ijms-logo

Journal Browser

Journal Browser

Current Developments in Glioblastoma Research and Therapy: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Neurobiology".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 1189

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 60-806 Poznan, Poland
Interests: brain tumors; glioblastoma; epigenetics; pharmacoepigenetics; biomarkers; Wnt/β-catenin pathway; phytocompounds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Glioblastoma remains one of the most aggressive and incurable malignancies. Even after standard treatment, consisting of surgery, radiotherapy, and chemotherapy, tumor recurrence is often inevitable, and the prognosis for glioblastoma patients is still very poor. Therefore, rapid progress is urgently needing in developing a better understanding of glioblastoma pathogenesis and recurrence, as well as novel methods of improving patient outcomes.

Fortunately, research into glioblastoma is thriving, and new approaches involving more precise diagnosis and effective therapy for this deadly disease are constantly being evaluated. The implementation of combinatorial therapies, immunotherapy, and nanomedicine are examples of the strategies being tested to surpass current obstacles in glioblastoma treatment.

The aim of this Special Issue is to collect the most recent research findings in glioblastoma research, ranging from molecular mechanisms to therapeutic approaches. All advancements in characterizing GBM pathogenesis, including genomic, epigenomic, transcriptomic, and proteomic analyses of GBM cells, are of interest for this Special Issue. Moreover, we welcome the evaluation of innovative therapeutic agents and new treatment approaches.

We invite authors to submit their original preclinical, translational, and clinical works, as well as review articles regarding the above-mentioned cutting-edge topics, to this Special Issue of International Journal of Molecular Sciences.

We are looking forward to your contributions.

Dr. Aleksandra Majchrzak-Celińska
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • diagnostic, prognostic and predictive biomarkers of glioblastoma
  • ways to target glioma stem cells
  • targeting glioblastoma-related signaling pathways
  • epigenetics of glioblastoma
  • treatment resistance mechanisms
  • novel treatment options for glioblastoma
  • combinatorial therapies
  • immunotherapy
  • nanotherapy
  • the application of CRISPR/Cas9 in glioma research
  • molecular testing of long-term glioblastoma survivors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1827 KiB  
Article
A Pharmacologic Approach Against Glioblastoma—A Synergistic Combination of a Quinoxaline-Based and a PI3K/mTOR Dual Inhibitor
by Vitória Santório de São José, Bruno Marques Vieira, Camila Saggioro de Figueiredo, Luis Gabriel Valdivieso Gelves, Vivaldo Moura Neto and Lídia Moreira Lima
Int. J. Mol. Sci. 2025, 26(13), 6392; https://doi.org/10.3390/ijms26136392 - 2 Jul 2025
Viewed by 391
Abstract
Glioblastoma (GB) is the most common malignant primary CNS tumor with a fast-growing and invasive profile. As a result of the poor prognosis and limited therapy available, glioblastoma shows a high mortality rate. Given the scarcity of effective chemotherapy options, multiple studies have [...] Read more.
Glioblastoma (GB) is the most common malignant primary CNS tumor with a fast-growing and invasive profile. As a result of the poor prognosis and limited therapy available, glioblastoma shows a high mortality rate. Given the scarcity of effective chemotherapy options, multiple studies have explored the potential of tyrosine kinase inhibitors. To mitigate resistance and improve potency and selectivity, we proposed the combination of a potent irreversible epidermal growth factor receptor inhibitor—LASSBio-1971—and a potent phosphatidylinositol-3-kinase/mammalian target of rapamycin dual inhibitor—Gedatolisib—through an in vitro phenotypic study using five human GB lines. Here, we aimed to establish the cytotoxic potency, selectivity, and effect on proliferation, apoptosis, migration, and the cell cycle. Our data showed the cytotoxic potency of Gedatolisib and LASSBio-1971 and improved selectivity in the GB cell lines. They highlighted the synergistic response from their combination and its impact on migration reduction, G0/G1 cell cycle arrest, GB cytotoxicity, and apoptosis-inducing effects for different GB cell lines. The drug combination studies in phenotypic in vitro models made it possible to suggest a new potential treatment for glioblastoma that justifies further safety in in vivo phases of preclinical trials with the combination. Full article
Show Figures

Figure 1

16 pages, 2250 KiB  
Article
Oxamate, an LDHA Inhibitor, Inhibits Stemness, Including EMT and High DNA Repair Ability, Induces Senescence, and Exhibits Radiosensitizing Effects in Glioblastoma Cells
by Takuma Hashimoto, Go Ushikubo, Naoya Arao, Khaled Hatabi, Kazuki Tsubota and Yoshio Hosoi
Int. J. Mol. Sci. 2025, 26(12), 5710; https://doi.org/10.3390/ijms26125710 - 14 Jun 2025
Viewed by 545
Abstract
Enhancement of glycolysis has been reported in tumor cells, and it is believed that this enhancement is important for maintaining the stemness of tumor cells and contributes to malignant phenotypes. Here, we investigated the effects of Oxamate, which inhibits glycolysis by blocking the [...] Read more.
Enhancement of glycolysis has been reported in tumor cells, and it is believed that this enhancement is important for maintaining the stemness of tumor cells and contributes to malignant phenotypes. Here, we investigated the effects of Oxamate, which inhibits glycolysis by blocking the conversion of pyruvate to lactate, on radiosensitivity and its molecular mechanisms in T98G glioblastoma cells. Oxamate significantly enhanced radiosensitivity by delaying DNA repair, as indicated by the persistence of γ-H2AX foci up to four days post-irradiation. Mechanistically, Oxamate suppressed the expression and phosphorylation of key DNA repair factors. Furthermore, Oxamate induced apoptosis and promoted cellular senescence, as evidenced by the accumulation of SA-β-gal and the upregulation of pS15-p53 and p21. In addition, Oxamate downregulated EGFR expression, reduced the levels of stem cell markers, and modulated epithelial–mesenchymal transition (EMT) markers, suggesting a potential suppression of EMT-related pathways. Together, these results demonstrate that Oxamate enhances radiosensitivity in glioblastoma cells through multiple mechanisms, including the inhibition of DNA repair, induction of apoptosis and senescence, and suppression of cancer stem cell properties and EMT. Our findings provide new insights into the potential use of Oxamate as a radiosensitizer and warrant further investigation of its clinical application in glioblastoma therapy. Full article
Show Figures

Figure 1

Back to TopTop