly excelling in challenging categories such as stems and large-scale instances. Specifically, TSINet achieves 97.00% mean precision, 96.17% recall, 96.57% F1-score, and 93.43% IoU in semantic segmentation and 81.54% mPrec, 81.69% mRec, 81.60% mCov, and 86.40% mWCov in instance segmentation. Compared with state-of-the-art methods, TSINet achieves balanced improvements across all metrics, significantly reducing false positives and false negatives while enhancing spatial completeness and segmentation accuracy. Furthermore, we conducted ablation studies and generalization tests to systematically validate the effectiveness of each TSINet component and the overall robustness of the model. This study provides an effective technological approach for high-throughput automated phenotyping of tomato plants, contributing to the advancement of intelligent agricultural management. Full article
Show Figures

Figure 1

22 pages, 5743 KiB  
Article
Effect of Grain Boundary Characteristics on Mechanical Properties and Irradiation Response in 3C-SiC: A Molecular Dynamics Simulation Study
by Wenying Liu, Fugen Deng, Jiajie Yu, Lin Chen, Yuyang Zhou, Yulu Zhou and Yifang Ouyang
Materials 2025, 18(15), 3545; https://doi.org/10.3390/ma18153545 - 29 Jul 2025
Viewed by 170
Abstract
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. [...] Read more.
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. The GB energy is positively and linearly correlated with the excess volume, but the linearity in SiC is not as good as in metals, which stems from the inhomogeneous structural relaxation near GBs induced by orientation-sensitive covalent bonding. For <110>STGBs, the shear strength exhibits symmetry with respect to the misorientation angle of 90°, which is consistent with ab initio calculations for Al in similar shear orientations. Cascades are performed with 8 keV silicon as the primary knock-on atom (PKA). No direct correlation is found between the sink efficiency of GBs for defects and GB characteristics, which comes from the complexity of the diatomic system during the recovery phase. For GBs with smaller values of Σ, the GBs exhibit a weaker blocking effect on the penetration of irradiated defects, resulting in a lower number of defects in GBs and a higher number of total surviving defects. In particular, it is seen that the percentage decrease in tensile strength after irradiation is positively correlated with the Σ value. Taken together, these results help to elucidate the impact of GB behavior on the mechanical properties of as well as the primary irradiation damage in SiC and provide a reference for creating improved materials through GB engineering. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

17 pages, 15835 KiB  
Article
Gut Microbial Metabolites of Tryptophan Augment Enteroendocrine Cell Differentiation in Human Colonic Organoids: Therapeutic Potential for Dysregulated GLP1 Secretion in Obesity
by James Hart, Hassan Mansour, Harshal Sawant, Morrison Chicko, Subha Arthur, Jennifer Haynes and Alip Borthakur
Int. J. Mol. Sci. 2025, 26(15), 7080; https://doi.org/10.3390/ijms26157080 - 23 Jul 2025
Viewed by 303
Abstract
Enteroendocrine cells (EECs) are specialized secretory cells in the gut epithelium that differentiate from intestinal stem cells (ISCs). Mature EECs secrete incretin hormones that stimulate pancreatic insulin secretion and regulate appetite. Decreased EEC numbers and impaired secretion of the incretin glucagon-like peptide-1 (GLP1) [...] Read more.
Enteroendocrine cells (EECs) are specialized secretory cells in the gut epithelium that differentiate from intestinal stem cells (ISCs). Mature EECs secrete incretin hormones that stimulate pancreatic insulin secretion and regulate appetite. Decreased EEC numbers and impaired secretion of the incretin glucagon-like peptide-1 (GLP1) have been implicated in obesity-associated metabolic complications. Gut microbial metabolites of dietary tryptophan (TRP) were recently shown to modulate ISC proliferation and differentiation. However, their specific effects on EEC differentiation are not known. We hypothesized that the gut microbial metabolites of dietary tryptophan counteract impaired GLP1 production and function in obesity by stimulating EEC differentiation from ISCs. We utilized complementary models of human and rat intestines to determine the effects of obesity or TRP metabolites on EEC differentiation. EEC differentiation was assessed by the EEC marker chromogranin A (CHGA) levels in the intestinal mucosa of normal versus obese rats. The effects of TRP metabolites on EEC differentiation were determined in human intestinal organoids treated with indole, a primary TRP metabolite, or the culture supernatant of Lactobacillus acidophilus grown in TRP media (LA-CS-TRP). Our results showed that the mRNA and protein levels of CHGA, the EEC marker, were significantly decreased (~60%) in the intestinal mucosa of high-fat-diet-induced obese rat intestines. The expression of the transcription factors that direct the ISC differentiation towards the EEC lineage was also decreased in obesity. In human organoids, treatment with indole or LA-CS-TRP significantly increased (more than 2-fold) CHGA levels, which were blocked by the aryl hydrocarbon receptor (AhR) antagonist CH-223191. Thus, the stimulation of EEC differentiation by colonic microbial metabolites highlights a novel therapeutic role of TRP metabolites in obesity and associated metabolic disorders. Full article
Show Figures

