Agronomic Characteristics and Nutritive Value of Purple Prairie Clover (Dalea purpurea Vent) Grown in Irrigated and Dryland Conditions in Western Canada †
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Arrangement and Test Plot Establishment
2.2. Weather
2.3. Determination of Agronomic Characteristics
2.4. Determination of Nutritive Value
2.5. Statistical Analysis
3. Results
3.1. Agronomic Characteristics
3.1.1. Irrigated Plots
3.1.2. Dryland Plots
3.2. Nutritive Value
3.2.1. Irrigated Plots
3.2.2. Dryland Plots
4. Discussion
4.1. Agronomic Characteristics of Three Varieties of PPC Grown at Different Geoclimatic Conditions
4.2. Nutritive Value of Three Varieties of PPC Grown Under Different Geoclimatic Conditions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAFC-SCRDC | Agriculture and Agri-Food Canada-Swift Current Research and Development Centre |
ACL | AC Lamour |
ADF | Acid detergent fibre |
AOAC | Association of Official Agricultural Chemists |
BIS | Bismarck |
CP | Crude protein |
CS | Common seed |
CT | Condensed tannin |
DM | Dry matter |
DMD | Dry matter disappearance |
FF | Full flower |
ha | hectare |
LF | Late flower |
NDF | Neutral detergent fibre |
OM | Organic matter |
PPC | Purple prairie clover |
SCRDC | Swift Current Research and Development Centre |
SEM | Standard error of means |
VEG | Vegetative |
WSC | Water-soluble carbohydrates |
References
- Waghorn, G.C.; McNabb, W.C. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc. Nutr. Soc. 2003, 62, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; McAllister, T.A.; Acharya, S. Condensed tannins in sainfoin: Composition, concentration, and effects on nutritive and feeding value of sainfoin forage. Crop Sci. 2015, 55, 13–22. [Google Scholar] [CrossRef]
- Posler, G.; Lenssen, A.; Fine, G. Forage yield, quality, compatibility, and persistence of warm-season grass-legume mixtures. Agron. J. 1993, 85, 554–560. [Google Scholar] [CrossRef]
- Schellenberg, M.P.; Banerjee, M.R. The potential of legume-shrub mixtures for optimum forage production: A greenhouse study. Can. J. Plant Sci. 2002, 82, 357–363. [Google Scholar] [CrossRef]
- Hufford, C.D.; Jia, Y.; Croom, E.M., Jr.; Muhammed, I.; Okunade, A.L.; Clark, A.M.; Rogers, R.D. Antimicrobial compounds from Petalostemum purpureum. J. Nat. Prod. 1993, 56, 1878–1889. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, S.K.; Fullas, F.; Wani, M.C.; Wall, M.E.; Tucker, J.C.; Beecher, C.W.W.; Kinghorn, A.D. Two isoflavones from the bark of Petalostemon purpureus. Phytochemistry 1996, 41, 1625–1627. [Google Scholar] [CrossRef]
- Huang, L.; Fullas, F.; McGivney, R.J.; Brown, D.M.; Wani, M.C.; Wall, M.E.; Tucker, J.C.; Beecher, C.W.W.; Pezzuto, J.M.; Kinghorn, A.D. A new prenylated flavonol from the root of Petalostemon purpureus. J. Nat. Prod. 1996, 59, 290–292. [Google Scholar] [CrossRef]
- Berard, N.C.; Wang, Y.; Wittenberg, K.M.; Krause, D.O.; Coulman, B.E.; McAllister, T.A.; Ominski, K.H. Condensed tannin concentrations found in vegetative and mature forage legumes grown in western Canada. Can. J. Plant Sci. 2011, 91, 669–675. [Google Scholar] [CrossRef]
- Jin, L.; Wang, Y.; Iwaasa, A.; Xu, Z.; Schellenberg, M.; Zhang, Y.; Liu, X.; McAllister, T. Effect of condensed tannins on ruminal degradability of purple prairie clover (Dalea purpurea Vent.) harvested at two growth stages. Anim. Feed Sci. Technol. 2012, 176, 17–25. [Google Scholar] [CrossRef]
