Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = St. Lawrence River

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2145 KiB  
Article
Metal Exposure, Bioaccumulation, and Toxicity Assessment in Sediments from the St. Lawrence River Before and After Remediation Using a Resuspension Technique
by Masoumeh Javid, Catherine N. Mulligan, Marie Lefranc and Maikel Rosabal Rodriguez
Toxics 2025, 13(6), 432; https://doi.org/10.3390/toxics13060432 - 25 May 2025
Viewed by 449
Abstract
This study, using Hyalella azteca and Chironomus riparius, evaluated the effects of exposure to heavy metal-contaminated sediments collected from the study area under three conditions: before remediation, after remediation, and suspended particulate matter (SPM). The selected toxicity tests allowed for the evaluation [...] Read more.
This study, using Hyalella azteca and Chironomus riparius, evaluated the effects of exposure to heavy metal-contaminated sediments collected from the study area under three conditions: before remediation, after remediation, and suspended particulate matter (SPM). The selected toxicity tests allowed for the evaluation of biological responses across varying concentrations of heavy metals. Statistical analysis revealed no significant differences in survival or growth between sediment-exposed organisms and controls for either species. In addition, bioaccumulation of Cr, Ni, Cu, Zn, As, Cd, and Pb in both organisms was assessed and compared among the sediment conditions and the control. No statistically significant differences in tissue metal concentrations were found between organisms exposed to sediments from the study area and those in control conditions. Sequential extraction analysis indicated that a substantial proportion of metals in the sediments were bound in stable, non-bioavailable forms. These findings are consistent with the observed biological responses, as low levels of bioavailable metals corresponded with the absence of toxic effects. Together, the data confirm that the sediments, regardless of remediation stage or particle fraction, posed no significant biological risk under the conditions tested. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

21 pages, 2926 KiB  
Article
In-Situ Remediation of Heavy Metal–Contaminated Sediments Using the Resuspension Technique
by Masoumeh Javid and Catherine N. Mulligan
Water 2025, 17(3), 376; https://doi.org/10.3390/w17030376 - 30 Jan 2025
Cited by 1 | Viewed by 1198
Abstract
Heavy metal pollution in sediments and soil is an unavoidable anthropogenic issue with implications for quality of life and is a major long-term remediation challenge. This paper aimed to evaluate an in-situ remediation technique (resuspension) for sediment that may be employed in a [...] Read more.
Heavy metal pollution in sediments and soil is an unavoidable anthropogenic issue with implications for quality of life and is a major long-term remediation challenge. This paper aimed to evaluate an in-situ remediation technique (resuspension) for sediment that may be employed in a variety of contaminated site cleanup programs. Surface sediment samples were obtained from a shallow harbor on the St. Lawrence River, in Canada in 2019. Harbor sediment from the St. Lawrence River in Quebec is anthropogenically polluted by metals. Various experiments were performed using a designed reactor to evaluate sediment resuspension remediation technology. The method is based on sediments with a higher specific surface area that adsorb more metal contaminants. Therefore, the objective was to remove this fraction by the resuspension technique. Results showed that the levels of seven metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were reduced by removing only 2.63% of the sediment. Removal efficiency values varied from 3.48% for Cd to 32.4% for Cu). The results of the sequential extraction tests imply that the resuspension technique is capable of decreasing the risk of remobilization of heavy metals in the aquatic ecosystem. Therefore, this method could potentially be used to remediate metal–contaminated sediment with minimal sediment removal. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