Figure 1

18 pages, 21045 KiB  
Article
Genome-Wide Characterization of the ABI3 Gene Family in Cotton
by Guoyong Fu, Yanlong Yang, Tahir Mahmood, Xinxin Liu, Zongming Xie, Zengqiang Zhao, Yongmei Dong, Yousheng Tian, Jehanzeb Farooq, Iram Sharif and Youzhong Li
Genes 2025, 16(8), 854; https://doi.org/10.3390/genes16080854 - 23 Jul 2025
Viewed by 205
Abstract
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted [...] Read more.
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted a comprehensive genome-wide investigation of the ABI3 gene family across 26 plant species, with a focus on 8 Gossypium species. Analyses included phylogenetics, chromosomal localization, synteny assessment, gene duplication patterns, protein domain characterization, promoter cis-regulatory element identification, and tissue-specific/spatiotemporal expression profiling under different organizations of Gossypium hirsutum. Results: Phylogenetic and chromosomal analyses revealed conserved ABI3 evolutionary patterns between monocots and dicots, alongside lineage-specific expansion events within Gossypium spp. Syntenic relationships and duplication analysis in G. hirsutum (upland cotton) indicated retention of ancestral synteny blocks and functional diversification driven predominantly by segmental duplication. Structural characterization confirmed the presence of conserved B3 domains in all G. hirsutum ABI3 homologs. Promoter analysis identified key stress-responsive cis-elements, including ABA-responsive (ABRE), drought-responsive (MYB), and low-temperature-responsive (LTRE) motifs, suggesting a role in abiotic stress regulation. Expression profiling demonstrated significant tissue-specific transcriptional activity across roots, stems, leaves, and fiber developmental stages. Conclusions: This study addresses a significant knowledge gap by elucidating the evolution, structure, and stress-responsive expression profiles of the ABI3 gene family in cotton. It establishes a foundational framework for future functional validation and targeted genetic engineering strategies aimed at developing stress-resilient cotton cultivars with enhanced fiber quality. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 13833 KiB  
Article
Machine Learning-Based Prognostic Signature in Breast Cancer: Regulatory T Cells, Stemness, and Deep Learning for Synergistic Drug Discovery
by Samina Gul, Jianyu Pang, Yongzhi Chen, Qi Qi, Yuheng Tang, Yingjie Sun, Hui Wang, Wenru Tang and Xuhong Zhou
Int. J. Mol. Sci. 2025, 26(14), 6995; https://doi.org/10.3390/ijms26146995 - 21 Jul 2025
Viewed by 207
Abstract
Regulatory T cells (Tregs) have multiple roles in the tumor microenvironment (TME), which maintain a balance between autoimmunity and immunosuppression. This research aimed to investigate the interaction between cancer stemness and Regulatory T cells (Tregs) in the breast cancer tumor immune microenvironment. Breast [...] Read more.
Regulatory T cells (Tregs) have multiple roles in the tumor microenvironment (TME), which maintain a balance between autoimmunity and immunosuppression. This research aimed to investigate the interaction between cancer stemness and Regulatory T cells (Tregs) in the breast cancer tumor immune microenvironment. Breast cancer stemness was calculated using one-class logistic regression. Twelve main cell clusters were identified, and the subsequent three subsets of Regulatory T cells with different differentiation states were identified as being closely related to immune regulation and metabolic pathways. A prognostic risk model including MEA1, MTFP1, PASK, PSENEN, PSME2, RCC2, and SH2D2A was generated through the intersection between Regulatory T cell differentiation-related genes and stemness-related genes using LASSO and univariate Cox regression. The patient’s total survival times were predicted and validated with AUC of 0.96 and 0.831 in both training and validation sets, respectively; the immunotherapeutic predication efficacy of prognostic signature was confirmed in four ICI RNA-Seq cohorts. Seven drugs, including Ethinyl Estradiol, Epigallocatechin gallate, Cyclosporine, Gentamicin, Doxorubicin, Ivermectin, and Dronabinol for prognostic signature, were screened through molecular docking and found a synergistic effect among drugs with deep learning. Our prognostic signature potentially paves the way for overcoming immune resistance, and blocking the interaction between cancer stemness and Tregs may be a new approach in the treatment of breast cancer. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