- Li, Y.; Iwaasa, A.; Wang, Y.; Jin, L.; Han, G.; Zhao, M. Condensed tannins concentration of selected prairie legume forages as affected by phenological stages during two consecutive growth seasons in western Canada. Can. J. Plant Sci. 2014, 94, 817–826. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, L.; Ominski, K.; He, M.; Xu, Z.; Krause, D.; Acharya, S.; Wittenberg, K.; Liu, X.; McAllister, T.A.; et al. Screening of condensed tannins from Canadian Prairie forages for anti–Escherichia coli O157: H7 with an emphasis on purple prairie clover (Dalea purpurea Vent). J. Food Prot. 2013, 76, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Hao, Y.Q.; Jin, L.; Xu, Z.; McAllister, T.A.; Wang, Y. Anti-Escherichia coli O157: H7 properties of purple prairie clover and sainfoin condensed tannins. Molecules 2013, 18, 2183–2199. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Huang, Q.; Xu, Z.; McAllister, T.A.; Acharya, S.; Mueller-Harvey, I.; Drake, C.; Huang, Y.; Sun, Y.; Cao, Y.; et al. Characterization of condensed tannins from purple prairie clover (Dalea purpurea Vent.) conserved as either freeze-dried forage, sun-cured hay or silage. Molecules 2018, 23, 586. [Google Scholar] [CrossRef]
- Peng, K.; Gresham, G.L.; McAllister, T.A.; Xu, Z.; Iwaasa, A.; Schellenberg, M.; Chaves, A.V.; Wang, Y. Effects of inclusion of purple prairie clover (Dalea purpurea Vent.) with native cool-season grasses on in vitro fermentation and in situ digestibility of mixed forages. J. Anim. Sci. Biotech. 2020, 11, 23. [Google Scholar] [CrossRef]
- Huang, Q.; Hu, T.; Xu, Z.; Jin, L.; McAllister, T.A.; Acharya, S.; Zeller, W.E.; Mueller-Harvey, I.; Wang, Y. Composition and protein precipitation capacity of condensed tannins in purple prairie clover (Dalea purpurea Vent.). Front. Plant Sci. 2021, 12, 715282. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Jin, L.; Xu, Z.; Acharya, S.; McAllister, T.A.; Hu, T.M.; Iwaasa, A.; Schellenberg, M.; Peng, K.; Wang, Y. Effects of conservation method on condensed tannin content, ruminal and intestinal digestion of purple prairie clover (Dalea purpurea Vent.). Can. J. Anim. Sci. 2016, 96, 524–531. [Google Scholar] [CrossRef]
- Ayres, K.W.; Acton, D.F.; Ellis, J.G. The Soils of the Swift Current Map Area 72J Saskatchewan; Saskatchewan Institute of Pedology Publication S6: Extension Publication 481; University Saskatchewan: Saskatoon, SK, Canada, 1985. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Agricultural Chemists, 425, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Zahiroddini, H.; Baah, J.; Absalom, W.; McAllister, T.A. Effect of an inoculant and hydrolytic enzymes on fermentation and nutritive value of wholecrop barley silage. Anim. Feed Sci. Technol. 2004, 117, 317–330. [Google Scholar] [CrossRef]
- Terrill, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Bach, S.B.; McAllister, T.A. Sensitivity of Escherichia coli O157:H7 to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins. Asian-Aust. J. Anim. Sci. 2009, 22, 238–245. [Google Scholar] [CrossRef]
- Peña-Icart, M.; Tagle, M.E.V.; Alonso-Hernández, C.; Hernández, J.R.; Behar, M.; Alfonso, M.S.P. Comparative study of digestion methods EPA 3050B (HNO3–H2O2–HCl) and ISO 11466.3 (aqua regia) for Cu, Ni and Pb contamination assessment in marine sediments. Mar. Environ. Res. 2011, 72, 60–66. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Canadian Council on Animal Care. Guidelines on: The Care and Use of Farm Animals in Research, Teaching and Testing; CCAC: Ottawa, ON, Canada, 2009; pp. 12–15. [Google Scholar]
- SAS Institute Inc. SAS OnlineDoc®, version 9.3.1; SAS Institute Inc.: Cary, NC, USA, 2012.