10 pages, 2010 KiB  
Proceeding Paper
Learnable Weight Graph Neural Network for River Ice Classification
by Yifan Qu, Armina Soleymani, Denise Sudom and Katharine Andrea Scott
Proceedings 2024, 110(1), 30; https://doi.org/10.3390/proceedings2024110030 - 13 Jan 2025
Viewed by 696
Abstract
Monitoring river ice is crucial for planning safe navigation routes, with ice–water classification being one of the most important tasks in ice mapping. While high-resolutions satellite imagery, such as synthetic aperture radar (SAR), is well-suited to this task, manual interpretation of these data [...] Read more.
Monitoring river ice is crucial for planning safe navigation routes, with ice–water classification being one of the most important tasks in ice mapping. While high-resolutions satellite imagery, such as synthetic aperture radar (SAR), is well-suited to this task, manual interpretation of these data is challenging due to the large data volume. Machine learning approaches are suitable methods to overcome this; however, training the models might not be time-effective when the desired result is a narrow structure, such as a river, within a large image. To address this issue, we proposed a model incorporating a graph neural network (GNN), called learnable weights graph convolution network (LWGCN). Focusing on the winters of 2017–2021 with emphasis on the Beauharnois Canal and Lake St Lawrence regions of the Saint Lawrence River. The model first converts the SAR image into graph-structured data using simple linear iterative clustering (SLIC) to segment the SAR image, then connecting the centers of each superpixel to form graph-structured data. For the training model, the LWGCN learns the weights on each edge to determine the relationship between ice and water. By using the graph-structured data as input, the proposed model training time is eight times faster, compared to a convolution neural network (CNN) model. Our findings also indicate that the LWGCN model can significantly enhance the accuracy of ice and water classification in SAR imagery. Full article
(This article belongs to the Proceedings of The 31st International Conference on Geoinformatics)
Show Figures

Figure 1

18 pages, 2157 KiB  
Article
Spatial and Temporal Variation of C, N, and S Stable Isotopes and Seagrass Coverage Related to Eutrophication Stress in Zostera marina
by Jerrica M. Waddell, Christina C. Pater, Michael R. S. Coffin, Robert F. Gilmour, Simon C. Courtenay and Michael R. van den Heuvel
Coasts 2024, 4(2), 419-436; https://doi.org/10.3390/coasts4020021 - 3 Jun 2024
Cited by 3 | Viewed by 1523
Abstract
Zostera marina is an ecologically valuable species that has been declining due to anthropogenic environmental stressors. In this study, spatial and temporal indicators of eelgrass stress, such as coverage and biomass, were compared with the isotopic composition of C, N, and S to [...] Read more.
Zostera marina is an ecologically valuable species that has been declining due to anthropogenic environmental stressors. In this study, spatial and temporal indicators of eelgrass stress, such as coverage and biomass, were compared with the isotopic composition of C, N, and S to understand the mechanism(s) of plant stress. Eelgrass samples were collected in June, July, and August of 2020 at five stations along an estuary spatial gradient in the southern Gulf of St. Lawrence to measure above- and below-ground biomass and tissue isotopes in eelgrass leaves and roots/rhizomes. Eelgrass biomass was lowest at the innermost sampling station, which coincided with eutrophication-induced hypoxia relative to outer sampling stations. δ13C levels at the upstream station were depleted compared to downstream stations. Comparatively, δ15N and δ34S findings were not correlated with plant biomass. Thus, sulfide intrusion was not a major stressor for eelgrass in this estuary. Between the years 2014 and 2020, eelgrass coverage was found to have increased, which coincided with high and low recorded external nutrient loads from the Wheatley River, respectively. Ultimately, these findings indicate that isotopic composition and biomass can be useful in assessing the health of eelgrass in temperate estuaries. Full article
Show Figures

Graphical abstract

23 pages, 4913 KiB  
Article
Characterizing the Variability of a Physical Driver of North Atlantic Right Whale Foraging Habitat Using Altimetric Indices
by Jing Tao, Hui Shen, Richard E. Danielson and William Perrie
J. Mar. Sci. Eng. 2023, 11(9), 1760; https://doi.org/10.3390/jmse11091760 - 8 Sep 2023
Cited by 1 | Viewed by 1685
Abstract
Physical ocean circulation features, especially the Gaspé Current (GC) intrusion, influence the transport and aggregation of whale prey, thereby influencing the whale foraging habitat in the Gulf of St. Lawrence (GSL), Canada. We employ satellite altimetry-derived sea level anomaly (SLA) indices to monitor [...] Read more.
Physical ocean circulation features, especially the Gaspé Current (GC) intrusion, influence the transport and aggregation of whale prey, thereby influencing the whale foraging habitat in the Gulf of St. Lawrence (GSL), Canada. We employ satellite altimetry-derived sea level anomaly (SLA) indices to monitor interannual variations in the intensity of the GC in the North Atlantic Right Whale (Eubalaena glacialis; NARW) habitat in the GSL. Measurements of surface slope and volume transport are taken from the SLA profiles along a repeating ground track of the Jason-2/3 satellites. These are employed as complementary proxies in characterizations of physical processes in the GSL. The relationship between altimetric indices and indices of zooplankton abundance are explored in the southern GSL. Results demonstrate that an altimetric index estimated from surface slope (Indexslopehalf) is correlated with river discharge of the St. Lawrence River and can be utilized to infer variations in GC intensities. Time series of the altimetric indices during 2009–2021 are found to exhibit interannual and seasonal environmental variability, which influence transport into the southern GSL. As captured by the altimetric indices, these features of the surface ocean circulation can be linked to zooplankton variations in the Shediac Valley, where NARWs are frequently observed. Therefore, in linking physical drivers of ocean dynamics to the NARW foraging habitat, variations in these indices can also potentially help describe some features of the distribution patterns of NARW sightings in this area. Full article
(This article belongs to the Special Issue Numerical Modelling of Atmospheres and Oceans II)
Show Figures