16 pages, 2718 KiB  
Article
Effects of Replacing Nitrogen Fertilizer with Organic Fertilizer on Soil Physicochemical Properties and Maize Yield in Yunnan’s Red Soil
by Zhao Liu, Wen Ao, Shenghang Wu, Qiheng Deng, Hao Ren, Qiang Li, Hao Li and Peng Zhang
Sustainability 2025, 17(14), 6634; https://doi.org/10.3390/su17146634 - 21 Jul 2025
Viewed by 322
Abstract
Red soil regions commonly experience land degradation and low nutrient availability. Excessive fertilizer use in recent years has intensified these challenges, necessitating scientifically informed fertilization strategies to ensure agricultural sustainability. To identify optimal fertilization strategies for maize cultivation in Yunnan’s red soil regions, [...] Read more.
Red soil regions commonly experience land degradation and low nutrient availability. Excessive fertilizer use in recent years has intensified these challenges, necessitating scientifically informed fertilization strategies to ensure agricultural sustainability. To identify optimal fertilization strategies for maize cultivation in Yunnan’s red soil regions, this study conducted field experiments involving partial substitution of nitrogen fertilizer with organic manure to determine whether this approach improves soil health and boosts maize yield. Four treatments were compared in a randomized complete block design over one growing season: no fertilization (NF), soil testing and formula fertilization (STF), 15% organic fertilizer (swine manure) replacing nitrogen fertilizer (OF15), and 30% organic fertilizer replacing nitrogen fertilizer (OF30). The results indicated that substituting organic fertilizer for nitrogen fertilizer reduced soil acidification while increasing total phosphorus (TP) and available phosphorus (AP), thereby enhancing soil physicochemical properties. Maize grown under OF30 exhibited improved agronomic traits including plant height, stem diameter, ear height, and ear length. Additionally, the partial replacement of synthetic fertilizer with organic fertilizer notably increased maize yield and the weight of 100 grains, but there was no significant difference (p < 0.05) between OF15 and OF30. Moreover, the OF30 treatment generated the highest economic return of 25,981.73 CNY·ha−1. Correlation and principal component analyses revealed that substituting organic fertilizer for nitrogen fertilizer notably influenced total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), and yield, with maize yield positively correlated with TP and AP content. This study presents evidence that replacing 30% of nitrogen fertilizer with organic fertilizer is a viable strategy to enhance soil health, maize productivity, and profitability in Yunnan’s red soil regions, providing a crucial scientific foundation to support sustainable agricultural development in the region. Full article
Show Figures