- Acharya, S.; Sottie, E.; Coulman, B.; Iwaasa, A.; McAllister, T.; Wang, Y.; Liu, J. New sainfoin populations for bloat-free alfalfa pasture mixtures in western Canada. Crop Sci. 2013, 53, 2283–2293. [Google Scholar] [CrossRef]
- Soussana, J.F. Grasslands and climate change [Prairies et changement climatique]. Fourrages 2013, 215, 171–180. [Google Scholar]
- Perotti, E.; Huguenin-Elie, O.; Meisser, M.; Dubois, S.; Probo, M.; Mariotte, P. Climatic, soil, and vegetation drivers of forage yield and quality differ across the first three growth cycles of intensively managed permanent grasslands. Eur. J. Agron. 2021, 122, 126194. [Google Scholar] [CrossRef]
- Sottie, E.T.; Acharya, S.N.; McAllister, T.; Thomas, J.; Wang, Y.; Iwaasa, I. Alfalfa pasture bloat can be eliminated by intermixing with newly-developed sainfoin population. Agron. J. 2014, 106, 1470–1478. [Google Scholar] [CrossRef]
- Sottie, E.T.; Acharya, S.N.; McAllister, T.; Thomas, J.; Wang, Y. Performance of alfalfa/sainfoin mixed pastures and grazing steers in western Canada. Prof. Anim. Sci. 2017, 33, 472–482. [Google Scholar] [CrossRef]
- Jin, L.; Wang, Y.; Iwaasa, A.D.; Xu, Z.; Schellenberg, M.P.; Zhang, Y.G.; McAllister, T.A. Effect of condensed tannin on in vitro ruminal fermentation of purple prairie clover (Dalea purpurea Vent)-cool season grass mixture. Can. J. Anim. Sci. 2013, 93, 155–158. [Google Scholar] [CrossRef]
- Jin, L.; Wang, Y.; Iwaasa, A.D.; Xu, Z.; Li, Y.; Schellenberg, M.P.; Liu, X.L.; McAllister, T.A.; Stanford, K. Purple prairie clover (Dalea purpurea Vent) reduces fecal shedding of Escherichia coli in pastured cattle. J. Food Prot. 2015, 78, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.Q.; Jin, L.; Xu, Z.; Barbieri, R.; Acharya, S.; Hu, T.M.; McAllister, T.A.; Stanford, K.; Wang, Y. Effects of purple prairie clover (Dalea purpurea Vent.) on feed intake, nutrient digestibility and faecal shedding of Escherichia coli O157: H7 in lambs. Anim. Feed Sci. Technol. 2015, 207, 51–61. [Google Scholar] [CrossRef]
- Peng, K.; Shirley, D.C.; Xu, Z.; Huang, Q.; McAllister, T.A.; Chaves, A.V.; Acharya, S.; Liu, C.; Wang, S.; Wang, Y. Effect of purple prairie clover (Dalea purpurea Vent.) hay and its condensed tannins on growth performance, wool growth, nutrient digestibility, blood metabolites and ruminal fermentation in lambs fed total mixed rations. Anim. Feed. Sci. Technol. 2016, 222, 100–110. [Google Scholar] [CrossRef]