Figure 1

15 pages, 7738 KiB  
Article
Macrozoobenthic Diversity along an Oxygen Gradient in the Deep Trough of the Gulf of St. Lawrence (Canada)
by Michael L. Zettler and Falk Pollehne
Diversity 2023, 15(7), 854; https://doi.org/10.3390/d15070854 - 14 Jul 2023
Cited by 1 | Viewed by 1610
Abstract
In 2015, we studied the macrozoobenthic community composition along a dissolved oxygen gradient in the deep trough of the Gulf of St. Lawrence (Canada). We sampled the seabed at nine stations using box corers (three replicates per station), starting in the outer Gulf [...] Read more.
In 2015, we studied the macrozoobenthic community composition along a dissolved oxygen gradient in the deep trough of the Gulf of St. Lawrence (Canada). We sampled the seabed at nine stations using box corers (three replicates per station), starting in the outer Gulf and ending in the Lower St. Lawrence River Estuary. We found four different communities dominated by polychaetes, crustaceans, and molluscs, with the emphasis shifting from mollusc to polychaete communities as oxygen saturation decreased. Contrary to our expectations, the stations furthest upstream in the estuary with the lowest oxygen saturation levels had the highest species diversity, and also the highest density and biomass values. Key genera of the hypoxic zone included bivalves (Thyasira), cumaceans (Diastylis), amphipods (Harpinia), and polychaetes such as Ampharete, Ceratocephale, Galathowenia, and Trochochaeta. We attribute this to the stability of the environmental conditions and the absence of stress, where the constant supply of oxygen, even at low concentrations, seems to be more important than the absolute oxygen concentration. Full article
Show Figures

Figure 1

21 pages, 2438 KiB  
Article
Conservation Genetics of Lake Sturgeon (Acipenser fulvescens): Nuclear Phylogeography Drives Contemporary Patterns of Genetic Structure and Diversity
by Shawna L. Kjartanson, Tim Haxton, Kristyne Wozney, Nathan R. Lovejoy and Chris C. Wilson
Diversity 2023, 15(3), 385; https://doi.org/10.3390/d15030385 - 7 Mar 2023
Cited by 8 | Viewed by 3347
Abstract
Sustainable management of exploited and endangered species is facilitated by knowledge of their geographic genetic structure. Lake sturgeon (Acipenser fulvescens) epitomizes both categories, but genetic information has largely been limited to the Laurentian Great Lakes basin. We assessed the hierarchical geographic [...] Read more.
Sustainable management of exploited and endangered species is facilitated by knowledge of their geographic genetic structure. Lake sturgeon (Acipenser fulvescens) epitomizes both categories, but genetic information has largely been limited to the Laurentian Great Lakes basin. We assessed the hierarchical geographic genetic structure of lake sturgeon across their Canadian range using a variation at 14 microsatellite loci. Observed patterns showed evidence of two ancestral groups which originated from Mississippian and Missourian glacial refugia. Coalescent analysis indicates the two lineages most recently shared common ancestry during the late Pleistocene and were likely isolated by the late Wisconsinan ice advance, with subsequent interpopulation divergences within each lineage reflecting their reciprocal isolation as glacial meltwaters receded. Hierarchical patterns of genetic relationships among contemporary populations largely reflect colonization histories and connections within primary and secondary watersheds. Populations in western Canada showed strong similarities based on their shared Missourian origins and colonization from glacial Lake Agassiz. By contrast, populations in the Great Lakes–St. Lawrence River drainage were largely founded from a Mississippian source. Sturgeon populations in northern parts of Ontario and Quebec showed evidence of mixed ancestry from secondary contact between the two refugial groups through Holocene meltwater lakes. Within major watersheds, the strong similarity among geographically separate populations reflects their shared ancestry during postglacial colonization. The general lack of structure within major river systems highlights historically continuous habitat (connectivity) and gene flow rather than contemporary barriers (dams). These data highlight the importance of Quaternary and prehistoric events on patterns of genetic diversity and divergence within and among contemporary populations, as well as the importance of these populations for conserving the species’ evolutionary legacy. Full article
(This article belongs to the Special Issue Conservation Genetics of Sturgeons)
Show Figures