Figure 1

18 pages, 1956 KiB  
Article
Two Novel Quantum Steganography Algorithms Based on LSB for Multichannel Floating-Point Quantum Representation of Digital Signals
by Meiyu Xu, Dayong Lu, Youlin Shang, Muhua Liu and Songtao Guo
Electronics 2025, 14(14), 2899; https://doi.org/10.3390/electronics14142899 - 20 Jul 2025
Viewed by 187
Abstract
Currently, quantum steganography schemes utilizing the least significant bit (LSB) approach are primarily optimized for fixed-point data processing, yet they encounter precision limitations when handling extended floating-point data structures owing to quantization error accumulation. To overcome precision constraints in quantum data hiding, the [...] Read more.
Currently, quantum steganography schemes utilizing the least significant bit (LSB) approach are primarily optimized for fixed-point data processing, yet they encounter precision limitations when handling extended floating-point data structures owing to quantization error accumulation. To overcome precision constraints in quantum data hiding, the EPlsb-MFQS and MVlsb-MFQS quantum steganography algorithms are constructed based on the LSB approach in this study. The multichannel floating-point quantum representation of digital signals (MFQS) model enhances information hiding by augmenting the number of available channels, thereby increasing the embedding capacity of the LSB approach. Firstly, we analyze the limitations of fixed-point signals steganography schemes and propose the conventional quantum steganography scheme based on the LSB approach for the MFQS model, achieving enhanced embedding capacity. Moreover, the enhanced embedding efficiency of the EPlsb-MFQS algorithm primarily stems from the superposition probability adjustment of the LSB approach. Then, to prevent an unauthorized person easily extracting secret messages, we utilize channel qubits and position qubits as novel carriers during quantum message encoding. The secret message is encoded into the signal’s qubits of the transmission using a particular modulo value rather than through sequential embedding, thereby enhancing the security and reducing the time complexity in the MVlsb-MFQS algorithm. However, this algorithm in the spatial domain has low robustness and security. Therefore, an improved method of transferring the steganographic process to the quantum Fourier transformed domain to further enhance security is also proposed. This scheme establishes the essential building blocks for quantum signal processing, paving the way for advanced quantum algorithms. Compared with available quantum steganography schemes, the proposed steganography schemes achieve significant improvements in embedding efficiency and security. Finally, we theoretically delineate, in detail, the quantum circuit design and operation process. Full article
Show Figures

Figure 1

21 pages, 3852 KiB  
Article
PCSK9 Inhibitor Inclisiran Attenuates Cardiotoxicity Induced by Sequential Anthracycline and Trastuzumab Exposure via NLRP3 and MyD88 Pathway Inhibition
by Vincenzo Quagliariello, Massimiliano Berretta, Irma Bisceglia, Martina Iovine, Matteo Barbato, Raffaele Arianna, Maria Laura Canale, Andrea Paccone, Alessandro Inno, Marino Scherillo, Stefano Oliva, Christian Cadeddu Dessalvi, Alfredo Mauriello, Carlo Maurea, Celeste Fonderico, Anna Chiara Maratea, Domenico Gabrielli and Nicola Maurea
Int. J. Mol. Sci. 2025, 26(14), 6617; https://doi.org/10.3390/ijms26146617 - 10 Jul 2025
Viewed by 361
Abstract
Cardiotoxicity related to anthracyclines and trastuzumab represents a significant clinical challenge in cancer therapy, often limiting treatment efficacy and patient survival. The underlying mechanisms of cardiotoxicity involve the activation of NLRP3 and the MyD88-dependent signaling pathway. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), [...] Read more.
Cardiotoxicity related to anthracyclines and trastuzumab represents a significant clinical challenge in cancer therapy, often limiting treatment efficacy and patient survival. The underlying mechanisms of cardiotoxicity involve the activation of NLRP3 and the MyD88-dependent signaling pathway. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), such as inclisiran, are known for their lipid-lowering effects, but emerging data indicate that they may also exert pleiotropic benefits beyond cholesterol reduction. This study investigates whether inclisiran can mitigate the cardiotoxic effects of anthracyclines and trastuzumab through reduction of NLRP3 activation and MyD88 signaling, independently of its effects on dyslipidemia. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were exposed to subclinical concentrations of doxorubicin (1 µM) and trastuzumab in sequential therapy (200 nM), alone or in combination with inclisiran (100 nM) for 24 h. After the incubation period, we performed the following tests: determination of cardiomyocytes apoptosis, analysis of intracellular reactive oxygen species, lipid peroxidation products (including malondialdehyde and 4-hydroxynonenal), intracellular mitofusin-2 and Ca++ levels. Troponin and BNP were quantified through selective ELISA methods. A confocal laser scanning microscope was used to study cardiomyocyte morphology and F-actin staining after treatments. Moreover, pro-inflammatory studies were also performed, including the intracellular expression of NLRP-3, MyD-88 and twelve cytokines/growth factors involved in cardiotoxicity (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IFN-γ, TNF-α, G-CSF, GM-CSF). Inclisiran co-incubated with doxorubicin and trastuzumab exerts significant cardioprotective effects, enhancing cell viability by 88.9% compared to only DOXO/TRA treated cells (p < 0.001 for all). Significant reduction of oxidative stress, and intracellular levels of NLRP-3, MyD88, IL-1α, IL-1β, IL-6, IL-12, IL17-α, TNF-α, G-CSF were seen in the inclisiran group vs. only DOXO/TRA (p < 0.001). For the first time, PCSK9i inclisiran has been shown to exert significant anti-inflammatory effects to reduce anthracycline-HER-2 blocking agent-mediated cardiotoxicity through NLRP-3 and Myd-88 related pathways. The overall conclusions of the study warrant further investigation of the use of PCSK9i in primary prevention of CTRCD in cancer patients, independently from dyslipidemia. Full article
Show Figures