- Wang, Y.; McAllister, T.A.; Acharya, S.; Iwaasa, A. Evaluation of purple prairie clover as a novel forage for the sustainable growth of cattle industry. Final Report to Alberta Livestock and Meat Agency, 2017; (Report of the project that we submitted to the funding agency, unpublished). [Google Scholar]
- Lees, G.L.; Hinks, C.F.; Suttill, N.H. Effect of high temperature on condensed tannin accumulation in leaf tissues of big trefoil (Lotus uliginosus Schkuhr). J. Sci. Food Agric. 1994, 65, 415–421. [Google Scholar] [CrossRef]
- Ushio, M.; Adams, J.M. A meta-analysis of the global distribution pattern of condensed tannins in tree leaves. Open Ecol. J. 2011, 4, 1823. [Google Scholar] [CrossRef]
- Lee, M.A.; Davis, A.P.; Chagunda, M.G.G.; Manning, P. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 2017, 14, 1403–1417. [Google Scholar] [CrossRef]
- Melo, C.D.; Maduro Dias, C.S.A.M.; Wallon, S.; Borba, A.E.S.; Madruga, J.; Borges, P.A.V.; Ferreira, M.T. Influence of climate variability and soil fertility on the forage quality and productivity in Azorean pastures. Agriculture 2022, 12, 358. [Google Scholar] [CrossRef]
- Moyo, M.; Nsahlai, I. Consequences of increases in ambient temperature and effect of climate type on digestibility of forages by ruminants: A meta-analysis in relation to global warming. Animals 2021, 11, 172. [Google Scholar] [CrossRef]
- Suleiman, A.; Okine, E.; Goonewardene, L.A. Relevance of National Research Council feed composition tables in Alberta. Can. J. Anim. Sci. 1997, 77, 197–203. [Google Scholar] [CrossRef]
- Marković, J.; Štrbanović, R.; Cvetković, M.; Anđelković, B.; Živković, B. Effects of growth stage on the mineral concentrations in alfalfa (Medicago sativa L.) leaf, stem and the whole plant. Biotechnol. Anim. Husb. 2009, 25, 1225–1231. [Google Scholar]
- National Research Council. Nutrient Requirements of Beef Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
AC Lamour (ACL) | Bismarck (BIS) | Common Seed (CS) | SEM | p Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VEG | FF | LF | VEG | FF | LF | VEG | FF | LF | Variety (V) | Maturity (M) | V × M | ||
Irrigated plots | |||||||||||||
Forage mass, kg/ha, 2016 | 2557.0 c | 3294.4 c | 8450.9 a | 4806.2 abc | 4295.3 bc | 7752.2 ab | 3503.1 c | 4564.9 abc | 7886.9 ab | 825.84 | 0.457 | <0.001 | 0.456 |
Forage mass, kg/ha, 2017 | 6038.9 | 6757.4 | 5776.3 | 6045.3 | 7050.7 | 6115.6 | 5480.9 | 3962.8 | 4309.9 | 813.18 | 0.021 | 0.794 | 0.570 |
Canopy height, cm | 37.0 ab | 40.7 a | 39.75 a | 41.8 a | 45.1 a | 43.5 a | 29.6 b | 38.6 ab | 37.0 ab | 1.97 | 0.001 | 0.011 | 0.532 |