Figure 1

18 pages, 3163 KiB  
Article
Two Distinct Life History Strategies of Atlantic Sturgeon in the Ogeechee River, Georgia
by Isaac Wirgin, Adam G. Fox, Lorraine Maceda and John Waldman
Diversity 2023, 15(3), 325; https://doi.org/10.3390/d15030325 - 22 Feb 2023
Cited by 6 | Viewed by 2856
Abstract
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) is an anadromous, widely distributed, highly migratory sturgeon subspecies that occurs in rivers and marine waters along the North American Atlantic Coast. This fish has shown widespread declines and has been afforded conservation protections, including some [...] Read more.
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) is an anadromous, widely distributed, highly migratory sturgeon subspecies that occurs in rivers and marine waters along the North American Atlantic Coast. This fish has shown widespread declines and has been afforded conservation protections, including some based in the U.S. on the delineation of Distinct Population Segments (DPS) under the Endangered Species Act. The management of Atlantic sturgeon will benefit from the knowledge of its population structure as well as the ability to uniquely identify individuals (in relation to population origin) that are vulnerable to anthropogenic stressors at sites outside of their natal estuaries. We used microsatellite analysis to estimate the genetic population structure of Atlantic sturgeon from 13 spawning rivers ranging from the St. Lawrence River, Quebec to the Satilla River, Georgia. Individual Based Assignment (IBA) testing was used to estimate the contribution of each population to mixed-stock aggregations in coastal waters and in a non-natal estuary. An unexpected finding was the discovery of two distinct genetic clusters of juvenile Atlantic sturgeon in the Ogeechee River, Georgia, with specimens in the two clusters differing significantly in terms of mean total length. Additionally, three distinct genetic clusters were detected within the Satilla River juvenile collection, along with two clusters within the Edisto River sample. In F1ST and FST analyses, the extent of the pairwise genetic differentiation between the two genetic clusters in the Ogeechee River and the three in the Satilla River was greater than that between all other pairwise comparisons among rivers in the South Atlantic DPS. In contrast, we found no evidence of the genetic partitioning of juvenile sturgeon within the neighboring Savannah or Altamaha river populations. Using IBA, we found that the overall Ogeechee River population made a moderate contribution (8.3%) to the overall mixed-stock collections (n = 1512) from coastal North Carolina to the Bay of Fundy. Surprisingly, all of the Ogeechee River-assigned specimens (n = 125) in these mixed-stock aggregations were representatives of only one of the two Ogeechee River genetic clusters. These results suggest that the two Ogeechee River genetic clusters exhibit significantly different life history strategies, with one being resident and the second being highly migratory. Full article
(This article belongs to the Special Issue Conservation Genetics of Sturgeons)
Show Figures

Graphical abstract

25 pages, 37283 KiB  
Article
Low-to-Mid-Frequency Monopole Source Levels of Underwater Noise from Small Recreational Vessels in the St. Lawrence Estuary Beluga Critical Habitat
by Dominic Lagrois, Camille Kowalski, Jean-François Sénécal, Cristiane C. A. Martins and Clément Chion
Sensors 2023, 23(3), 1674; https://doi.org/10.3390/s23031674 - 3 Feb 2023
Cited by 2 | Viewed by 2750 | Correction
Abstract
Anthropogenic noise from navigation is a major contributor to the disturbance of the acoustic soundscape in underwater environments containing noise-sensitive life forms. While previous studies mostly developed protocols for the empirical determination of noise source levels associated with the world’s commercial fleet, this [...] Read more.
Anthropogenic noise from navigation is a major contributor to the disturbance of the acoustic soundscape in underwater environments containing noise-sensitive life forms. While previous studies mostly developed protocols for the empirical determination of noise source levels associated with the world’s commercial fleet, this work explores the radiated noise emitted by small recreational vessels that thrive in many coastal waters, such as in the St. Lawrence Estuary beluga population’s summer habitat. Hydrophone-based measurements in the Saguenay River (QC, Canada) were carried out during the summers of 2021 and 2022. Shore-based observations identified 45 isolated transits of small, motorized vessels and were able to track their displacement during their passage near the hydrophone. Received noise levels at the hydrophone typically fell below the hearing audiogram of the endangered St. Lawrence Estuary beluga. Monopole source levels at low frequencies (0.1–≲2 kHz) held on average twice the acoustic power compared to their mid-frequency (≳2–30 kHz) counterparts. The speed over ground of recreational vessel showed a positive correlation with the back-propagated monopole source levels. Estimations of the mid-frequency noise levels based on low-frequency measurements should be used moderately. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