Figure 1

28 pages, 3171 KiB  
Article
Valproic Acid Reduces Invasiveness and Cellular Growth in 2D and 3D Glioblastoma Cell Lines
by Francesca Giordano, Martina Forestiero, Adele Elisabetta Leonetti, Giuseppina Daniela Naimo, Alessandro Marrone, Francesca De Amicis, Stefania Marsico, Loredana Mauro and Maria Luisa Panno
Int. J. Mol. Sci. 2025, 26(14), 6600; https://doi.org/10.3390/ijms26146600 - 9 Jul 2025
Viewed by 340
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, with a poor prognosis and low survival. Its treatment includes complete surgical resection followed by radiotherapy combined with temozolomide (TMZ). GBM contains glial stem cells (GSCs), which contribute to tumor progression, invasiveness, and drug [...] Read more.
Glioblastoma (GBM) is the most common malignant brain tumor, with a poor prognosis and low survival. Its treatment includes complete surgical resection followed by radiotherapy combined with temozolomide (TMZ). GBM contains glial stem cells (GSCs), which contribute to tumor progression, invasiveness, and drug resistance. The histone deacetylase (HDAC) inhibitor valproic acid (VA) has been shown to be a potent antitumor and cytostatic agent. In this study, we tested the effects of VA on glioma cell proliferation, migration, and apoptosis using T98G monolayer and spheroid cells. T98G and U-87MG glioblastoma cell viability was determined by MTT. Cell cycle and ROS levels were analyzed by flow cytometry, and gene and protein levels were detected, respectively, by RT-PCR and immunoblotting. VA reduces cell viability in 2D and 3D T98G and U-87MG cells and blocks the cell cycle at the G0/G1 with decreased levels of cyclin D1. VA addresses apoptosis and ROS production. In addition, VA significantly decreases the mRNA levels of the mesenchymal markers, and it counteracts cell migration, also decreasing MMP2. The results confirm the inhibitory effect of VA on the growth of the T98G and U-87MG cell lines and its ability to counteract migration in both 2D and 3D cellular models. Full article
Show Figures

Figure 1

10 pages, 2832 KiB  
Proceeding Paper
Gaining Python Skills Through Interactive Education Robot Ozobot EVO
by Maya Staikova
Eng. Proc. 2025, 100(1), 15; https://doi.org/10.3390/engproc2025100015 - 4 Jul 2025
Viewed by 215
Abstract
This paper explores the potential of the Ozobot EVO mobile robot as an educational tool for teaching Python programming. While the robot is currently designed for younger students through color and block programming, it is not yet widely utilized for teaching text-based coding. [...] Read more.
This paper explores the potential of the Ozobot EVO mobile robot as an educational tool for teaching Python programming. While the robot is currently designed for younger students through color and block programming, it is not yet widely utilized for teaching text-based coding. The Ozobot’s compatibility with Python presents a valuable opportunity for students to visualize their programming concepts through the robot’s actions, offering a more engaging alternative to console-based learning. The increasing use of the Raspberry Pi, a single-board computer programmed in Python, has necessitated the inclusion of Python in the curriculum. However, students often find learning Python challenging and demotivating. To enhance STEM education and student motivation, this paper proposes sample Python code for the Ozobot EVO, aiming to encourage educators to integrate the robot into their teaching. I suggest some Python code examples for the Ozobot EVO. This is to help educators see how they can use the robot in their lessons. Specifically, code examples for controlling motion, sound, light, and combinations of these functionalities are presented. When students see the robot react immediately to their code, they can understand programming ideas much better than just seeing text in the Python console. The Ozobot EVO mobile robot offers a solid foundation for learning Python programming. Full article
Show Figures