Leaf, % | 46.7 abc | 32.7 bcd | 23.8 d | 47.5 ab | 33.9 abcd | 26.4 d | 49.7 a | 30.3 cd | 30.0 bc | 3.39 | 0.713 | <0.001 | 0.737 |
Stem,% | 53.3 bcd | 67.3 abc | 76.22 a | 52.5 cd | 66.1 abcd | 73.6 a | 50.3 d | 69.7 ab | 70.0 cd | 3.39 | 0.713 | <0.001 | 0.737 |
Dryland plots | |||||||||||||
Forage mass, kg/ha, 2016 | 863.2 b | 1476.6 b | 1465.6 b | 1163.1 b | 2047.6 b | 4145.2 a | 1004.6 b | 1834.3 b | 1836.7 b | 393.26 | 0.003 | <0.001 | 0.021 |
Forage mass, kg/ha, 2017 | 1623.0 | 2057.5 | 2053.3 | 1851.5 | 2134.7 | 2079.1 | 2031.1 | 2531.6 | 2199.6 | 197.32 | 0.114 | 0.052 | 0.897 |
Canopy height, cm | 41.8 bc | 45.0 abc | 46.8 abc | 39.5 c | 42.7 bc | 47.5 abc | 46.3 abc | 50.1 a | 53.7 a | 1.84 | <0.001 | 0.001 | 0.915 |
Leaf, % | 46.1 a | 31.5 c | _ | 49.4 a | 30.7 c | _ | 42.7 ab | 33.0 bc | _ | 2.24 | 0.629 | <0.001 | 0.163 |
Stem, % | 54.0 c | 68.5 a | _ | 50.6 c | 69.3 a | _ | 57.3 bc | 67.0 ab | _ | 2.24 | 0.629 | <0.001 | 0.163 |
AC Lamour (ACL) | Bismarck (BIS) | Common Seed (CS) | SEM | p Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VEG | FF | LF | VEG | FF | LF | VEG | FF | LF | Variety (V) | Maturity (M) | V × M | ||
Irrigated plots | |||||||||||||
DM, % | 34.2 cd | 36.7 abcd | 43.4 a | 33.7 cd | 35.9 bcd | 42.1 ab | 32.1 d | 40.0 abc | 39.7 abc | 1.50 | 0.729 | <0.001 | 0.147 |
OM, % | 95.8 ab | 94.6 b | 96.1 ab | 95.9 ab | 95.7 ab | 97.1 ab | 95.6 ab | 98.0 a | 96.7 ab | 0.51 | 0.022 | 0.168 | 0.019 |
CP, % | 19.1 a | 15.9 bcd | 13.0 c | 17.8 ab | 16.7 abc | 13.3 e | 18.6 ab | 14.7 cde | 13.0 de | 0.57 | 0.435 | <0.001 | 0.172 |
NDF, % | 38.0 c | 41.2 abc | 43.4 abc | 38.2 bc | 41.0 abc | 44.6 a | 37.7 c | 43.9 ab | 42.1 abc | 1.18 | 0.889 | <0.001 | 0.253 |
ADF, % | 29.0 bc | 35.0 ab | 34.1 ab | 29.7 bc | 33.0 abc | 33.6 abc | 27.0 c | 37.5 a | 35.8 ab | 1.41 | 0.510 | <0.001 | 0.173 |
WSC, % | 13.4 | 11.6 | 12.8 | 13.0 | 12.6 | 14.0 | 12.8 | 11.6 | 12.0 | 1.14 | 0.522 | 0.445 | 0.923 |
CT, % | 6.0 | 6.5 | 6.9 | 4.9 | 6.8 | 5.3 | 6.3 | 6.4 | 6.9 | 0.44 | 0.060 | 0.110 | 0.117 |
DMD, % | 60.52 ab | 54.79 b | 54.13 b | 60.08 ab | 59.83 ab | 57.75 ab | 64.85 a | 56.19 ab | 57.14 ab | 1.94 | 0.127 | 0.002 | 0.297 |
Dryland plots | |||||||||||||
DM, % | 25.4 d | 33.4 c | 52.7 a | 25.4 d | 34.8 c | 44.1 b | 24.8 d | 34.2 c | 52.0 a | 0.81 | 0.002 | <0.001 | <0.001 |
OM, % | 89.4 cd | 91.7 ab | 91.4 abc | 89.3 d | 92.3 ab | 92.5 a | 90.3 bcd | 92.0 ab | 92.6 a | 0.50 | 0.101 | <0.001 | 0.485 |