18 pages, 2601 KiB  
Article
Waved-Shape Accumulation of Ice Jam—Analysis and Experimental Study
by Pangpang Chen, Jueyi Sui, Guangxue Cao and Tiejie Cheng
Water 2022, 14(23), 3945; https://doi.org/10.3390/w14233945 - 4 Dec 2022
Cited by 4 | Viewed by 2051
Abstract
Ice jam is a unique hydrological phenomenon in rivers in cold regions. The appearance of an ice jam in a river results in an increase in the wetted perimeter of the flow cross-section, and thus an increase in flow resistance as well as [...] Read more.
Ice jam is a unique hydrological phenomenon in rivers in cold regions. The appearance of an ice jam in a river results in an increase in the wetted perimeter of the flow cross-section, and thus an increase in flow resistance as well as water level. It may cause ice flooding sometimes. Similar to the “sand wave” phenomenon in riverbed, it has been observed in laboratory experiments that the waved-shape accumulation of ice particles (termed as “ice wave”) under an ice jam occurred. In this study, an Equation for describing the relationship between the approaching flow Froude number (Fr) and the ratio of ice jam thickness to flow depth (t/H) has been proposed. Taking the inflection point value of the equation under different flow depths, a characteristic curve has been developed to judge whether ice waves under an ice jam occurs. When the flow Froude number in front of an ice jam is below the value at the inflection point of the curve, the ice jam can maintain a mechanical stability within the ice jam thickness in a range from the lower limiting value to the upper limiting value, which were close to the ice wave trough thickness and the ice wave crest thickness, respectively. An Equation for calculating the ice wavelength has been derived and verified by using results of laboratory experiments. The relationship between the migration speed of ice wave and the ratio of ice discharge to water flow rate (Qi/Q) has been also analyzed. At last, case studies have been conducted with respect to ice accumulation in the St. Lawrence River, the Beauharnois Canal and the La Grande River. Results of case studies show that the shoving and ice dam have been dominated by mechanical factors, which would be accompanied by the ice wave phenomenon during the ice jam accumulation process. Results of case studies about ice accumulation in natural rivers also show that the relative thickness of an ice jam (t/H) of 0.4 is the criterion for assessing whether an ice jam in a river belongs to an ice dam. Full article
(This article belongs to the Special Issue Fluvial Hydraulics Affected by River Ice and Hydraulic Structures)
Show Figures

Figure 1

20 pages, 2868 KiB  
Article
eDNA and Acoustic Tag Monitoring Reveal Congruent Overwintering Distributions of Striped Bass in a Hydrologically Complex Estuarine Environment
by Michaela Harris, Nathalie Brodeur, Francis LeBlanc, Scott Douglas, Paul Chamberland, Thomas Guyondet, Royce Steeves and Nellie Gagné
Fishes 2022, 7(4), 183; https://doi.org/10.3390/fishes7040183 - 23 Jul 2022
Cited by 5 | Viewed by 3633
Abstract
After collapsing in the late 1990s, the southern Gulf of St. Lawrence population of striped bass (Morone saxatilis) is recovering. Here, we evaluate the use of under-ice eDNA sampling to monitor the population and confirm overwintering locations. From 2018 to 2020, [...] Read more.
After collapsing in the late 1990s, the southern Gulf of St. Lawrence population of striped bass (Morone saxatilis) is recovering. Here, we evaluate the use of under-ice eDNA sampling to monitor the population and confirm overwintering locations. From 2018 to 2020, water samples were collected from transects spanning 35 km of the Miramichi River system, accounting for the effects of sampling site, month, sampling depth and tidal influence on eDNA concentration. We examined the distribution of eDNA in a complex tidal river system with a time series consisting of 12 h of continuous sampling throughout a tidal cycle, in conjunction with the use of artificial DNA tracers and acoustic Doppler current profiler flow measurements. The eDNA distribution correctly identified overwintering grounds based on acoustic tag data, including a perceptible upstream shift in 2020. Overall, there was no significant effect of year, sampling month (February or March), sampling depth or tidal phase on eDNA concentrations. The tidal time series revealed only weak patterns of eDNA recirculation. Monitoring eDNA concentration and distribution allows for a relative comparison of population size and location between years, and has the potential to be expanded to other river systems more easily than traditional acoustic fish tags and surveys. Full article
(This article belongs to the Special Issue Application of Environmental DNA Technology in Fishery Resources)
Show Figures