Figure 1

15 pages, 381 KiB  
Article
Agronomic Characteristics and Nutritive Value of Purple Prairie Clover (Dalea purpurea Vent) Grown in Irrigated and Dryland Conditions in Western Canada
by Yuxi Wang, Alan Iwaasa, Tim McAllister and Surya Acharya
Grasses 2025, 4(3), 27; https://doi.org/10.3390/grasses4030027 - 2 Jul 2025
Viewed by 258
Abstract
Three purple prairie clover (PPC; Dalea purpurea Vent.) varieties, namely Common seed (CS), AC Lamour (ACL) and Bismarck (BIS), were established in plots of irrigated land (rain-fed plus irrigation, Lethbridge, AB) and dryland (rain-fed only, Swift Current, SK) to assess its agronomic characteristics [...] Read more.
Three purple prairie clover (PPC; Dalea purpurea Vent.) varieties, namely Common seed (CS), AC Lamour (ACL) and Bismarck (BIS), were established in plots of irrigated land (rain-fed plus irrigation, Lethbridge, AB) and dryland (rain-fed only, Swift Current, SK) to assess its agronomic characteristics and nutritive value under different ecoclimate and growing conditions in Western Canada. Each seed source was replicated in four test plots arranged as a randomized complete block design at each experimental site. Forage mass on dry matter (DM) basis, canopy height, proportions of leaf and stem and nutritive value were determined at vegetative (VEG), full flower (FF) and late flower (LF) phenological stages. The forage masses of the three PPC varieties were similar (p < 0.05) at each phenological stage with the mean values for VFG, FF and LF being 4739, 4988 and 6753 kg DM/ha under the Lethbridge irrigated conditions, and 1423, 2014 and 2297 kg DM/ha under the Swift Current dryland conditions. The forage mass was higher (p < 0.001) under Lethbridge irrigation than under Swift Current dryland conditions and increased (p < 0.05) with maturity. The three varieties had similar concentrations of organic matter (OM), neutral detergent fibre (NDF), acid detergent fibre (ADF) and crude protein (CP) and in vitro DM digestibility (DMD) at each phenological stage, but CP concentration and in vitro DMD decreased (p < 0.001) whilst NDF and ADF concentration increased (p < 0.001) with maturity. Purple prairie clover grown at Lethbridge irrigated land had higher (p < 0.001) DMD, OM and CP, but lower (p < 0.001) NDF, ADF and condensed tannin concentrations than that grown at Swift Current dryland conditions. These results indicate that PPC has great potential as an alternative legume forage for the cattle industry. Full article
(This article belongs to the Special Issue The Role of Forage in Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 3172 KiB  
Article
Characterization of the Binding and Inhibition Mechanisms of a Novel Neutralizing Monoclonal Antibody Targeting the Stem Helix Region in the S2 Subunit of the Spike Protein of SARS-CoV-2
by Selene Si Ern Tan, Ee Hong Tam, Kah Man Lai, Yanjun Wu, Tianshu Xiao and Yee-Joo Tan
Vaccines 2025, 13(7), 688; https://doi.org/10.3390/vaccines13070688 - 26 Jun 2025
Viewed by 595
Abstract
Background/Objectives: For viral entry into host cells, the spike (S) protein of coronavirus (CoV) uses its S1 domain to bind to the host receptor and S2 domain to mediate the fusion between virion and cellular membranes. The S1 domain acquired multiple mutations as [...] Read more.
Background/Objectives: For viral entry into host cells, the spike (S) protein of coronavirus (CoV) uses its S1 domain to bind to the host receptor and S2 domain to mediate the fusion between virion and cellular membranes. The S1 domain acquired multiple mutations as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolved to give rise to Variant of Concerns (VOCs) but the S2 domain has limited changes. In particular, the stem helix in S2 did not change significantly and it is fairly well-conserved across multiple beta-CoVs. In this study, we generated a murine mAb 7B2 binding to the stem helix of SARS-CoV-2. Methods: MAb 7B2 was isolated from immunized mouse and its neutralization activity was evaluated using microneutralization, plaque reduction and cell–cell fusion assays. Bio-layer interferometry was used to measure binding affinity and AlphaFold3 was used to model the antibody–antigen interface. Results: MAb 7B2 has lower virus neutralizing and membrane block activities when compared to a previously reported stem helix-binding human mAb S2P6. Alanine scanning and AlphaFold3 modeling reveals that residues K1149 and D1153 in S form a network of polar interactions with the heavy chain of 7B2. Conversely, S2P6 binding to S is not affected by alanine substitution at K1149 and D1153 as indicated by the high ipTM scores in the predicted S2P6-stem helix structure. Conclusions: Our detailed characterization of the mechanism of inhibition of 7B2 reveals its distinctive binding model from S2P6 and yields insights on multiple neutralizing and highly conserved epitopes in the S2 domain which could be key components for pan-CoV vaccine development. Full article
Show Figures