CP, % | 17.4 a | 13.9 bcd | 13.0 cde | 14.5 bc | 12.6 de | 13.0 cde | 17.6 a | 15.1 b | 12.0 e | 0.43 | <0.001 | <0.001 | <0.001 |
NDF, % | 45.9 ab | 46.9 ab | 46.1 ab | 50.4 a | 48.6 ab | 48.2 ab | 47.3 ab | 44.6 b | 50.0 a | 1.17 | 0.151 | 0.250 | 0.025 |
ADF, % | 39.8 abc | 37.8 bc | 39.7 abc | 37.7 bc | 39.4 abc | 41.7 ab | 37.5 bc | 36.7 c | 43.3 a | 1.13 | 0.788 | <0.001 | 0.025 |
WSC, % | 12.6 | 13.0 | 12.6 | 12.0 | 12.4 | 12.8 | 13.4 | 12.8 | 11.6 | 1.38 | 0.794 | 0.676 | 0.288 |
CT, % | 7.36 | 7.48 | 6.95 | 7.20 | 7.37 | 6.88 | 7.53 | 7.57 | 7.11 | 0.308 | 0.053 | 0.087 | 0.999 |
DMD, % | 57.11 abc | 56.14 abc | 51.83 bc | 61.73 a | 53.13 abc | 50.17 bc | 58.70 ab | 53.71 abc | 48.39 c | 2.37 | 0.632 | <0.001 | 0.412 |
AC Lamour (ACL) | Bismark (BIS) | Common Seed (CS) | SEM | p Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VEG | FF | LF | VEG | FF | LF | VEG | FF | LF | Variety (V) | Maturity (M) | V × M | ||
Irrigated plots | |||||||||||||
DM, % | 29.3 c | 37.9 b | 40.7 b | 30.12 c | 38.8 b | 39.0 b | 37.9 b | 39.2 b | 45.2 a | 0.84 | <0.001 | <0.001 | 0.001 |
OM, % | 91.8 abc | 92.5 abc | 93.1 ab | 91.4 bc | 92.6 abc | 93.3 ab | 91.0 c | 93.5 a | 93.3 ab | 0.40 | 0.873 | <0.001 | 0.275 |
CP, % | 12.8 abc | 13.6 a | 11.4 bc | 12.5 ab | 13.2 ab | 10.2 cd | 11.7 bc | 14.0 a | 9.3 d | 0.33 | 0.018 | <0.001 | 0.022 |
NDF, % | 27.0 c | 41.4 a | 51.3 a | 25.2 c | 40.2 b | 51.6 a | 26.5 c | 36.4 b | 49.9 a | 1.04 | 0.047 | <0.001 | 0.130 |
ADF, % | 24.5 c | 35.8 b | 41.5 a | 22.1 c | 33.4 b | 41.2 a | 23.0 c | 32.4 b | 42.0 a | 0.75 | 0.045 | <0.001 | 0.110 |
Dryland plots | |||||||||||||
DM, % | 32.4 d | 38.7 c | 49.9 ab | 31.6 d | 38.9 c | 45.9 b | 30.8 d | 40.2 c | 50.9 ab | 0.98 | 0.065 | <0.001 | 0.042 |
OM, % | 91.8 | 93.3 | 93.2 | 91.9 | 92.8 | 93.4 | 91.6 | 92.1 | 93.1 | 0.44 | 0.356 | 0.001 | 0.754 |
CP, % | 13.5 | 11.8 | 10.9 | 12.7 | 11.4 | 9.8 | 12.3 | 11.6 | 11.9 | 0.52 | 0.615 | 0.083 | 0.696 |
NDF, % | 49.8 | 51.6 | 53.3 | 48.0 | 46.9 | 50.7 | 53.7 | 47.4 | 51.3 | 1.73 | 0.104 | 0.093 | 0.216 |
ADF, % | 43.0 | 44.2 | 46.6 | 41.6 | 41.0 | 45.4 | 45.6 | 41.0 | 44.3 | 1.32 | 0.219 | 0.014 | 0.166 |
AC Lamour (ACL) | Bismarck (BIS) | Common Seed (CS) | SEM | p Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mineral | VEG | FF | LF | VEG | FF | LF | VEG | FF | LF | Variety (V) | Maturity (M) | V × M | |
Ca, % | 2.10 a | 1.74 abc | 1.62 c | 1.95 abc | 1.62 abc | 1.58 bc | 2.08 abc | 1.55 c | 1.46 c | 0.105 | 0.333 | <0.001 | 0.780 |