Figure 1

13 pages, 1289 KiB  
Article
Variability of Mean Annual Flows in Southern Quebec (Canada)
by Ali Arkamose Assani
Water 2022, 14(9), 1370; https://doi.org/10.3390/w14091370 - 23 Apr 2022
Cited by 1 | Viewed by 2047
Abstract
Snow is the main source of streamflow in temperate regions characterized by very cold and snowy winters. Due to global warming, these regions are experiencing a significant decrease in snowfall. The main objective of this study is to analyze the impacts of snowfall [...] Read more.
Snow is the main source of streamflow in temperate regions characterized by very cold and snowy winters. Due to global warming, these regions are experiencing a significant decrease in snowfall. The main objective of this study is to analyze the impacts of snowfall on the spatio-temporal variability of mean annual flows (MAFs) of 17 rivers, grouped into three hydroclimatic regions, from 1930 to 2019 in southern Quebec. In terms of spatial variability, snowfall is the variable most correlated with MAFs (positive correlation), followed by drainage density (positive correlation) and wetland surface areas (negative correlation). Due to the influence of these three factors, MAF values are generally higher in the most agricultural watersheds of the southeastern hydroclimatic region on the south shore than in the less agricultural watersheds of the southwestern hydroclimatic region on the north shore of the St. Lawrence River. As for temporal variability, the four statistical tests applied to the hydrological series detect no significant downward trend in MAFs, despite having reduced snowfall. Instead, they suggest an evolution toward an increase in mean annual flows, as a result of increased rainfall due to the increase in temperature. This evolution is more pronounced on the north shore than on the south shore, likely due to the presence of wetlands and others water bodies, whose runoff water storage capacity does not change over time to be able to store the surplus of the quantity of water brought by the increase in rain. Full article
(This article belongs to the Special Issue Large Rivers in a Changing Environment)
Show Figures

Figure 1

9 pages, 2061 KiB  
Article
Proximity to Riparian Wetlands Increases Mercury Burden in Fish in the Upper St. Lawrence River
by Autumn Osgood, Evie S. Brahmstedt, Matthew J.S. Windle, Thomas M. Holsen and Michael R. Twiss
Water 2022, 14(1), 70; https://doi.org/10.3390/w14010070 - 1 Jan 2022
Viewed by 3044
Abstract
Mercury deposited in the Upper St. Lawrence River watershed by atmospheric deposition accumulated in riparian wetlands and is at risk of remobilization due to water level fluctuations. To examine if riparian wetlands are a source of mercury to fish, 174 yellow perch ( [...] Read more.
Mercury deposited in the Upper St. Lawrence River watershed by atmospheric deposition accumulated in riparian wetlands and is at risk of remobilization due to water level fluctuations. To examine if riparian wetlands are a source of mercury to fish, 174 yellow perch (Perca flavescens) and 145 round gobies (Neogobius melanostomus) were collected in 2019 from eight wetland and seven non-wetland habitats throughout the Upper St. Lawrence River. Mercury levels were significantly (p < 0.01) higher in fish collected from wetlands than those collected from non-wetland habitats for both yellow perch and round goby. Perch had mercury concentrations of 74.5 ± 35.4 ng/g dry wt in wetlands compared to 59.9 ± 23.0 ng/g dry wt in non-wetlands. Goby had mercury concentrations of 55.4 ± 13.8 ng/g dry wt in wetlands and non-wetland concentrations of 41.0 ± 14.0 ng/g dry wt. Riparian wetlands are areas of elevated mercury methylation and mobilization in the Upper St. Lawrence River and consequences to predators should be considered from the perspective of both wildlife preservation as well as fish consumption advisories for public health concerns. Full article
(This article belongs to the Special Issue Climate Change and Water Levels in the Great Lakes)
Show Figures