Figure 1

18 pages, 5615 KiB  
Article
Experimental Investigation on IceBreaking Resistance and Ice Load Distribution for Comparison of Icebreaker Bows
by Xuhao Gang, Yukui Tian, Chaoge Yu, Ying Kou and Weihang Zhao
J. Mar. Sci. Eng. 2025, 13(6), 1190; https://doi.org/10.3390/jmse13061190 - 18 Jun 2025
Viewed by 1125
Abstract
During icebreaker navigation in ice-covered waters, icebreaking resistance and dynamic ice loads acting on the bow critically determine the vessel’s icebreaking performance. Quantitative characterization of the icebreaking resistance behavior and ice load distribution on the bow is essential for elucidating ship-ice interaction mechanisms, [...] Read more.
During icebreaker navigation in ice-covered waters, icebreaking resistance and dynamic ice loads acting on the bow critically determine the vessel’s icebreaking performance. Quantitative characterization of the icebreaking resistance behavior and ice load distribution on the bow is essential for elucidating ship-ice interaction mechanisms, assessing icebreaking capability, and optimizing structural design. This study conducted comparative icebreaking tests on two icebreaker bow models with distinct geometries in the small ice model basin of China Ship Scientific Research Center (CSSRC SIMB). Systematic measurements were performed to quantify icebreaking resistance, capture spatiotemporal ice load distributions, and document ice failure patterns under level ice conditions. The analysis reveals that bow geometry profoundly influences icebreaking efficiency: the stem angle governs the proportion of bending failure during vertical ice penetration, while the flare angle modulates circumferential failure modes along the hull-ice interface. Notably, the sunken keel configuration enhances ice clearance by mechanically expelling fractured ice blocks. Ice load distributions exhibit pronounced nonlinearity, with localized pressure concentrations and stochastic load center migration driven by ice fracture dynamics. Furthermore, icebreaking patterns—such as fractured ice dimensions and kinematic behavior during ship-ice interaction—are quantitatively correlated with the bow designs. These experimentally validated findings provide critical insights into ice-structure interaction physics, offering an empirical foundation for performance prediction and bow-form optimization in the preliminary design of icebreakers. Full article
Show Figures