K, % | 1.66 | 1.54 | 1.23 | 1.66 | 1.61 | 1.22 | 1.6 | 1.44 | 1.26 | 0.096 | 0.710 | <0.001 | 0.853 |
P, % | 0.26 ab | 0.24 abc | 0.16 c | 0.25 abc | 0.26 ab | 0.18 abc | 0.27 a | 0.23 abc | 0.17 bc | 0.019 | 0.765 | <0.001 | 0.744 |
S, % | 0.20 ab | 0.18 bbc | 0.14 c | 0.20 ab | 0.18 bc | 0.14 c | 0.24 a | 0.20 ab | 0.17 bc | 0.011 | 0.003 | <0.001 | 0.956 |
Mg, % | 0.31 abc | 0.28 abc | 0.24 bc | 0.27 abc | 0.25 abc | 0.19 c | 0.37 a | 0.31 ab | 0.27 abc | 0.024 | 0.002 | 0.003 | 0.929 |
Al, mg/kg | 158.5 | 362.9 | 206.5 | 151.9 | 151.0 | 114.0 | 218.0 | 169.2 | 122.1 | 67.80 | 0.186 | 0.365 | 0.430 |
B, mg/kg | 31.3 a | 28.2 abc | 26.9 abc | 28.7 abc | 26.2 abc | 23.0 c | 30.1 ab | 28.1 abc | 23.9 bc | 1.41 | 0.074 | 0.001 | 0.885 |
Cr, mg/kg | 8.1 | 20.0 | 15.0 | 6.4 | 13.0 | 6.6 | 14.0 | 11.7 | 5.4 | 3.28 | 0.124 | 0.076 | 0.184 |
Cu, mg/kg | 7.4 a | 7.3 a | 5.7 abc | 7.1 ab | 6.5 abc | 4.6 c | 7.8 a | 7.3 a | 4.9 bc | 0.47 | 0.113 | <0.001 | 0.783 |
Fe, mg/kg | 261.2 | 567.8 | 369.6 | 241.4 | 288.1 | 198.7 | 364.0 | 294.3 | 201.0 | 92.30 | 0.129 | 0.243 | 0.360 |
Mn, mg/kg | 43.4 a | 41.5 ab | 33.7 abc | 39.0 abc | 34.8 abc | 28.6 abc | 35.4 abc | 24.4 bc | 21.7 c | 3.61 | 0.002 | 0.005 | 0.783 |
Mo, mg/kg | 1.9 | 2.9 | 2.1 | 2.1 | 2.6 | 2.1 | 2.8 | 3.2 | 2.5 | 0.52 | 0.402 | 0.262 | 0.971 |
Na, mg/kg | 31.0 | 40.3 | 54.6 | 28.6 | 25.8 | 31.7 | 39.2 | 61.4 | 65.8 | 10.01 | 0.027 | 0.145 | 0.756 |
Ni, mg/kg | 1.7 b | 2.0 a | 1.7 ab | 1.6 ab | 1.8 ab | 1.3 b | 1.8 ab | 1.7 ab | 1.2 b | 0.15 | 0.058 | 0.006 | 0.518 |
Zn, mg/kg | 23.0 abc | 23.5 ab | 16.7 bcd | 22.1 abcd | 21.4 abcd | 15.2 d | 24.1 a | 22.2 abcd | 16.1 cd | 1.44 | 0.420 | <0.001 | 0.942 |
AC Lamour (ACL) | Bismarck (BIS) | Common Seed (CS) | SEM | p Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minerals | VEG | FF | LF | VEG | FF | LF | VEG | FF | LF | Variety (V) | Maturity (M) | V × M | |
Ca, % | 1.90 ab | 1.71 abc | 1.68 abc | 1.91 a | 1.47 bc | 1.4 c | 1.82 ab | 1.63 abc | 1.6 babc | 0.096 | 0.08 | <0.001 | 0.370 |
K, % | 1.32 ab | 1.28 ab | 1.16 b | 1.39 a | 1.28 ab | 1.25 ab | 1.38 a | 1.3 ab | 1.16 b | 0.039 | 0.189 | <0.001 | 0.516 |
P, % | 0.28 ab | 0.23 cd | 0.22 de | 0.24 bcd | 0.22 de | 0.22 de | 0.28 a | 0.26 abc | 0.19 e | 0.008 | 0.005 | <0.001 | <0.001 |
S, % | 0.19 b | 0.16 bcd | 0.17 bcd | 0.22 a | 0.17 bcd | 0.18 bc | 0.19 b | 0.16 cd | 0.15 d | 0.006 | <0.001 | <0.001 | 0.021 |