Figure 1

16 pages, 1952 KiB  
Article
Impacts of Agricultural Areas on Spatio-Temporal Variability of Daily Minimum Extreme Flows during the Transitional Seasons (Spring and Fall) in Southern Quebec
by Ali Arkamose Assani, Ayoub Zeroual, Alexandre Roy and Christophe Kinnard
Water 2021, 13(24), 3487; https://doi.org/10.3390/w13243487 - 7 Dec 2021
Cited by 9 | Viewed by 3087
Abstract
Several statistical methods were used to analyze the spatio-temporal variability of daily minimum extreme flows (DMEF) in 17 watersheds—divided into three homogenous hydroclimatic regions of southern Quebec—during the transitional seasons (spring and fall), during the 1930–2019 period. Regarding spatial variability, there was a [...] Read more.
Several statistical methods were used to analyze the spatio-temporal variability of daily minimum extreme flows (DMEF) in 17 watersheds—divided into three homogenous hydroclimatic regions of southern Quebec—during the transitional seasons (spring and fall), during the 1930–2019 period. Regarding spatial variability, there was a clear difference between the south and north shores of the St. Lawrence River, south of 47° N. DMEF were lower in the more agricultural watersheds on the south shore during transitional seasons compared to those on the north shore. A correlation analysis showed that this difference in flows was mainly due to more agricultural areas ((larger area (>20%) on the south than on the north shore (<5%)). An analysis of the long-term trend of these flows showed that the DMEF of south-shore rivers have increased significantly since the 1960s, during the fall (October to December), due to an increase in rainfall and a reduction in cultivated land, which increased the infiltration in the region. Although there was little difference between the two shores in the spring (April to June), we observed a decrease in minimum extreme flows in half (50%) of the south-shore rivers located north of 47° N. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

16 pages, 4784 KiB  
Article
A Slight Temperature Warming Trend Occurred over Lake Ontario from 2001 to 2018
by Xiaoying Ouyang, Dongmei Chen, Shugui Zhou, Rui Zhang, Jinxin Yang, Guangcheng Hu, Youjun Dou and Qinhuo Liu
Land 2021, 10(12), 1315; https://doi.org/10.3390/land10121315 - 29 Nov 2021
Cited by 2 | Viewed by 2583
Abstract
Satellite-derived lake surface water temperature (LSWT) measurements can be used for monitoring purposes. However, analyses based on the LSWT of Lake Ontario and the surrounding land surface temperature (LST) are scarce in the current literature. First, we provide an evaluation of the commonly [...] Read more.
Satellite-derived lake surface water temperature (LSWT) measurements can be used for monitoring purposes. However, analyses based on the LSWT of Lake Ontario and the surrounding land surface temperature (LST) are scarce in the current literature. First, we provide an evaluation of the commonly used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived LSWT/LST (MOD11A1 and MYD11A1) using in situ measurements near the area of where Lake Ontario, the St. Lawrence River and the Rideau Canal meet. The MODIS datasets agreed well with ground sites measurements from 2015–2017, with an R2 consistently over 0.90. Among the different ground measurement sites, the best results were achieved for Hill Island, with a correlation of 0.99 and centered root mean square difference (RMSD) of 0.73 K for Aqua/MYD nighttime. The validated MODIS datasets were used to analyze the temperature trend over the study area from 2001 to 2018, through a linear regression method with a Mann–Kendall test. A slight warming trend was found, with 95% confidence over the ground sites from 2003 to 2012 for the MYD11A1-Night datasets. The warming trend for the whole region, including both the lake and the land, was about 0.17 K year−1 for the MYD11A1 datasets during 2003–2012, whereas it was about 0.06 K year−1 during 2003–2018. There was also a spatial pattern of warming, but the trend for the lake region was not obviously different from that of the land region. For the monthly trends, the warming trends for September and October from 2013 to 2018 are much more apparent than those of other months. Full article
(This article belongs to the Special Issue Spatiotemporal Variations of Land Surface Temperature)
Show Figures

Figure 1

Back to TopTop