Figure 1

11 pages, 801 KiB  
Article
Productive Performance of Brachiaria brizantha cv. Paiaguás in Response to Different Inoculation Techniques of Azospirillum brasilense Associated with Nitrogen Fertilization in the Brazilian Amazon
by Gianna Maria Oscar Bezerra, Cleyton de Souza Batista, Daryel Henrique Abreu de Queluz, Gabriela de Jesus Coelho, Daiane de Cinque Mariano, Pedro Henrique Oliveira Simões, Perlon Maia dos Santos, Ismael de Jesus Matos Viégas, Ricardo Shigueru Okumura and Raylon Pereira Maciel
Nitrogen 2025, 6(2), 47; https://doi.org/10.3390/nitrogen6020047 - 17 Jun 2025
Viewed by 444
Abstract
With the increase in prices of correctives and fertilizers, the investigation of the interactions between plants and plant growth-promoting bacteria shows an economically viable and sustainable alternative, and the use of Azospirillum brasilense has shown an increase in efficiency of nitrogen use and [...] Read more.
With the increase in prices of correctives and fertilizers, the investigation of the interactions between plants and plant growth-promoting bacteria shows an economically viable and sustainable alternative, and the use of Azospirillum brasilense has shown an increase in efficiency of nitrogen use and increased pasture yield. This study, conducted in the Brazilian Amazon, aimed to evaluate the effect of different inoculation techniques of Azospirillum brasilense associated with the dose of nitrogen topdressing on the productive performance of Brachiaria brizantha cv. Paiaguás is a grass species commonly cultivated in this region. The experiment was conducted in the Experimental Forage Sector of the Federal Rural University of the Amazon, Parauapebas city, Brazil. The experimental design was a randomized block design in a 3 × 3 factorial arrangement, with three inoculation methods (control, seed, and foliar) and three nitrogen fertilization doses (0, 75, and 150 kg ha−1 of N), with four replicates. An effect was observed in interaction between inoculation and nitrogen fertilization (p ≤ 0.05) for the variables total forage green mass, total forage dry mass, dry mass of leaf blade, dry stem mass, and number of tillers m−2. The dose of 150 kg ha−1 of N promoted a positive effect of N on the total forage dry mass and LAI (leaf area index). Inoculation with Azospirillum brasilense, especially foliar application, efficiently increased Brachiaria brizantha cv. Paiaguás yield, potentially reducing the use of nitrogen fertilizers, promotes greater sustainability in pasture management. Full article
Show Figures

Figure 1

16 pages, 2250 KiB  
Article
Oxamate, an LDHA Inhibitor, Inhibits Stemness, Including EMT and High DNA Repair Ability, Induces Senescence, and Exhibits Radiosensitizing Effects in Glioblastoma Cells
by Takuma Hashimoto, Go Ushikubo, Naoya Arao, Khaled Hatabi, Kazuki Tsubota and Yoshio Hosoi
Int. J. Mol. Sci. 2025, 26(12), 5710; https://doi.org/10.3390/ijms26125710 - 14 Jun 2025
Viewed by 547
Abstract
Enhancement of glycolysis has been reported in tumor cells, and it is believed that this enhancement is important for maintaining the stemness of tumor cells and contributes to malignant phenotypes. Here, we investigated the effects of Oxamate, which inhibits glycolysis by blocking the [...] Read more.
Enhancement of glycolysis has been reported in tumor cells, and it is believed that this enhancement is important for maintaining the stemness of tumor cells and contributes to malignant phenotypes. Here, we investigated the effects of Oxamate, which inhibits glycolysis by blocking the conversion of pyruvate to lactate, on radiosensitivity and its molecular mechanisms in T98G glioblastoma cells. Oxamate significantly enhanced radiosensitivity by delaying DNA repair, as indicated by the persistence of γ-H2AX foci up to four days post-irradiation. Mechanistically, Oxamate suppressed the expression and phosphorylation of key DNA repair factors. Furthermore, Oxamate induced apoptosis and promoted cellular senescence, as evidenced by the accumulation of SA-β-gal and the upregulation of pS15-p53 and p21. In addition, Oxamate downregulated EGFR expression, reduced the levels of stem cell markers, and modulated epithelial–mesenchymal transition (EMT) markers, suggesting a potential suppression of EMT-related pathways. Together, these results demonstrate that Oxamate enhances radiosensitivity in glioblastoma cells through multiple mechanisms, including the inhibition of DNA repair, induction of apoptosis and senescence, and suppression of cancer stem cell properties and EMT. Our findings provide new insights into the potential use of Oxamate as a radiosensitizer and warrant further investigation of its clinical application in glioblastoma therapy. Full article
Show Figures

Figure 1

Back to TopTop