Mg, % | 0.28 abc | 0.26 bc | 0.30 abc | 0.35 ab | 0.31 abc | 0.36 a | 0.26 bc | 0.23 c | 0.28 abc | 0.024 | <0.001 | 0.042 | 0.990 |
Al, mg/kg | 449.7 a | 123.1 ab | 305.1 ab | 448.8 a | 129.9 ab | 187.9 ab | 318.6 ab | 122.1 b | 165.5 ab | 75.38 | 0.267 | <0.001 | 0.690 |
B, mg/kg | 25.4 bc | 23.2 bc | 31.8 a | 26.6 abc | 21.6 c | 28.8 ab | 25.5 abc | 22.4 c | 30.0 ab | 1.53 | 0.605 | <0.001 | 0.622 |
Cr, mg/kg | 63.0 a | 22.4 ab | 28.8 ab | 53.7 ab | 15.7 b | 19.0 b | 37.2 ab | 21.5 ab | 21.2 ab | 10.48 | 0.317 | <0.001 | 0.660 |
Cu, mg/kg | 8.3 ab | 6.8 abc | 6.9 bc | 7.6 abc | 6.2 c | 6.3 c | 8.3 a | 6.8 c | 6.2 c | 0.34 | 0.048 | <0.001 | 0.600 |
Fe, mg/kg | 1012.5 a | 316.5 b | 628.9 ab | 923.8 ab | 282.1 b | 393.0 ab | 686.0 ab | 319.8 b | 402.3 ab | 155.04 | 0.277 | <0.001 | 0.705 |
Mn, mg/kg | 73.3 a | 53.2 abc | 72.9 abc | 63.5 abc | 40.1 c | 46.1 bc | 69.4 ab | 53.9 abc | 63.6 abc | 5.69 | 0.002 | <0.001 | 0.452 |
Mo, mg/kg | 0 b | 0.1 ab | 0.4 a | 0 b | 0 b | 0.4 a | 0.1 b | 0.1 | 0.3 ab | 0.06 | 0.504 | <0.001 | 0.342 |
Na, mg/kg | 49.3 | 25.1 | 25.4 | 34.3 | 21.5 | 29.6 | 42.5 | 19.4 | 20.9 | 7.33 | 0.531 | 0.002 | 0.609 |
Ni, mg/kg | 4.7 abc | 5.9 a | 3.9 abc | 4.1 abc | 3.9 abc | 2.9 c | 4.0 abc | 5.3 ab | 3.1 bc | 0.53 | 0.020 | <0.001 | 0.577 |
Zn, mg/kg | 25.1 a | 19.2 ab | 21.1 ab | 22.1 ab | 17.9 b | 18.6 b | 25.3 a | 21.5 b | 18.3 b | 1.04 | 0.010 | <0.001 | 0.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Iwaasa, A.; McAllister, T.; Acharya, S. Agronomic Characteristics and Nutritive Value of Purple Prairie Clover (Dalea purpurea Vent) Grown in Irrigated and Dryland Conditions in Western Canada. Grasses 2025, 4, 27. https://doi.org/10.3390/grasses4030027
Wang Y, Iwaasa A, McAllister T, Acharya S. Agronomic Characteristics and Nutritive Value of Purple Prairie Clover (Dalea purpurea Vent) Grown in Irrigated and Dryland Conditions in Western Canada. Grasses. 2025; 4(3):27. https://doi.org/10.3390/grasses4030027
Chicago/Turabian StyleWang, Yuxi, Alan Iwaasa, Tim McAllister, and Surya Acharya. 2025. "Agronomic Characteristics and Nutritive Value of Purple Prairie Clover (Dalea purpurea Vent) Grown in Irrigated and Dryland Conditions in Western Canada" Grasses 4, no. 3: 27. https://doi.org/10.3390/grasses4030027
APA StyleWang, Y., Iwaasa, A., McAllister, T., & Acharya, S. (2025). Agronomic Characteristics and Nutritive Value of Purple Prairie Clover (Dalea purpurea Vent) Grown in Irrigated and Dryland Conditions in Western Canada. Grasses, 4(3), 27. https://doi.org/10.3390/grasses4030027